

ffi rs.indd 5:7:4:PM/03/31/2015 Page ii

ffi rs.indd 5:7:4:PM/03/31/2015 Page i

AutoCAD®
Platform
Customization
VBA

ffi rs.indd 5:7:4:PM/03/31/2015 Page ii

ffi rs.indd 5:7:4:PM/03/31/2015 Page iii

AutoCAD®
Platform
Customization
VBA

Lee Ambrosius

ffi rs.indd 5:7:4:PM/03/31/2015 Page iv

Senior Acquisitions Editor: Stephanie McComb

Development Editor: Mary Ellen Schutz

Technical Editor: Richard Lawrence

Production Editor: Dassi Zeidel

Copy Editor: Liz Welch

Editorial Manager: Pete Gaughan

Production Manager: Kathleen Wisor

Associate Publisher: Jim Minatel

Book Designers: Maureen Forys, Happenstance Type-O-Rama; Judy Fung

Proofreader: Candace Cunningham

Indexer: Ted Laux

Project Coordinator, Cover: Brent Savage

Cover Designer: Wiley

Cover Image: © Smileyjoanne/iStockphoto.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-90044-4 (ebk.)
ISBN: 978-1-118-90698-9 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechan-
ical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy
or completeness of the contents of this work and specifi cally disclaim all warranties, including without limitation warranties of fi tness for a
particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein
may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be
sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers should be aware that
Internet Web sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer Care Department
within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions
of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in
the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley prod-
ucts, visit www.wiley.com.

Library of Congress Control Number: 2015936845

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affi liates, in the United States and other countries, and may not be used without written permission.AutoCAD is a registered trademark of
Autodesk, Inc. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product
or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

ffi rs.indd 5:7:4:PM/03/31/2015 Page v

To my friend Kathy Enderby: You were one of the

fi rst people to encourage me to follow my passion for

programming and sharing what I had learned with

others. Thank you for believing in me all those years

ago and for being there when I needed someone to

bounce ideas off—especially during those late-night

scrambles right before deploying a new software

release.

ffi rs.indd 5:7:4:PM/03/31/2015 Page vii

Acknowledgments
I have to give a very special thanks to all the great folks at Sybex, especially Willem Knibbe, for

working on and helping to get this project off the ground after a few years of talking about it.

The next two people I would like to thank are Mary Ellen Schutz and Dassi Zeidel, the develop-

ment and production editors on this book; you two made sure I stayed on track and delivered a

high-quality book. I also want to thank Liz Welch (copyeditor), Candace Cunningham (proof-

reader), and Ted Laux (indexer) for the work you all did on this book.

Thanks to all the folks at Autodesk, who put in the long hours and are dedicated to the

work they do on the Autodesk® AutoCAD® product. I cannot forget one of the most important

individuals on this book, my technical editor, Richard Lawrence. Richard is a great friend who I

met many years ago at Autodesk University. He is a passionate and driven user of AutoCAD and

is always looking to improve the way he uses AutoCAD. Richard, I appreciate everything that

you have done to make this book better. Congrats on making it through your fi rst book as a

technical editor.

ffi rs.indd 5:7:4:PM/03/31/2015 Page viii

ffi rs.indd 5:7:4:PM/03/31/2015 Page ix

About the Author
Lee Ambrosius fi rst started working with AutoCAD R12 for DOS in 1994. As a drafter, he

quickly discovered that every project included lots of repetition. Lee, not being one to settle

for “this is just the way things are,” set out on a path that would redefi ne his career. This new

path would lead him into the wondrous world of customization and programming—which you

might catch him referring to as “the rabbit hole.”

In 1996, Lee began learning the core concepts of customizing the AutoCAD user interface

and AutoLISP. The introduction of VBA in AutoCAD R14 would once again redefi ne how Lee

approached programming solutions for AutoCAD. VBA made it much easier to communicate

with external databases and other applications that supported VBA. It transformed the way

information could be moved between project-management and manufacturing systems.

Not being content with VBA, in 1999 Lee attended his fi rst Autodesk University and began

to learn ObjectARX®. Autodesk University had a lasting impression on him. In 2001, he started

helping as a lab assistant. He began presenting on customizing and programming AutoCAD at

the event in 2004. Along the way he learned how to use the AutoCAD Managed .NET API.

In 2005, Lee decided cubicle life was no longer for him, so he ventured off into the CAD

industry as an independent consultant and programmer with his own company, HyperPics,

LLC. After he spent a few years as a consultant, Autodesk invited him to work on the AutoCAD

team; he has been on the AutoCAD team since 2007. For most of his career at Autodesk, Lee has

worked primarily on customization and end-user documentation. Recently, he has been work-

ing on the AutoLISP, VBA, ObjectARX, .NET, and JavaScript programming documentation.

In addition to working on the AutoCAD documentation, Lee has been involved as a techni-

cal editor or author for various editions of the AutoCAD and AutoCAD LT Bible, AutoCAD for
Dummies, AutoCAD & AutoCAD LT All-in-One Desk Reference for Dummies, AutoCAD 3D Modeling
Workbook for Dummies, and Mastering AutoCAD for Mac. He has also written white papers on

customization for Autodesk and a variety of articles on customization and programming for

AUGIWorld, published by AUGI®.

ffi rs.indd 5:7:4:PM/03/31/2015 Page x

ffi rs.indd 5:7:4:PM/03/31/2015 Page xi

Contents at a Glance

Introduction .xxi

Chapter 1 • Understanding the AutoCAD VBA Environment . 1

Chapter 2 • Understanding Visual Basic for Applications . 21

Chapter 3 • Interacting with the Application and Documents Objects 57

Chapter 4 • Creating and Modifying Drawing Objects . 83

Chapter 5 • Interacting with the User and Controlling the Current View. 113

Chapter 6 • Annotating Objects . 151

Chapter 7 • Working with Blocks and External References . 175

Chapter 8 • Outputting Drawings . 221

Chapter 9 • Storing and Retrieving Custom Data . 247

Chapter 10 • Modifying the Application and Working with Events. 279

Chapter 11 • Creating and Displaying User Forms . 309

Chapter 12 • Communicating with Other Applications . 339

Chapter 13 • Handling Errors and Deploying VBA Projects . 375

Index . 409

ffi rs.indd 5:7:4:PM/03/31/2015 Page xii

ftoc.indd 1:48:10:PM/03/26/2015 Page xiii

Contents

Introduction .xxi

Chapter 1 • Understanding the AutoCAD VBA Environment 1

What Makes Up an AutoCAD VBA Project? . 1

What You’ll Need to Start . 3

Determine If the AutoCAD VBA Environment Is Installed . 3

Install the AutoCAD 2015 VBA Enabler . 4

Getting Started with the VBA Editor . 4

Identifying the Components of a VBA Project. 5

Navigating the VBA Editor Interface. 7

Setting the VBA Environment Options. 11

Managing VBA Programs . 11

Creating a New VBA Project. 12

Saving a VBA Project . 13

Loading and Unloading a VBA Project . 13

Embedding or Extracting a VBA Project. 15

Executing VBA Macros . 16

Accessing the AutoCAD VBA Documentation . 19

Chapter 2 • Understanding Visual Basic for Applications 21

Learning the Fundamentals of the VBA Language . 21

Creating a Procedure . 22

Declaring and Using Variables . 24

Controlling the Scope of a Procedure or Variable . 26

Continuing Long Statements . 27

Adding Comments . 28

Understanding the Differences Between VBA 32- and 64-Bit 29

Exploring Data Types . 30

Working with Objects . 32

Accessing Objects in a Collection. 34

Storing Data in Arrays . 35

Calculating Values with Math Functions and Operators. 38

Manipulating Strings . 39

Converting Between Data Types . 42

Comparing Values . 44

Testing Values for Equality . 44

Comparing String Values . 45

Determining If a Value Is Greater or Less Than Another . 46

XIV | CONTENTS

ftoc.indd 1:48:10:PM/03/26/2015 Page xiv

Checking for Null, Empty, or Nothing Values. 47

Validating Values . 48

Grouping Comparisons . 48

Conditionalizing and Branching Statements. 49

Evaluating If a Condition Is Met . 49

Testing Multiple Conditions . 51

Repeating and Looping Expressions . 52

Repeating Expressions a Set Number of Times . 52

Stepping Through an Array or Collection . 53

Performing a Task While or Until a Condition Is Met . 54

Chapter 3 • Interacting with the Application and Documents Objects . . .57

Working with the Application . 57

Getting Information about the Current AutoCAD Session . 58

Manipulating the Placement of the Application Window . 59

Managing Documents . 60

Working with the Current Drawing . 61

Creating and Opening Drawings. 61

Saving and Closing Drawings . 63

Accessing Information about a Drawing . 66

Manipulating a Drawing Window. 67

Working with System Variables. 68

Querying and Setting Application and

Document Preferences . 70

Executing Commands . 71

Exercise: Setting Up a Project. 72

Creating the DrawingSetup Project . 73

Creating and Saving a New Drawing from Scratch . 74

Inserting a Title Block with the insert Command. 76

Adding Drawing Properties . 78

Setting the Values of Drafting-Related System Variables

and Preferences . 80

Chapter 4 • Creating and Modifying Drawing Objects83

Understanding the Basics of a Drawing-Based Object. 83

Accessing Objects in a Drawing . 88

Working with Model or Paper Space . 89

Creating Graphical Objects. 91

Adding Straight Line Segments . 91

Working with Curved Objects . 92

Working with Polylines . 96

Getting an Object in the Drawing . 99

Modifying Objects . 101

Deleting Objects . 102

Copying and Moving Objects . 102

Rotating Objects . 103

CONTENTS | XV

ftoc.indd 1:48:10:PM/03/26/2015 Page xv

Changing Object Properties . 104

Exercise: Creating, Querying, and Modifying Objects . 105

Creating the DrawPlate Project. 105

Creating the Utilities Class . 106

Defi ning the CLI_DrawPlate Function . 108

Running the CLI_DrawPlate Function . 110

Exporting the Utilities Class . 111

Chapter 5 • Interacting with the User and Controlling

the Current View . 113

Interacting with the User . 113

Requesting Input at the Command Prompt . 114

Providing Feedback to the User . 125

Selecting Objects . 127

Selecting an Individual Object . 127

Working with Selection Sets . 129

Filtering Objects . 132

Performing Geometric Calculations . 134

Calculating a Coordinate Value . 134

Measuring the Distance Between Two Points . 135

Calculating an Angle . 136

Changing the Current View . 137

Zooming and Panning the Current View . 137

Working with Model Space Viewports . 139

Creating and Managing Named Views. 142

Applying Visual Styles. 143

Exercise: Getting Input from the User to

Draw the Plate . 143

Revising the CLI_DrawPlate Function . 144

Revising the Utilities Class . 147

Using the Revised drawplate Function . 149

Chapter 6 • Annotating Objects. 151

Working with Text . 151

Creating and Modifying Text . 151

Formatting a Text String . 153

Controlling Text with Text Styles . 156

Dimensioning Objects . 158

Creating Dimensions . 158

Formatting Dimensions with Styles . 160

Assigning a Dimension Style . 162

Creating and Modifying Geometric Tolerances . 163

Adding Leaders . 164

Working with Multileaders . 164

Creating and Modifying Legacy Leaders . 167

Organizing Data with Tables . 168

XVI | CONTENTS

ftoc.indd 1:48:10:PM/03/26/2015 Page xvi

Inserting and Modifying a Table . 168

Formatting Tables . 169

Assigning a Table Style . 170

Creating Fields . 170

Exercise: Adding a Label to the Plate . 171

Revising the CLI_DrawPlate Function . 171

Revising the Utilities Class . 173

Using the Revised drawplate Function . 173

Chapter 7 • Working with Blocks and External References175

Managing Block Defi nitions. 175

Creating a Block Defi nition . 176

Adding Attribute Defi nitions . 178

Modifying and Redefi ning a Block Defi nition. 181

Determining the Type of Block Defi nition . 182

Inserting and Working with Block References . 183

Inserting a Block Reference. 183

Modifying a Block Reference . 184

Accessing the Attributes of a Block . 187

Working with Dynamic Properties . 189

Managing External References . 192

Working with Xrefs . 192

Attaching and Modifying Raster Images . 197

Working with Underlays . 199

Listing File Dependencies. 201

Exercise: Creating and Querying Blocks . 202

Creating the RoomLabel Project . 203

Creating the RoomLabel Block Defi nition . 203

Inserting a Block Reference Based on the RoomLabel Block Defi nition. 205

Prompting the User for an Insertion Point and a Room Number. 206

Adding Room Labels to a Drawing . 208

Creating the FurnTools Project . 209

Moving Objects to Correct Layers . 210

Creating a Basic Block Attribute Extraction Program. 212

Using the Procedures of the FurnTools Project . 219

Chapter 8 • Outputting Drawings . 221

Creating and Managing Layouts . 221

Creating a Layout . 222

Working with a Layout . 222

Controlling the Display of Layout Tabs . 223

Displaying Model Space Objects with Viewports . 223

Adding a Floating Viewport . 224

Setting a Viewport as Current . 225

Modifying a Floating Viewport . 225

Controlling the Output of a Layout. 228

CONTENTS | XVII

ftoc.indd 1:48:10:PM/03/26/2015 Page xvii

Creating and Managing Named Page Setups . 229

Specifying an Output Device and a Paper Size . 229

Setting a Plot Style as Current . 232

Defi ning the Area to Output. 234

Changing Other Related Output Settings . 235

Plotting and Previewing a Layout. 235

Exporting and Importing File Formats . 237

Exercise: Adding a Layout to Create a Check Plot . 238

Creating the Layout . 239

Adding and Modifying a Plot Confi guration . 240

Inserting a Title Block . 241

Displaying Model Space Objects with a Viewport . 242

Putting It All Together . 242

Testing the CheckPlot Procedure . 246

Chapter 9 • Storing and Retrieving

Custom Data .247

Extending Object Information . 247

Working with Xdata . 248

Defi ning and Registering an Application Name . 249

Attaching Xdata to an Object . 249

Querying and Modifying the Xdata Attached to an Object 252

Removing Xdata from an Object . 258

Selecting Objects Based on Xdata . 258

Creating and Modifying a Custom Dictionary . 259

Accessing and Stepping through Dictionaries. 260

Creating a Custom Dictionary . 262

Storing Information in a Custom Dictionary . 263

Managing Custom Dictionaries and Entries . 264

Storing Information in the Windows Registry . 265

Creating and Querying Keys and Values . 265

Editing and Removing Keys and Values. 267

Exercise: Storing Custom Values for the Room Labels Program 268

Attaching Xdata to the Room Label Block after Insertion . 269

Revising the Main RoomLabel Procedure to Use the

Windows Registry . 269

Testing the Changes to the RoomLabel Procedure. 272

Persisting Values for the Room Label Procedure with a Custom Dictionary 273

Retesting the RoomLabel Procedure . 275

Selecting Room Label Blocks . 276

Chapter 10 • Modifying the Application and Working with Events 279

Manipulating the AutoCAD User Interface. 279

Managing Menu Groups and Loading Customization Files 280

Working with the Pull-Down Menus and Toolbars . 281

Controlling the Display of Other User-Interface Elements . 293

XVIII | CONTENTS

ftoc.indd 1:48:10:PM/03/26/2015 Page xviii

Using External Custom Programs. 294

Working with Events . 295

Exercise: Extending the User Interface and Using Events . 300

Loading the acp.cuix File . 301

Specifying the Location of DVB Files . 302

Adding the Document Events. 303

Implementing an Application Event . 304

Defi ning the AcadStartup Procedure. 305

Testing the AcadStartup Procedure . 306

Testing the Application and Document Events . 307

Chapter 11 • Creating and Displaying User Forms 309

Adding and Designing a User Form. 309

Adding a User Form to a VBA Project. 309

Considering the Design of a User Form . 310

Placing and Arranging Controls on a User Form . 312

Placing a Control on a User Form . 312

Deciding Which Control to Use . 313

Grouping Related Controls . 316

Managing Controls on a User Form . 317

Changing the Appearance of a User Form or Control . 319

Defi ning the Behavior of a User Form or Control. 321

Displaying and Loading a User Form. 324

Showing and Hiding a User Form . 324

Loading and Unloading a User Form . 325

Exercise: Implementing a User Form for the DrawPlate Project 326

Adding the User Form . 326

Adding Controls to the User Form . 327

Displaying a User Form. 330

Implementing Events for a User Form and Controls . 331

Testing the User Form and Controls . 336

Chapter 12 • Communicating with Other Applications 339

Referencing a Programming Library . 339

Creating and Getting an Instance of an Object. 340

Creating a New Instance of an Object . 341

Getting an In-Memory Instance of an Object. 344

Accessing a Drawing File from outside of AutoCAD. 346

Working with Microsoft Windows . 347

Accessing the Filesystem . 348

Manipulating the Windows Shell . 353

Using the Win32 API . 355

Reading and Writing Text Files . 356

Opening and Creating a File. 356

Reading Content from a File . 358

CONTENTS | XIX

ftoc.indd 1:48:10:PM/03/26/2015 Page xix

Writing Content to a File . 359

Closing a File . 360

Parsing Content in an XML File. 360

Working with Microsoft Offi ce Applications . 363

Exercise: Reading and Writing Data . 365

Creating Layers Based on Data Stored in a Text File . 366

Searching for a File in the AutoCAD Support Paths. 369

Adding Layers to a Drawing with the LoadLayers Procedure 370

Writing Bill of Materials to an External File. 371

Using the FurnBOMExport Procedure . 374

Chapter 13 • Handling Errors and Deploying VBA Projects 375

Catching and Identifying Errors . 375

Recovering and Altering Execution after an Error . 375

Getting Information About the Recent Error . 378

Debugging a VBA Project . 381

Debugging Through Messages. 381

Using the VBA Editor Debug Tools . 383

Deploying a VBA Project . 388

Loading a VBA Project. 388

Specifying the Location of and Trusting a Project . 392

Starting a Macro with AutoLISP or a Command Macro . 394

Grouping Actions into a Single Undo . 395

Protecting a Project. 396

Exercise: Deploying the DrawPlate VBA Project. 396

Stepping Through the BadCode VBA Project . 397

Implementing Error Handling for the Utility Procedures. 399

Implementing Error Handling and Undo Grouping for the Main Procedures . . . 401

Confi guring the AutoCAD Support and Trusted Paths . 405

Creating DrawPlate_VBA.bundle . 405
Deploying and Testing DrawPlate_VBA.bundle . 406

Index . 409

fl ast.indd 2:52:16:PM/03/31/2015 Page xxi

Introduction

Welcome to AutoCAD Platform Customization: VBA! Have you ever thought to yourself, why

doesn’t the Autodesk® AutoCAD® program include every feature I need? Why isn’t it stream-

lined for the type of work I perform? If so, you are not alone. AutoCAD at its core is a drafting

platform that, through programming, can be shaped and molded to more effi ciently complete

the tasks you perform on a daily basis and enhance your company’s workfl ows. Take a deep

breath. I did just mention programming, but programming isn’t something to fear. At fi rst, just

the idea of programming makes many people want to run in the opposite direction—myself

included. The productivity gains are what propelled me forward. Programming isn’t all that dif-

ferent from anything else you’ve tried doing for the fi rst time.

In many ways, learning to program is much like learning a foreign language. For many new

to Visual Basic for Applications (VBA), the starting place is learning the basics: the syntax of the

programming language and how to leverage commands and system variables. Executing com-

mands and working with system variables using the SendCommand and PostCommand methods

can be a quick way to get started and become comfortable with VBA. After you are comfortable

with the syntax of VBA and the SendCommand and PostCommand functions, you can begin to

learn how to access the AutoCAD Object library to develop more complex and robust programs.

About Th is Book
AutoCAD Platform Customization: VBA provides you with an understanding of the VBA

programming language and how it can be used in combination with the AutoCAD Object

library to improve your productivity. This book is designed to be more than just an introduction

to VBA and the AutoCAD Object library; it is a resource that can be used time and again when

developing VBA programs for use with AutoCAD. As you page through this book, you will

notice that it contains sample code and exercises that are based on real-world solutions.

This book is the third and fi nal book in a series that focuses on customizing and

programming AutoCAD. The three-book series as a whole is known as AutoCAD Platform
Customization: User Interface, AutoLISP, VBA, and Beyond, which will be available as a printed

book in 2015. Book 1 in the series, AutoCAD Platform Customization: User Interface and Beyond, was

published in early 2014 and focused on CAD standards and general customization of AutoCAD;

Book 2, AutoCAD Platform Customization: AutoLISP, was published in mid-2014 and covers the

AutoLISP programming language.

XXII | INTRODUCTION

fl ast.indd 2:52:16:PM/03/31/2015 Page xxii

Is Th is Book for You?
AutoCAD Platform Customization: VBA covers many aspects of VBA programming for AutoCAD

on Windows. If any of the following are true, this book will be useful to you:

 ◆ You want to develop and load custom programs with the VBA programming language for

use in the AutoCAD drawing environment.

 ◆ You want to automate the creation and manipulation of drawing objects.

 ◆ You want to automate repetitive tasks.

 ◆ You want to help manage and enforce CAD standards for your company.

NOTE VBA programming isn’t supported for AutoCAD on Mac OS.

VBA in AutoCAD
VBA is often overlooked as one of the options available to extend the AutoCAD program. There

is no additional software to purchase, but you must download and install a release-specifi c sec-

ondary component to use VBA. You can leverage VBA to perform simple tasks, such as inserting

a title block with a specifi c insertion point, scale, and rotation and placing the block reference on

a specifi c layer. To perform the same tasks manually, end users would have to fi rst set a layer as

current, choose the block they want to insert, and specify the properties of the block, which in

the case of a title block are almost always the same.

The VBA programming language and AutoCAD Object library can be used to do the

following:

 ◆ Create and manipulate graphical objects in a drawing, such as lines, circles, and arcs

 ◆ Create and manipulate nongraphical objects in a drawing, such as layers, dimension styles,

and named views

 ◆ Perform mathematical and geometric calculations

 ◆ Request input from or display messages to the user at the Command prompt

 ◆ Interact with fi les and directories in the operating system

 ◆ Read from and write to external fi les

 ◆ Connect to applications that support ActiveX and COM

 ◆ Display user forms and get input from the end user

VBA code statements are entered into the Visual Basic Editor and stored in a DVB fi le. Once

a VBA project has been loaded, you can execute the macros through the Macros dialog box.

Unlike standard AutoCAD commands, macros cannot be executed from the Command prompt,

but once executed, a macro can prompt users for values at the Command prompt or with a user

form. It is possible to execute a macro from a command macro that is activated with a command

button displayed in the AutoCAD user interface or as a tool on a tool palette.

INTRODUCTION | XXIII

fl ast.indd 2:52:16:PM/03/31/2015 Page xxiii

What to Expect
This book is organized to help you learn VBA fundamentals and how to use the objects in

the AutoCAD Object library. Additional resources and fi les containing the example code

found throughout this book can be found on the companion web page, www.sybex.com/go/

autocadcustomization.

Chapter 1: Understanding the AutoCAD VBA Environment In this chapter, you’ll get an

introduction to the Visual Basic Editor. I begin by showing you how to verify whether the

VBA environment for AutoCAD has been installed and, if not, how to install it. After that,

you are eased into navigating the VBA Editor and managing VBA programs. The chapter

wraps up with learning how to execute macros and access the help documentation.

Chapter 2: Understanding the Visual Basic for Application In this chapter, you’ll learn

the fundamentals of the VBA programming language and how to work with objects. VBA

fundamentals include a look at the syntax and structure of a statement, how to use a func-

tion, and how to work with variables. Beyond syntax and variables, you learn to group mul-

tiple statements into a custom procedure.

Chapter 3: Interacting with the Application and Documents Objects In this chapter,

you’ll learn to work with the AutoCAD application and manage documents. Many of the

tasks you perform with an AutoCAD VBA program require you to work with either the

application or a document. For example, you can get the objects in a drawing and even access

end-user preferences. Although you typically work with the current document, VBA allows

you to work with all open documents and create new documents. From the current docu-

ment, you can execute commands and work with system variables from within a VBA

program, which allows you to leverage and apply your knowledge of working with

commands and system variables.

Chapter 4: Creating and Modifying Drawing Objects In this chapter, you’ll learn to

create and modify graphical objects in model space with VBA. Graphical objects represent

the drawing objects, such as a line, an arc, or a circle. The methods and properties of an

object are used to modify and obtain information about the object. When working with the

objects in a drawing, you can get a single object or step through all objects in a drawing.

Chapter 5: Interacting with the User and Controlling the Current View In this chapter,

you’ll learn to request input from an end user and manipulate the current view of a drawing.

Based on the values provided by the end user, you can then determine the end result of the

program. You can evaluate the objects created or consider how a drawing will be output and

use that information to create named views and adjust the current view in which objects are

displayed.

Chapter 6: Annotating Objects In this chapter, you’ll learn how to create and modify

annotation objects. Typically, annotation objects are not part of the fi nal product that is built

or manufactured based on the design in the drawing. Rather, annotation objects are used to

communicate the features and measurements of a design. Annotation can be a single line of

text that is used as a callout for a leader, a dimension that indicates the distance between two

http://www.sybex.com/go/autocadcustomization
http://www.sybex.com/go/autocadcustomization

XXIV | INTRODUCTION

fl ast.indd 2:52:16:PM/03/31/2015 Page xxiv

drill holes, or a table that contains quantities and information about the windows and doors

in a design.

Chapter 7: Working with Blocks and External References In this chapter, you’ll learn how

to create, modify, and manage block defi nitions. Model space in a drawing is a special named

block defi nition, so working with block defi nitions will feel familiar. Once you create a block

defi nition, you will learn how to insert a block reference and work with attributes along with

dynamic properties. You’ll complete the chapter by learning how to work with externally

referenced fi les.

Chapter 8: Outputting Drawings In this chapter, you will learn how to output the graphi-

cal objects in model space or on a named layout to a printer, plotter, or electronic fi le. Named

layouts will be used to organize graphical objects for output, including title blocks, annota-

tion, fl oating viewports, and many others. Floating viewports will be used to control the

display of objects from model space on a layout at a specifi c scale. After you defi ne and con-

fi gure a layout, you learn to plot and preview a layout. The chapter wraps up with covering

how to export and import fi le formats.

Chapter 9: Storing and Retrieving Custom Data In this chapter, you will learn how to

store custom information in a drawing or in the Windows Registry. Using extended data

(Xdata), you will be able to store information that can be used to identify a graphical object

created by your program or defi ne a link to a record in an external database. In addition

to attaching information to an object, you can store data in a custom dictionary that isn’t

attached to a specifi c graphical object in a drawing. Both Xdata and custom dictionaries can

be helpful in making information available between drawing sessions; the Windows Registry

can persist data between sessions.

Chapter 10: Modifying the Application and Working with Events In this chapter, you

will learn how to customize and manipulate the AutoCAD user interface. You’ll also learn

how to load and access externally defi ned custom programs and work with events. Events

allow you to respond to an action that is performed by the end user or the AutoCAD applica-

tion. There are three main types of events that you can respond to: application, document,

and object.

Chapter 11: Creating and Displaying User Forms In this chapter, you will learn how to

create and display user forms. User forms provide a more visual approach to requesting

input from the user.

Chapter 12: Communicating with Other Applications In this chapter, you will learn how

to work with libraries provided by other applications. These libraries can be used to access

features of the Windows operating system, read and write content in an external text or XML

fi le, and even work with the applications that make up Microsoft Offi ce.

Chapter 13: Handling Errors and Deploying VBA Projects In this chapter, you will learn

how to catch and handle errors that are caused by the incorrect use of a function or the

improper handling of a value that is returned by a function. The Visual Basic Editor provides

tools that allow you to debug code statements, evaluate values assigned to user-defi ned

variables, identify where within a program an error has occurred, and determine how errors

should be handled. The chapter wraps everything up with covering how to deploy a VBA

project on other workstations for use by individuals at your company.

INTRODUCTION | XXV

fl ast.indd 2:52:16:PM/03/31/2015 Page xxv

Bonus Chapter 1: Working with 2D Objects and Object Properties In this chapter, you

build on the concepts covered in Chapter 4, “Creating and Modifying Drawing Objects.” You

will learn to create additional types of 2D objects and use advanced methods of modifying

objects; you also learn to work with complex 2D objects such as regions and hatch fi lls. The

management of layers and linetypes and the control of the appearance of objects are also

covered.

Bonus Chapter 2: Modeling in 3D Space In this chapter, you learn to work with objects in

3D space and 3D with objects. 3D objects can be used to create a model of a drawing which

can be used to help visualize a design or detect potential design problems. 3D objects can be

viewed from different angles and used to generate 2D views of a model that can be used to

create assembly directions or shop drawings.

Bonus Chapter 3: Development Resources In this chapter, you discover resources that

can help expand the skills you develop from this book or locate an answer to a problem you

might encounter. I cover development resources, as well as places you might be able to obtain

instructor-led training and interact with fellow users on extending AutoCAD. The online

resources listed cover general customization, AutoLISP, and VBA programming in AutoCAD.

NOTE Bonus Chapter 1, Bonus Chapter 2, and Bonus Chapter 3 are located on the companion

website.

Companion Website
An online counterpart to this book, the companion website contains the sample fi les required

to complete the exercises found in this book, in addition to the sample code and project fi les

used to demonstrate some of the programming concepts explained in this book. In addition

to the sample fi les and code, the website contains resources that are not mentioned in this

book, such as the bonus chapters. The companion website can be found at www.sybex.com/go/

autocadcustomization.

Other Information
This book assumes that you know the basics of your operating system and AutoCAD 2009 or

later. When appropriate, I indicate when a feature does not apply to a specifi c operating system

or release of AutoCAD. Most of the images in this book were taken using AutoCAD 2014 in

Windows 8.

Neither AutoCAD LT® nor AutoCAD running on Mac OS support the VBA programming

platform, none of the content in this book can be used if you are working on Mac OS.

Styles and Conventions of Th is Book
This book uses a number of styles and character formats—bold, italic, monotype face, and all

uppercase or lowercase letters, among others—to help you distinguish between the text you

read, sample code you can try, text that you need to enter at the AutoCAD Command prompt, or

the name of an object class or method in one of the programming languages.

http://www.sybex.com/go/autocadcustomization
http://www.sybex.com/go/autocadcustomization

XXVI | INTRODUCTION

fl ast.indd 2:52:16:PM/03/31/2015 Page xxvi

As you read through this book, keep the following conventions in mind:

 ◆ User-interface selections are represented by one of the following methods:

 ◆ Click the Application button ➢ Options.

 ◆ On the ribbon, click the Manage tab ➢ Customization ➢ User Interface.

 ◆ On the menu bar, click Tools ➢ Customize ➢ Interface.

 ◆ In the drawing window, right-click and click Options.

 ◆ Keyboard input is shown in bold (for example, type cui and press Enter).

 ◆ Prompts that are displayed at the AutoCAD Command prompt are displayed as mono-

space font (for example, Specify a start point:).

 ◆ AutoCAD command and system variable names are displayed in all lowercase letters with

a monospace font (for example, line or clayer).

 ◆ VBA function and AutoCAD Object library member names are displayed in mixed-case

letters with a monospace font (for example, Length or SendCommand).

 ◆ Example code and code statements that appear within a paragraph are displayed in mono-

space font. Code might look like one of the following:

 ◆ MsgBox "ObjectName: " & oFirstEnt.ObjectName

 ◆ The MsgBox method can be used to display a text message to the user

 ◆ ' Gets the first object in model space

Contacting the Author
I hope that you enjoy AutoCAD Platform Customization: VBA and that it changes the way you

think about completing your day-to-day work. If you have any feedback or ideas that could

improve this book, you can contact me using the following address:

Lee Ambrosius: lee_ambrosius@hyperpics.com

On my blog and website, you’ll fi nd additional articles on customization and samples that I

have written over the years. You’ll fi nd these resources here:

Beyond the UI: http://hyperpics.blogs.com

HyperPics: www.hyperpics.com

If you encounter any problems with this publication, please report them to the publisher.

Visit the book’s website, www.sybex.com/go/autocadcustomizat ion, and click the Errata link

to open a form and submit the problem you fou n d.

mailto:ambrosius@hyperpics.com
http://hyperpics.blogs.com
http://www.hyperpics.com
http://www.sybex.com/go/autocadcustomizat

c01.indd 4:35:54:PM/04/06/2015 Page 1

Chapter 1

Understanding the AutoCAD VBA
Environment

More than 15 years ago, Visual Basic (VB) was the fi rst modern programming language I

learned. This knowledge was critical to taking my custom programs to a whole new level. VB

allows you to develop stand-alone applications that can communicate with other programs

using Microsoft’s Object Linking and Embedding (OLE) and ActiveX technologies. Autodesk®

AutoCAD® supports a variant of VB known as Visual Basic for Applications (VBA) that requires

a host application to execute the programs you write; it can’t be used to develop stand-alone

executable fi les.

I found VB easier to learn than AutoLISP® for a couple of reasons. First, there are, in general,

many more books and online resources dedicated to VB. Second, VB syntax feels more natural.

By natural, I mean that VB syntax reads as if you are explaining a process to someone in your

own words, and it doesn’t contain lots of special characters and formatting like many other pro-

gramming languages.

As with learning anything new, there will be a bit of hesitation on your part as you approach

your fi rst projects. This chapter eases you into the AutoCAD VBA environment and the VB pro-

gramming language.

What Makes Up an AutoCAD VBA Project?
Custom programs developed with VBA implemented in the AutoCAD program are stored in a

project that has a .dvb fi le extension. VBA projects contain various objects that defi ne a custom

program. These objects include the following:

 ◆ Code modules that store the custom procedures and functions that defi ne the primary

functionality of a custom program

 ◆ UserForms that defi ne the dialog boxes to be displayed by a custom program

 ◆ Class modules that store the defi nition of a custom object for use in a custom program

 ◆ Program library references that contain the dependencies a custom program relies on to

defi ne some or all of the functionality

The AutoCAD VBA Editor is an integrated development environment (IDE) that allows for

the creation and execution of macros stored in a project fi le. A macro is a named block of code

that can be executed from the AutoCAD user interface or privately used within a project. You

can also enter and execute a single VBA statement at the AutoCAD Command prompt using the

vbastmt command.

2 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 2

The most recent generation of VB is known as VB.NET. Although VB and VB.NET have

similar syntax, they are not the same. VBA, whether in AutoCAD or other programs such as

Microsoft Word, is based on VB6 and not VB.NET. If you are looking for general information on

VBA, search the Internet using the keywords VBA and VB6.

If You Have Conversations Like This, You Can Code Like This

Th e summer intern had one job—add a layer and a confi dentiality note to a series of 260 production

drawings. September arrived, the intern left for school, and now your manager is in your cubicle.

“Half of these drawings are missing that confi dentiality note Purchasing asked for. I need you to

add that new layer, name it Disclaimer, and then add the confi dentiality note as multiline text

to model space. Th e note should be located on the new Disclaimer layer at 0.25,0.1.75,0 with

a height of 0.5, and the text should read Confi dential: Th is drawing is for use by internal

employees and approved vendors only. Be sure to check to see if paper space is active. If it

is, then set model space active per the new standards before you save each drawing,” he says.

“I can do that,” you respond.

“Can you manage it by close of day tomorrow? The parts are supposed to go out for quote on

Wednesday morning.”

“Sure,” you tell him, knowing that a few lines of VBA code will allow you to make the changes quickly.

So, you sit down and start to code. Th e conversation-to-code translation fl ows smoothly. (Notice

how many of the words in the conversation fl ow right into the actual VBA syntax.)

With ThisDrawing

 .Layers.Add "Disclaimer"

 Dim objMText As AcadMText

 Dim insPt(2) As Double

 insPt(0) = 0.25: insPt(1) = 1.75: insPt(2) = 0

 Set objMText = .ModelSpace.AddMText(insPt, 15, _

 "Confidential: This drawing is for use by internal " & _

 "employees and approved vendors only")

 objMText.Layer = "Disclaimer"

 objMText.Height = 0.5

 If .ActiveSpace = acPaperSpace Then

 .ActiveSpace = acModelSpace

 End If

 .Save

End With

WHAT YOU’LL NEED TO START | 3

c01.indd 4:35:54:PM/04/06/2015 Page 3

What You’ll Need to Start
To complete the exercises in this chapter and create and edit VBA project fi les, you must have

the following:

 ◆ AutoCAD 2006 or later

 ◆ Autodesk AutoCAD VBA Enabler for AutoCAD 2010 or later

Beginning with AutoCAD 2010, the AutoCAD VBA Enabler is an additional component that

must be downloaded and installed to enable VBA support in the AutoCAD drawing environ-

ment. (For AutoCAD 2000 through AutoCAD 2009, VBA capabilities were part of a standard

install.)

NOTE Th e Autodesk website (http://www.autodesk.com/vba-download) allows you to

download the Autodesk AutoCAD VBA Enabler for AutoCAD 2014 and 2015 (Microsoft Visual

Basic for Applications Module). If you need the VBA Enabler for AutoCAD 2010 through 2013, you

will want to check with your local Autodesk Value Added Reseller.

Without the VBA Enabler, you won’t have access to the VBA Editor and can’t create or

execute VBA code contained in a DVB fi le with AutoCAD 2010 and later releases. All of the

VBA commands were available without an additional download and install. Changes in the

later AutoCAD releases were made due to Microsoft’s planned deprecation of the VBA technol-

ogy and editor, only to eventually extend its life cycle because of its continued importance to

Microsoft Offi ce. Microsoft planned to move to Visual Studio Tools for Applications (VSTA) as

the replacement for VBA, but the company backed off because there was no easy migration from

VBA to VSTA.

NOTE Although I mention AutoCAD 2006 or later, everything covered in this chapter should

work without any problems going all the way back to AutoCAD 2000. Th e fi rst release of the

AutoCAD program that supported VBA was AutoCAD R14, and much has remained the same

since then as well, with the exception of being able to work with multiple documents in AutoCAD

2000 and later.

Determine If the AutoCAD VBA Environment Is Installed
Prior to working with the AutoCAD VBA Editor, you must ensure that the VBA environment is

installed on your workstation. The following steps explain how to determine whether VBA is

installed and, if necessary, how to download the AutoCAD VBA environment for installation.

These steps are important if you are using AutoCAD 2010 or later.

 1. Launch AutoCAD if it isn’t already running.

 2. At the Command prompt, type vbaide and press Enter.

 3. If the VBA - Not Installed message box is displayed, the AutoCAD VBA environment

hasn’t been installed. Continue to the next step.

 4. Click the http://www.autodesk.com/vba-download link to open your system’s default

web browser to the download website.

http://www.autodesk.com/vba-download
http://www.autodesk.com/vba-download

4 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 4

 5. Click the link for the AutoCAD VBA Enabler that matches the version of AutoCAD

installed on your workstation.

 6. Save the AutoCAD VBA Enabler to a folder on your local workstation.

Install the AutoCAD 2015 VBA Enabler
After downloading the AutoCAD 2015 VBA Enabler using the steps explained in the previous

section, follow these steps to install it:

 1. Close the AutoCAD program and double-click the downloaded self-extracting executable

for the AutoCAD VBA module.

 2. In the Extract To message, accept the default destination location and click OK.

 3. When the AutoCAD VBA Enabler installer opens, click Install.

 4. On the next page of the installer, accept the default destination location and click Install.

 5. On the Installation Complete page, click Finish.

 6. Launch AutoCAD.

 7. At the Command prompt, type vbaide and press Enter.

The VBA Editor is displayed, indicating that the AutoCAD VBA environment has been

installed.

NOTE If you downloaded the VBA Enabler for a diff erent release of the AutoCAD program,

follow the on-screen instructions for that release of the VBA Enabler.

Getting Started with the VBA Editor
The VBA Editor (see Figure 1.1) is the authoring environment used to create custom programs

that are stored in a VBA project. The following tasks can be performed from the VBA Editor:

 ◆ Access and identify the components in a VBA project

 ◆ View and edit the code and components stored in a loaded VBA project

 ◆ Debug the code of a procedure during execution

 ◆ Reference programming libraries

 ◆ Display contextual help based on the code or component being edited

Any of the following methods can be used to display the VBA Editor:

 ◆ On the ribbon, click the Manage tab ➢ Applications panel ➢ Visual Basic Editor.

 ◆ At the Command prompt, type vbaide and press Enter.

 ◆ When the VBA Manager is open, click Visual Basic Editor.

 ◆ When loading a VBA project, in the Open VBA Project dialog box, check the Open Visual

Basic Editor check box before clicking Open.

GETTING STARTED WITH THE VBA EDITOR | 5

c01.indd 4:35:54:PM/04/06/2015 Page 5

Figure 1.1

Th e VBA Editor

allows for the devel-

opment of a VBA

program

Code editor window

Project Explorer

Properties window

Identifying the Components of a VBA Project
VBA supports four types of components to defi ne the functionality of a custom program. Each

component can be used to store code, but the code in each component serves a distinct purpose

within a VBA project. Before you begin learning the basic features of the VBA Editor, you should

have a basic understanding of the component types in a VBA project.

The following provides an overview of the component types:

Code Module Code modules, also referred to as standard code modules, are used to store

procedures and defi ne any global variables for use in the module or globally across the VBA

project. I recommend using code modules to store procedures that can be executed from the

AutoCAD user interface or used across multiple projects.

When you add a new code module to a VBA project, you should give the module a meaning-

ful name and not keep the default name of Module1, Module2, and so on. Standard industry

naming practice is to add the prefi x of bas to the name of the module. For example, you

might name a module that contains utility procedures as basUtilities. I explain how to

defi ne procedures and variables in the “Learning the Fundamentals of the VBA Language”

section in Chapter 2, “Understanding Visual Basic for Applications.”

Class Module Class modules are used to defi ne a custom class—or object. Custom classes

aren’t as common as code modules in a VBA project, but they can be helpful in organizing

and simplifying code. The variables and procedures defi ned in a class module are hidden

from all other components in a VBA project, unless an instance of the class is created as part

of a procedure in another component.

When you add a new class module to a VBA project, you should give the module a meaning-

ful name and not keep the default name of Class1, Class2, and so on. Standard industry

naming practice is to add the prefi x of cls to the name of the module. For example, you

might name a module that contains a custom class named employee as clsEmployee. I

explain how to defi ne procedures and variables and work with objects in the “Learning the

Fundamentals of the VBA Language” section in Chapter 2.

6 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 6

ThisDrawing ThisDrawing is a specially named object that represents the current draw-

ing and is contained in each VBA project. The ThisDrawing component can be used to defi ne

events that execute code based on an action performed by the user or the AutoCAD program.

Variables and procedures can be defi ned in the ThisDrawing component, but I recommend

storing only the variables and procedures related to the current drawing in the ThisDrawing

component. All other code should be stored in a code module. I explain how to work with the

current drawing and events in Chapter 3, “Interacting with the Application and Documents

Objects,” and Chapter 10, “Modifying the Application and Working with Events.”

UserForm UserForms are used to defi ne custom dialog boxes for use in a VBA program. A

UserForm can contain controls that present messages to the user and allow the user to pro-

vide input. When you add a new UserForm to a VBA project, you should give the UserForm

a meaningful name and not keep the default name of UserForm1, UserForm2, and so on.

Standard industry naming practice is to add the prefi x of frm to the name of the UserForm.

For example, you might name a UserForm that contains a dialog box that draws a bolt as

frmDrawBolt. I explain how to create and display a UserForm in Chapter 11, “Creating and

Displaying User Forms.”

The following explains how to add a new component to a VBA project and change its name:

 1. In the VBA Editor with a project loaded, on the menu bar, click Insert.

 2. Click UserForm, Module, or Class Module to add a component of that type to the VBA

project.

 3. In the Project Explorer, select the new component.

 4. In the Properties window, in the (Name) fi eld, type a new name and press Enter.

Using Components in Multiple VBA Projects

A component added to a VBA project can be exported, and then imported into another VBA project.

Exporting a component creates a copy of that component; any changes to the component in the

original VBA project don’t aff ect the exported copy of the component. Importing the component

into a VBA project creates a copy of the component in that VBA project.

Th e following steps can be used to export a VBA component to a fi le:

 1. In the VBA Editor, Project Explorer, select the component to export.

 2. On the menu bar, click File ➢ Export File.

 3. In the Export File dialog box, browse to the location to store the exported fi le and enter a fi lename.

Click Save.

Th e following steps can be used to import an exported fi le into a VBA project:

 1. In the VBA Editor, Project Explorer, select a loaded project to set it current.

 2. On the menu bar, click File ➢ Import File.

 3. In the Import File dialog box, browse to and select the exported fi le. Click Open.

GETTING STARTED WITH THE VBA EDITOR | 7

c01.indd 4:35:54:PM/04/06/2015 Page 7

Navigating the VBA Editor Interface
The VBA Editor interface contains a variety of tools and windows that are used to manage and

edit the components and code stored in a VBA project. While all of the tools and windows in the

VBA Editor will be important over time, there are four windows that you should have a basic

understanding of when fi rst getting started:

 ◆ Project Explorer

 ◆ Properties window

 ◆ Code editor window

 ◆ Object Browser

Accessing Components in a VBA Project with the Project Explorer

The Project Explorer window (see Figure 1.2) lists all of the VBA projects that are currently

loaded into the AutoCAD drawing environment and the components of each loaded project. By

default, the Project Explorer should be displayed in the VBA Editor, but if it isn’t you can display

it by clicking View ➢ Project Explorer or pressing Ctrl+R.

Figure 1.2

Th e Project Explorer

lists loaded projects

and components

When the Project Explorer is displayed, you can

 ◆ Select a project to set it as the current project; the name of the current project is shown in

bold. Some tools in the VBA Editor work on only the current project.

 ◆ Expand a project to access its components.

 ◆ Toggle the display style for components; alphabetically listed or grouped by type in

folders.

 ◆ Double-click a component to edit its code or UserForm in an editor window.

 ◆ Right-click to export, import, or remove a component.

Using the Properties Window

The Properties window (see Figure 1.3) allows you to change the name of a component in a

loaded VBA project or modify the properties of a control or UserForm. Select a component or

UserForm from the Project Explorer, or a control to display its properties in the Properties win-

dow. Click in a property fi eld, and enter or select a new value to change the current value of the

property. The Properties window is displayed by default in the VBA Editor, but if it isn’t you can

display it by clicking View ➢ Properties Window or pressing F4.

8 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 8

Figure 1.3

Modify the proper-

ties of a component,

UserForm, or

control

Editing Code and Class Modules in Editor Windows

A code editor window (see Figure 1.4) is where you will write, edit, and debug code statements

that are used to make up a custom program. You display a code editor window by doing one of

the following in the Project Explorer:

 ◆ Double-clicking a code or class module

 ◆ Right-clicking a UserForm and then clicking View Code

Figure 1.4

Edit code state-

ments stored in

a code or class

module.

Procedure drop-down listObject drop-down list

Margin indicator bar

The code editor window supports many common editing tools: copy and paste, fi nd and

replace, and many others. In addition to common editing tools, it supports tools that are

designed specifi cally for working with VBA code statements, and some of these tools allow you

to accomplish the following:

 ◆ Autocomplete a word as you type

 ◆ Find and replace text across all components in a VBA project

GETTING STARTED WITH THE VBA EDITOR | 9

c01.indd 4:35:54:PM/04/06/2015 Page 9

 ◆ Comment and uncomment code statements

 ◆ Add bookmarks to allow you to move between procedures and code statements

 ◆ Set breakpoints for debugging

The text area is the largest area of the code editor window and where you will spend most of

your time. The Object drop-down list typically is set to (General), which indicates you want to

work with the General Declaration area of the code window. When working in the code editor

window of a UserForm, you can select a control or the UserForm to work with from the Object

drop-down list. The Object drop-down list is also used when working with events.

Once an object is selected, a list of available events or procedures for the selected object is

displayed in the Procedure drop-down list. Select a procedure from the drop-down list to insert

the basic structure of that procedure. Enter the code statements to execute when the procedure is

executed. I explain how to work with events in Chapter 10 and UserForms in Chapter 11.

The margin indicator bar of the code editor window helps you know where a bookmark or

breakpoint is inserted by displaying an oval for a bookmark or a circle for a breakpoint. I dis-

cuss more about breakpoints in Chapter 13, “Handling Errors and Deploying VBA Projects.”

Exploring Loaded Libraries with the Object Browser

The Object Browser (see Figure 1.5) allows you to view the classes and enumerated constants

defi ned in a referenced programming library. Each AutoCAD VBA project contains a reference

to the VBA and AutoCAD Object libraries. I discuss referencing other libraries in Chapter 12,

“Communicating with Other Applications.” You can display the Object Browser by clicking

View ➢ Object Browser or pressing F2.

Figure 1.5

Members of an

object in a refer-

enced library can

be viewed in the

Object Browser.

Libraries drop-down list

A class is used to create an instance of an object, which I discuss in the “Working with

Objects” section in Chapter 2. An enumerated constant is a set of integer values with unique

10 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 10

names that can be used in a code statement. Using a constant name makes the integer value eas-

ier to understand, and also protects your code when values change. For example, the constant

name of acBlue is equal to an integer value of 5. If the meaning of 5 were changed to mean a

different color than blue, the constant of acBlue would be updated with the new integer and no

changes to your code would need to be made if you used the constant.

When the Object Browser is displayed, you can select a class or enumerated constant from

the Classes list. The Classes list contains all the classes and enumerated constants of the refer-

enced libraries in the VBA project. You can fi lter the list by selecting a referenced library from

the Libraries drop-down list located at the top of the Object Browser. Select a class or enumer-

ated constant from the Classes list to see its members, which are methods, properties, events,

or constant values. Select a member to learn more about it and press F1 to display its associated

help topic. I explain how to access the AutoCAD VBA documentation in the “Accessing the

AutoCAD VBA Documentation” section later in this chapter.

Working with Other Windows

The four windows that I described in the previous sections are the main windows of the VBA

Editor; they are used the most frequently. You will use some additional windows on occasion.

These are primarily used for creating UserForms and debugging VBA statements. (I discuss cre-

ating UserForms in Chapter 11 and debugging in Chapter 13.)

Here are the windows you will use when creating UserForms and debugging:

Immediate Window The Immediate window allows you to execute code statements in

real time, but those code statements are not saved. Not all code statements can be executed

in the Immediate window, such as statements that defi ne a procedure and declare variables.

Text messages and values assigned to a variable can be output to the Immediate window for

debugging purposes with the Print method of the Debug object. I discuss more about the

Debug object and Immediate window in Chapter 13.

Watches Window The Watches window allows you to monitor the current value assigned

to the variables used in the procedures of your VBA project as they are being executed. When

an array or object is assigned to a variable, you can see the values assigned to each element

in the array and the current property values of the object in the Watches window. In the code

editor window, highlight the variable you want to watch, and right-click. Click Add Watch

and then when the Add Watch dialog box opens click OK. I discuss more about the Watches

window in Chapter 13.

UserForm Editor Window The UserForm editor window allows you to add controls and

organize controls on a UserForm to create a custom dialog box that can be displayed from

your VBA project. You add controls to a UserForm from the Toolbox window. While the

UserForm editor window is current, the Format menu on the menu bar contains tools to

lay out and align the controls on a UserForm. I explain how to create and work with

UserForms in Chapter 11.

Toolbox Window The Toolbox window contains the controls that can be added to a

UserForm when displayed in the UserForm editor window. Click a tool and then drag it into

the UserForm editor window to place an instance of the control. Right-click over one of the

tools on the window and click Additional Controls to display the Additional Controls dialog

box. Click any of the available controls to make it available for use in a UserForm. I explain

how to add controls to a UserForm in Chapter 11.

MANAGING VBA PROGRAMS | 11

c01.indd 4:35:54:PM/04/06/2015 Page 11

Setting the VBA Environment Options
There are several settings that affect the behavior of the AutoCAD VBA environment and not

just the currently loaded VBA projects. These settings can be changed in the Option dialog box

of the VBA environment (see Figure 1.6), which can be displayed using one of the following

methods:

 ◆ After the Macros dialog box has been opened with the vbarun command, click Options.

 ◆ At the Command prompt, type vbapref and press Enter.

Figure 1.6

Changing the

VBA environment

settings

Here is an explanation of the settings in the Options dialog box:

Enable Auto Embedding The Enable Auto Embedding option creates a new empty VBA

project each time a drawing fi le is opened and embeds that empty project into the drawing

fi le. A new project is created and embedded only if the drawing opened doesn’t already con-

tain an embedded project. This option is disabled by default.

Allow Break On Errors The Allow Break On Errors option displays a message box that

allows you to step into a procedure if an error is produced during execution. You can then

use the debugging tools offered by the VBA Editor to locate and handle the error. I discuss

debug procedures in Chapter 13. This option is enabled by default.

Enable Macro Virus Protection The Enable Macro Virus Protection option, when enabled,

displays a message box during the loading of a DVB fi le. I recommend leaving this option

enabled to ensure that a drawing fi le with an embedded VBA project isn’t opened in the

AutoCAD drawing environment. This reduces the risk of accidentally running malicious

code. The option is enabled by default.

Managing VBA Programs
VBA programs developed in the AutoCAD VBA environment can be stored in a project fi le or

embedded in a drawing fi le. VBA projects can also be embedded in a drawing template (DWT)

or drawing standards (DWS) fi le. By default, VBA programs developed in the AutoCAD VBA

environment are stored in a project fi le with a .dvb fi le extension and then are loaded into the

AutoCAD drawing environment as needed.

DVB fi les can be managed externally from Windows Explorer or File Explorer, or from within

AutoCAD whenever the fi le is loaded into the AutoCAD drawing environment. General

fi le-management tasks on a DVB fi le can be performed using Windows Explorer or File Explorer.

12 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 12

Once the DVB fi le is loaded into the AutoCAD drawing environment, you can manage it using

the VBA Manager (see Figure 1.7). The VBA Manager allows you to do the following:

 ◆ Create a new VBA project

 ◆ Save a VBA project to a DVB fi le

 ◆ Load a VBA project from a DVB fi le into the AutoCAD drawing environment

 ◆ Unload a VBA project from the AutoCAD drawing environment

 ◆ Edit the components and code stored in a VBA project

 ◆ Embed or extract a VBA project from a drawing fi le

Figure 1.7

Managing loaded

VBA programs

There are two ways to display the VBA Manager in AutoCAD:

 ◆ On the ribbon, click the Manage tab ➢ Applications panel title bar and then click VBA

Manager.

 ◆ At the Command prompt, type vbaman and press Enter.

Creating a New VBA Project
A new VBA project can be created automatically by the AutoCAD program or manually as

needed. When the VBA environment is initialized the fi rst time during an AutoCAD session,

a new VBA project is created automatically unless a VBA project has already been loaded into

memory. If you want to create a new project after the VBA environment has been initialized, do

one of the following:

 ◆ When the VBA Manager is open, click New.

 ◆ At the Command prompt, type vbanew and press Enter.

Each new VBA project is assigned two default names: a project name and a location name.

The project name is an internal name used by the AutoCAD program to differentiate the pro-

cedures and components in each loaded VBA project. The default project name for a new VBA

project is ACADProject; I recommend assigning a descriptive project name for each VBA project

MANAGING VBA PROGRAMS | 13

c01.indd 4:35:54:PM/04/06/2015 Page 13

you create. A project name can contain alphanumeric characters and underscores, but can’t start

with a number or underscore character.

The location name of a VBA project is the same as a fi lename and is used to specify where the

DVB fi le is stored. Since a new VBA project exists only in memory, it is assigned the default loca-

tion name of Global1. The location name is incremented by one for each new VBA project cre-

ated during an AutoCAD session; thus the second and third VBA projects have location names

of Global2 and Global3, respectively. When you save VBA projects, they are stored in DVB fi les

locally or on a network. To ensure that AutoCAD knows where the DVB fi les are located, you add

the locations of your DVB fi les to the AutoCAD support fi le search and trusted paths. I discuss

how to add a folder to the AutoCAD support fi le search and trusted paths in Chapter 13.

Saving a VBA Project
New VBA projects can be saved to disc using the Save As option in the VBA Manager or Save

in the VBA Editor. When an existing project is loaded in memory, the Save As option can be

used to create a copy of the project on disc or to overwrite an existing VBA project fi le. Typically,

changes made to an existing project fi le that already has been loaded in the VBA environment

are saved to the project fi le using the Save option in the VBA Editor. I discussed the VBA Editor

earlier in the “Getting Started with the VBA Editor” section.

The following explains how to save a VBA project:

 1. In the VBA Editor, click File ➢ Save. Alternatively, on the Standard toolbar click Save.

 2. If the project hasn’t been previously saved, the Save As dialog box is displayed.

Otherwise, the changes to the VBA project are saved.

 3. When the Save As dialog box opens, browse to the folder you wish to use to store the

VBA project.

 4. In the File Name text box, type a descriptive fi lename for the project and click Save.

NOTE A DVB fi le can be password-protected to restrict the editing of the components and code

stored in the fi le. I discuss how to assign a password to a VBA project in Chapter 13.

Loading and Unloading a VBA Project
Before a VBA project can be edited and before the code stored in the project can be executed, the

project must be loaded into the AutoCAD VBA environment. The process for loading a project

into the AutoCAD VBA environment is similar to opening a drawing fi le.

Manually Loading a VBA Project

A VBA project can be manually loaded using the VBA Manager or the vbaload command. The

following explains how to manually load a VBA project:

 1. On the ribbon, click the Manage tab and then click the Applications panel title bar. Click

Load Project. (As an alternative, at the Command prompt, type vbaload and press Enter.)

 2. When the Open VBA Project dialog box opens, browse to and select ch01_hexbolt.dvb.

 3. Clear the Open Visual Basic Editor check box and click Open.

14 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 14

 4. If the File Loading - Security Concern dialog box is displayed, click Load to load the fi le

into memory. (You can click Do Not Load to cancel a load operation.)

 5. If the AutoCAD dialog box is displayed, click Enable Macro to allow the execution of the

code in the project. (You can click Disable Macros to load a fi le but not allow the execu-

tion of the code, or Do Not Load to cancel without loading the project into memory.)

NOTE You can download the sample VBA project fi le ch01_hexbolt.dvb used in the following

exercise from www.sybex.com/go/autocadcustomization.

Place the fi le in the MyCustomFiles folder within the Documents (or My Documents) folder or

another location you are using to store custom program fi les.

As an alternative, DVB and other types of custom program fi les can be dragged and dropped

onto an open drawing window in the AutoCAD drawing environment. When you drop a DVB

fi le onto an open drawing window, AutoCAD prompts you to load the fi le and/or to enable the

macros contained in the VBA project fi le.

Automatically Loading a VBA Project

The Load Project button in the VBA Manager and the vbaload command require input from

the user to load a VBA project, which isn’t ideal when you want to integrate your VBA projects

as seamlessly as possible into the AutoCAD drawing environment. A script, custom AutoLISP

program, or command macro from the AutoCAD user interface can all be used to load a VBA

project without user input. The following outlines some of the methods that can be used to load

a VBA project without user input:

 ◆ Call the -vbaload command. The -vbaload command is the command-line version of

the vbaload command. When the -vbaload command is started, the Open VBA Project:

prompt is displayed. Provide the name of the DVB fi le as part of the macro or script fi le.

 ◆ Call the AutoLISP vl-vbaload function. The AutoLISP vl-vbaload function can be used

to load a DVB fi le from a custom AutoLISP program. If the DVB fi le that is passed to the

vl-vbaload function isn’t found, an error is returned that should be captured with the

AutoLISP vl-catch-all-apply function.

 ◆ Create a VBA project fi le named acad.dvb and place it in one of the AutoCAD support fi le

search paths. AutoCAD looks for a fi le named acad.dvb during startup and if the fi le is

found, that fi le is loaded automatically.

 ◆ Use the Startup Suite (part of the Load/Unload Applications dialog box that opens with the

appload command). When a DVB fi le is added to the Startup Suite, the fi le is loaded when

the fi rst drawing of a session is opened. Removing a fi le from the Startup Suite causes the

fi le not to be loaded in any future drawings that are opened or in AutoCAD sessions. If you

want to use the Startup Suite to load DVB fi les, you must add the fi les to the Startup Suite

on each workstation and AutoCAD user profi le.

 ◆ Create a plug-in bundle. Plug-in bundles allow you to load DVB and other custom program

fi les in AutoCAD 2013 or later. A plug-in bundle is a folder structure with a special name

and metadata fi le that describes the fi les contained in the bundle.

I discuss each of these methods in greater detail in Chapter 13.

http://www.sybex.com/go/autocadcustomization

MANAGING VBA PROGRAMS | 15

c01.indd 4:35:54:PM/04/06/2015 Page 15

Manually Unloading a VBA Project

When a VBA project is no longer needed, it can be unloaded from memory to release system

resources. A VBA project can be manually unloaded from memory using the VBA Manager or

the vbaunload command. The following explains how to unload the ch01_hexbolt.dvb fi le

with the VBA Manager:

 1. On the ribbon, click the Manage tab and then click the Applications panel title bar to

expand the panel. Click VBA Manager. (If the ribbon isn’t displayed or the release of the

AutoCAD program you are using doesn’t support the ribbon, at the Command prompt

type vbaman and press Enter.)

 2. When the VBA Manager dialog box opens, in the Projects list select HexBolt and click

Unload.

 3. If prompted to save changes to the VBA project, click Yes if you made changes that you

wish to save or No to discard any changes.

Automatically Unloading a VBA Project

If you want to unload a DVB fi le as part of a script, custom AutoLISP program, or command

macro from the AutoCAD user interface, you will need to use the vbaunload command. When

the vbaunload command starts, the Unload VBA Project: prompt is displayed. Provide the

fi lename and full path of the DVB fi le you want to unload; the path you specify must exactly

match the path for the DVB fi le that was loaded into the AutoCAD drawing environment. If

it doesn’t, the unload fails and an error message will be displayed. A failed execution of the

vbaunload command doesn’t cause the program calling the command to fail.

TIP I recommend using the AutoLISP findfile function to locate the DVB fi le in the AutoCAD

support fi le search paths when loading and unloading a DVB fi le to ensure that the correct path

is provided.

Embedding or Extracting a VBA Project
A VBA project can be embedded in a drawing fi le to make the components and code in the proj-

ect available when the drawing fi le is opened in the AutoCAD drawing environment. Only one

VBA project can be embedded in a drawing fi le at a time. Embedding a VBA project in a fi le can

be helpful to make specifi c tools available to anyone who opens the fi le, but there are potential

problems using this approach. Here are the main two problems with embedding a VBA project

fi le into a drawing:

 ◆ Embedding a VBA project triggers a security warning each time a drawing fi le is opened,

which could impact sharing drawing fi les. Many companies will not accept drawings with

embedded VBA projects because of potential problems with viruses and malicious code.

 ◆ Embedding a VBA project that is stored in a DVB fi le results in a copy of that project being

created and stored in the drawing fi le. The embedded project and the original DVB fi le are

kept separately. This can be a problem if the project is embedded in hundreds of drawing

16 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 16

fi les and needs to be revised. Each drawing fi le would need to be opened, the project

extracted, and the revised project re-embedded.

So, while you can embed a VBA project, I don’t recommend doing it.

Embedding a VBA Project

The following explains how to embed a VBA project in a current drawing fi le:

 1. On the ribbon, click the Manage tab ➢ Applications panel title bar and then click VBA

Manager.

 2. When the VBA Manager opens, select a VBA project to embed from the Projects list. Load

the VBA project you want to embed if it isn’t already loaded.

 3. Click Embed.

Extracting a VBA Project

Extracting a VBA project reverses the embedding process. After a project is selected for extrac-

tion, you can either export the project to a DVB fi le or discard the project. The following

explains how to extract a VBA project from a current drawing fi le:

 1. On the ribbon, click the Manage tab and then click Applications panel title bar to expand

the panel. Click VBA Manager.

 2. When the VBA Manager opens, in the Drawing section click Extract. (If the Extract button

is disabled, there is no VBA project embedded in the current drawing.)

 3. In the AutoCAD message box, click Yes to remove and export the VBA project to a DVB

fi le. Specify a fi lename and location for the project you wish to extract. Click No if you

wish to remove the VBA project from the drawing fi le without saving the project.

Executing VBA Macros
VBA projects contain components that organize code and defi ne user forms and custom classes.

A component can contain one or more procedures that are used to perform a task on the objects

in a drawing or request input from an end user. Most procedures are defi ned so they are

executed from other procedures in a VBA project and not from the AutoCAD user interface. A

procedure that can be executed from the AutoCAD user interface is known as a macro. I explain

how to defi ne a procedure in Chapter 2.

A macro can be executed using the Macros dialog box (see Figure 1.8). In addition to execut-

ing a macro, the Macros dialog box can also be used to do the following:

 ◆ Execute and begin debugging a macro

 ◆ Open the VBA Editor and scroll to a macro’s defi nition

 ◆ Create the defi nition of a new macro based on the name entered in the Macro Name

text box

EXECUTING VBA MACROS | 17

c01.indd 4:35:54:PM/04/06/2015 Page 17

 ◆ Remove a macro from a loaded project

 ◆ Display the VBA Manager

 ◆ Change the VBA environment options

Figure 1.8

Executing a macro

stored in a VBA

project

The following methods can be used to display the Macros dialog box:

 ◆ On the ribbon, click the Manage tab ➢ Applications panel ➢ Run VBA Macro.

 ◆ At the Command prompt, type vbarun and press Enter.

 ◆ When the VBA Manager opens, click Macros.

The Macros dialog box requires input from the user to execute a macro in a loaded VBA proj-

ect. If you want to execute a macro as part of a script, custom AutoLISP program, or command

macro from the AutoCAD user interface you can use one of the following methods:

Command Line The -vbarun command is the command-line version of the vbarun com-

mand. When the -vbarun command is started, the Macro name: prompt is displayed.

AutoLISP The AutoLISP vl-vbarun function can be used to execute a macro in a loaded

DVB fi le from a custom AutoLISP program. If the macro isn’t found, an error message is dis-

played but the error doesn’t cause the program to terminate.

The name of the macro to execute with the -vbarun command or vl-vbarun function must

be in the following format:

DVBFilename.ProjectName!MacroName

For example, you would use the string value firstproject.dvb!ThisDrawing.CCircles to

execute the CCircle macro in the ThisDrawing component of the firstproject.dvb fi le.

18 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 18

These steps explain how to execute the macro named hexbolt:

 1. On the ribbon, click the Manage tab ➢ Applications panel ➢ Run VBA Macro (or at the

Command prompt, type vbarun and press Enter).

 2. When the Macros dialog box opens, click the Macros In drop-down list and choose ch01_

hexbolt.dvb.

Figure 1.9 shows the macro that is stored in and can be executed from the ch01_hexbolt

.dvb fi le with the Macros dialog box.

Figure 1.9

Edit, debug, and

execute macros

from the Macros

dialog box.

 3. In the Macros list, choose basHexBolt.HexBolt and click Run.

The Draw Hex Bolt View dialog box, shown in Figure 1.10, is displayed.

Figure 1.10

Custom dialog box

used to draw a top

or side view of a hex

bolt

ACCESSING THE AUTOCAD VBA DOCUMENTATION | 19

c01.indd 4:35:54:PM/04/06/2015 Page 19

 4. In the Diameter list box, choose 3/8 and click Insert.

 5. At the Specify center of bolt head: prompt, specify a point in the drawing area to

draw the top view of the hex bolt.

 6. When the Draw Hex Bolt View dialog box reappears, in the View section click the Side

option or image. Click Insert.

 7. At the Specify middle of bolt head: prompt, specify a point in the drawing area to

draw the side view of the hex bolt.

 8. When the Draw Hex Bolt View dialog box reappears again, click Cancel.

Figure 1.11 shows the top and side views of the hex bolt that were drawn with the macro.

Figure 1.11

Views of the com-

pleted hex bolt

Accessing the AutoCAD VBA Documentation
The AutoCAD VBA documentation is available from the AutoCAD product Help landing

page and the VBA Editor. The documentation is composed of two documentation sets: the

AutoCAD Object Library Reference and the ActiveX Developer’s Guide. Although this book

is designed to make it easy to learn how to use the AutoCAD Object library and the VBA pro-

gramming language, you will want to refer to the documentation that is provided with the

AutoCAD product too, as it just isn’t possible to cover every function and technique here.

The topics of the AutoCAD Object Library Reference explain the classes, methods, properties,

and constants that make up the AutoCAD Object library. The ActiveX Developer’s Guide topics

can be used to explore advanced techniques and features that aren’t covered in this book.

You can see the AutoCAD VBA and ActiveX documentation written for AutoCAD 2015 here:

http://help.autodesk.com/view/ACD/201 5/ENU/

On the Autodesk AutoCAD 2015 Help landing page, click the Developer Home Page link.

On the AutoCAD Developer Help Home Page, use the AutoCAD Object Library Reference

and Developer’s Guide links under the ActiveX/VBA section to access the AutoCAD VBA and

ActiveX documentation.

When working in the VBA Editor, you can access the AutoCAD Object Library Reference and

Microsoft Visual Basic for Applications Help by doing the following:

 1. In a code editor window, highlight the keyword, statement, data type, method, property,

or constant that you want to learn more about.

 2. Press F1.

Help can also be accessed from the Object Browser. In the Object Browser, select a class, method,

property, or constant and then press F1 to open the associated help topic. I discussed the Object

Browser earlier, in the “Exploring Loaded Libraries with the Object Browser” s ection.

http://help.autodesk.com/view/ACD/201

c02.indd 4:27:46:PM/04/06/2015 Page 21

Chapter 2

Understanding Visual Basic for
Applications

The Visual Basic for Applications (VBA) programming language is a variant of the Visual Basic

6 (VB6) programming language that was introduced in 1998. Though similar, VB6 isn’t exactly

the same as the current version of Visual Basic (known as VB.NET). Unlike VB6, which allows

you to develop stand-alone applications, VBA programs require a host application. The host

application provides the framework in which the VBA program can be executed; Microsoft

Word and the Autodesk® AutoCAD® program are examples of host applications.

VBA was fi rst introduced as a preview technology and modern programming alternative

to AutoLISP® and ObjectARX® with AutoCAD Release 14 back in 1997. It was not until after

the release of AutoCAD R14.01 that VBA was offi cially supported. The implementation of

VBA in the AutoCAD program at that time was huge to the industry, as the learning curve

between AutoLISP and C++ was steep, and the number of developers who knew VBA was

growing rapidly.

Here are some of the reasons I recommend using VBA for your custom programs:

 ◆ Individuals with VB/VBA experience often can be found in-house (check in your company’s

IS/IT department); fi nding someone fl uent in AutoLISP or ObjectARX is much rarer.

 ◆ VB/VBA resources are easier to locate—on the Internet or at your local library.

 ◆ Connecting to external applications and data sources is simpler using VB/VBA.

 ◆ VBA programs are relatively low maintenance; programs written for the last release of the

AutoCAD program (even those written a decade ago) often run in the latest release with

little to no change.

Learning the Fundamentals of the VBA Language
Before you learn to use VBA to automate the AutoCAD drawing environment, it is essential to

have a basic understanding of the VBA or VB6 programming language. If you are not

familiar with the VBA or VB6 programming language, I recommend reading this chapter

before moving on.

In addition to this chapter, the Microsoft Visual Basic for Applications Help from the Help

menu on the VBA Editor’s menu bar and your favorite Internet search engine can be great

22 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 22

resources for information on the VBA programming language. The following are a couple of

web resources that can help you get started on locating additional information on VBA and VB6:

 ◆ Microsoft’s Programming Resources for Visual Basic for Applications page (http://

support.microsoft.com/kb/163435)

 ◆ Microsoft Developer Network: Visual Basic 6.0 Language Reference (http://msdn.

microsoft.com/en-us/library/aa338033(v=vs.60).aspx)

Creating a Procedure
Most of the code you write in VBA will be grouped into a named code block called a procedure.
If you are familiar with AutoLISP or another programming language, you might be familiar

with the terms function or method. VBA supports two types of procedures:

Subroutine (or Sub) A named code block that doesn’t return a value

Function A named code block that does return a value

The defi nition of a procedure always starts with the keyword Sub or Function followed by its

designated name. The procedure name should be descriptive and should give you a quick idea

of the purpose of the procedure. The naming of a procedure is personal preference—I like to use

title casing for the names of the functions I defi ne to help identify misspelled function names.

For example, I use the name CreateLayer for a function that creates a new layer. If I enter

 createlayer in the VBA Editor window, the VBA Editor will change the typed text to

CreateLayer to match the procedure’s defi nition.

After the procedure name is a balanced set of parentheses that contains the arguments that

the procedure expects. Arguments aren’t required for a procedure, but the parentheses must

be present. The End Sub or End Function keywords (depending on the type of procedure

defi ned) must be placed after the last code statement of the procedure to indicate where the

procedure ends.

The following shows the basic structures of a Sub procedure:

Sub ProcedureName()

End Sub

Sub ProcedureName(Arg1 As DataType, ArgN As DataType)

End Sub

Here’s an example of a custom procedure named MyDraftingAids that changes the values of

two system variables—osmode to 35 and orthomode to 1.

Sub MyDraftingAids()

 ThisDrawing.SetVariable "osmode", 35

 ThisDrawing.SetVariable "orthomode", 1

End Sub

When defi ning a procedure of the Function type, you must indicate the type of data that

the procedure will return. In addition to indicating the type of data to return, at least one code

statement in the procedure must return a value. You return a value by assigning the value to the

procedure’s name.

http://support.microsoft.com/kb/163435
http://support.microsoft.com/kb/163435
http://msdn.microsoft.com/en-us/library/aa338033
http://msdn.microsoft.com/en-us/library/aa338033

