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Distance and Midpoint Formulas
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Exponents and Radicals
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Factoring Special Polynomials

x 2 2 y2 − sx 1 ydsx 2 yd
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Binomial Theorem
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Quadratic Formula

If ax 2 1 bx 1 c − 0, then x −
2b 6 sb 2 2 4ac

2a
.

Inequalities and Absolute Value

If a , b and b , c, then a , c.

If a , b, then a 1 c , b 1 c.

If a , b and c . 0, then ca , cb.

If a , b and c , 0, then ca . cb.

If a . 0, then

          | x | − a  means  x − a  or  x − 2a

          | x | , a  means    2a , x , a

          | x | . a  means  x . a  or  x , 2a
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Spotted owl populations are analyzed 
using matrix models (Exercise 8.5.22).

The fitness of a garter snake is a function 
of the degree of stripedness and the 
number of reversals of direction while 
fleeing a predator (Exercise 9.1.7).

The project on page 297 asks how birds 
can minimize power and energy by 
flapping their wings versus gliding.

The population size of some species, like this 
sea urchin, can be measured by evaluating a 
certain integral, as explored in Exercise 5.3.49.

The interaction between Daphnia 
and their parasites is analyzed in 
Case Study 2 (page xlvi).

Populations of blowflies are modeled 
by chaotic recursions (page 430).

The energy needed by an iguana to 
run is a function of two variables, 
weight and speed (Exercise 9.2.47).

Dinosaur fossils can be dated using 
potassium-40 (Exercise 3.6.12).

The project on page 222 illustrates how 
mathematics can be used to minimize 
red blood cell loss during surgery.

Jellyfish locomotion is modeled by a 
differential equation in Exercise 10.1.34.

The screw-worm fly was effectively 
eliminated using the sterile insect 
technique (Exercise 5.6.24).

The growth of a yeast population leads 
naturally to the study of differential 
equations (Section 7.1).

The doubling time of a population of the 
bacterium G. lamblia is determined in  
Exercise 1.4.29.

The Speedo LZR Racer reduces drag 
in the water, resulting in dramatically 
improved performance. The project 
on page 603 explains why.

In Example 9.4.2 we use the Chain 
Rule to discuss whether tuna biomass 
is increasing or decreasing.

The optimal foraging time for bumblebees 
is determined in Example 4.4.2.

The vertical trajectory of zebra finches is 
modeled by a quadratic function (Figure 1.2.8).

The size of the gray-wolf population depends 
on the size of the food supply and the 
number of competitors (Exercise 9.4.21).

Example 4.4.4 investigates the time 
that loons spend foraging.

The area of a cross-section of a human 
brain is estimated in Exercise 6.Review.5.

The project on page 479 determines 
the critical vaccination coverage 
required to eradicate a disease.

Natural killer cells attack pathogens and  
are found in two states described by a pair  
of differential equations developed in  
Section 10.3.

In Example 4.2.6 a junco has a choice 
of habitats with different seed densities 
and we determine the choice with 
the greatest energy reward.

The project on page 467 investigates 
logarithmic spirals, such as those 
found in the shell of a nautilus.
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xv

In recent years more and more colleges and universities have been introducing calculus 
courses specifically for students in the life sciences. This reflects a growing recognition 
that mathematics has become an indispensable part of any comprehensive training in the 
biological sciences. 

Our chief goal in writing this textbook is to show students how calculus relates to 
biology. We motivate and illustrate the topics of calculus with examples drawn from 
many areas of biology, including genetics, biomechanics, medicine, pharmacology, 
physiology, ecology, epidemiology, and evolution, to name a few. We have paid par-
ticular attention to ensuring that all applications of the mathematics are genuine, and we 
provide references to the primary biological literature for many of these so that students 
and instructors can explore the applications in greater depth.

We strive for a style that maintains rigor without being overly formal. Although our 
focus is on the interface between mathematics and the life sciences, the logical structure 
of the book is motivated by the mathematical material. Students will come away from a 
course based on this book with a sound knowledge of mathematics and an understanding 
of the importance of mathematical arguments. Equally important, they will also come 
away with a clear understanding of how these mathematical concepts and techniques are 
central in the life sciences, just as they are in physics, chemistry, and engineering.

The book begins with a prologue entitled Mathematics and Biology detailing how the 
applications of mathematics to biology have proliferated over the past several decades 
and giving a preview of some of the ways in which calculus provides insight into biologi-
cal phenomena.

Alternate Versions

There are two versions of this textbook. The first, Biocalculus: Calculus for the Life Sci-
ences, focuses on calculus, although it also includes some elements of linear algebra that 
are important in the life sciences. An alternate version entitled Biocalculus: Calculus, 
Probability, and Statistics for the Life Sciences contains all of the content of the first ver-
sion as well as three additional chapters titled Descriptive Statistics, Probability, and 
Inferential Statistics (see Content on page xviii).

Features

■ Real-World Data
We think it’s important for students to see and work with real-world data in both numeri-
cal and graphical form. Accordingly, we have used data concerning biological phenom-
ena to introduce, motivate, and illustrate the concepts of calculus. Many of the examples 
and exercises deal with functions defined by such numerical data or graphs. See, for 
example, Figure 1.1.1 (electrocardiogram), Figure 1.1.23 (malarial fever), Exercise 
1.1.26 (blood alcohol concentration), Table 2 in Section 1.4 (HIV density), Table 3 in 
Section 1.5 (species richness in bat caves), Example 3.1.7 (growth of malarial parasites), 

Preface
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Exercise 3.1.42 (salmon swimming speed), Exercises 4.1.7–8 (influenza pandemic), 
Exercise 4.2.10 (HIV prevalence), Figure 5.1.17 (measles pathogenesis), Exercise 5.1.11 
(SARS incidence), Figure 6.1.8 and Example 6.1.4 (cerebral blood flow), Table 1 and 
Figure 1 in Section 7.1 (yeast population), and Figure 8.1.14 (antigenic cartography).

■ Graded Exercise Sets
Each exercise set is carefully graded, progressing from basic conceptual exercises and 
skill-development problems to more challenging problems involving applications and 
proofs.

■ Conceptual Exercises
One of the goals of calculus instruction is conceptual understanding, and the most impor-
tant way to foster conceptual understanding is through the problems that we assign. 
To that end we have devised various types of problems. Some exercise sets begin with 
requests to explain the meanings of the basic concepts of the section. (See, for instance, 
the first few exercises in Sections 2.3, 2.5, 3.3, 4.1, and 8.2.) Similarly, all the review 
sections begin with a Concept Check and a True-False Quiz. Other exercises test concep-
tual understanding through graphs or tables (see Exercises 3.1.11, 5.2.41–43, 7.1.9–11, 
9.1.1–2, and 9.1.26–32).

Another type of exercise uses verbal description to test conceptual understanding (see 
Exercises 2.5.12, 3.2.50, 4.3.47, and 5.8.29).

■ Projects
One way of involving students and making them active learners is to have them work 
(perhaps in groups) on extended projects that give a feeling of substantial accomplish-
ment when completed. We have provided 24 projects in Biocalculus: Calculus for the 
Life Sciences and an additional four in Biocalculus: Calculus, Probability, and Statistics 
for the Life Sciences. Drug Resistance in Malaria (page 78), for example, asks students 
to construct a recursion for the frequency of the gene that causes resistance to an anti-
malarial drug. The project Flapping and Gliding (page 297) asks how birds can minimize 
power and energy by flapping their wings versus gliding. In The Tragedy of the Com-
mons: An Introduction to Game Theory (page 298), two companies are exploiting the 
same fish population and students determine optimal fishing efforts. The project Disease 
Progression and Immunity (page 394) is a nice application of areas between curves. Stu-
dents use a model for the measles pathogenesis curve to determine which patients will 
be symptomatic and infectious (or noninfectious), or asymptomatic and noninfectious. 
We think that, even when projects are not assigned, students might well be intrigued by 
them when they come across them between sections.

■ Case Studies
We also provide two case studies: (1) Kill Curves and Antibiotic Effectiveness and  
(2) Hosts, Parasites, and Time-Travel. These are extended real-world applications from 
the primary literature that are more involved than the projects and that tie together mul-
tiple mathematical ideas throughout the book. An introduction to each case study is pro-
vided at the beginning of the book (page xli), and then each case study recurs in various 
chapters as the student learns additional mathematical techniques. The case studies can 
be used at the beginning of a course as motivation for learning the mathematics, and they 
can then be returned to throughout the course as they recur in the textbook. Alternatively, 
a case study may be assigned at the end of a course so students can work through all com-
ponents of the case study in its entirety once all of the mathematical ideas are in place. 
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Case studies might also be assigned to students as term projects. Additional case studies 
will be posted on the website www.stewartcalculus.com as they become available.

■ Biology Background
Although we give the biological background for each of the applications throughout the 
textbook, it is sometimes useful to have additional information about how the biological 
phenomenon was translated into the language of mathematics. In order to maintain  
a clear and logical flow of the mathematical ideas in the text, we have therefore included 
such information, along with animations, further references, and downloadable data on 
the website www.stewartcalculus.com. Applications for which such additional informa-
tion is available are marked with the icon BB  in the text.

■ Technology
The availability of technology makes it more important to clearly understand the con-
cepts that underlie the images on the screen. But, when properly used, graphing calcula-
tors and computers are powerful tools for discovering and understanding those concepts. 
(See the section Calculators, Computers, and Other Graphing Devices on page xxvi for 
a discussion of these and other computing devices.) These textbooks can be used either 
with or without technology and we use two special symbols to indicate clearly when a 
particular type of machine is required. The icon ; indicates an exercise that definitely 
requires the use of such technology, but that is not to say that it can’t be used on the other 
exercises as well. The symbol CAS  is reserved for problems in which the full resources 
of a computer algebra system (like Maple, Mathematica, or the TI-89/92) are required. 
But technology doesn’t make pencil and paper obsolete. Hand calculation and sketches 
are often preferable to technology for illustrating and reinforcing some concepts. Both 
instructors and students need to develop the ability to decide where the hand or the 
machine is appropriate.

■ Tools for Enriching Calculus (TEC)
TEC is a companion to the text and is intended to enrich and complement its contents. (It 
is now accessible in Enhanced WebAssign and CengageBrain.com. Selected Visuals and 
Modules are available at www.stewartcalculus.com.) Developed in collaboration with 
Harvey Keynes, Dan Clegg, and Hubert Hohn, TEC uses a discovery and exploratory 
approach. In sections of the book where technology is particularly appropriate, marginal 
icons  TEC  direct students to TEC Visuals and Modules that provide a laboratory environ-
ment in which they can explore the topic in different ways and at different levels. Visuals 
are animations of figures in text; Modules are more elaborate activities and include 
exercises. Instructors can choose to become involved at several different levels, ranging 
from simply encouraging students to use the Visuals and Modules for independent explo-
ration, to assigning specific exercises from those included with each Module, to creating 
additional exercises, labs, and projects that make use of the Visuals and Modules.

■ Enhanced WebAssign
Technology is having an impact on the way homework is assigned to students, particu-
larly in large classes. The use of online homework is growing and its appeal depends on 
ease of use, grading precision, and reliability. We have been working with the calculus 
community and WebAssign to develop a robust online homework system. Up to 50% of 
the exercises in each section are assignable as online homework, including free response, 
multiple choice, and multi-part formats.
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The system also includes Active Examples, in which students are guided in step-by-
step tutorials through text examples, with links to the textbook and to video solutions. 
The system features a customizable YouBook, a Show My Work feature, Just in Time 
review of precalculus prerequisites, an Assignment Editor, and an Answer Evaluator that 
accepts mathematically equivalent answers and allows for homework grading in much 
the same way that an instructor grades.

■ Website
The site www.stewartcalculus.com includes the following.

■ Algebra Review

■   Lies My Calculator and Computer Told Me

■   History of Mathematics, with links to the better historical websites

■   Additional Topics (complete with exercise sets): The Trapezoidal Rule and 
Simpson’s Rule, First-Order Linear Differential Equations, Second-Order Linear 
Differential Equations, Double Integrals, Infinite Series, and Fourier Series

■   Archived Problems (drill exercises and their solutions)

■   Challenge Problems

■   Links, for particular topics, to outside Web resources

■   Selected Tools for Enriching Calculus (TEC) Modules and Visuals

■   Case Studies

■   Biology Background material, denoted by the icon BB  in the text

■   Data sets

Content

diagnostic tests The books begin with four diagnostic tests, in Basic Algebra, Ana-
lytic Geometry, Functions, and Trigonometry.

Prologue This is an essay entitled Mathematics and Biology. It details how the appli-
cations of mathematics to biology have proliferated over the past several decades and 
highlights some of the applications that will appear throughout the book.

Case studies The case studies are introduced here so that they can be used as moti-
vation for learning the mathematics. Each case study then recurs at the ends of various 
chapters throughout the book.

1 Functions and sequences The first three sections are a review of functions from 
precalculus, but in the context of biological applications. Sections 1.4 and 1.5 review 
exponential and logarithmic functions; the latter section includes semilog and log-
log plots because of their importance in the life sciences. The final section introduces 
sequences at a much earlier stage than in most calculus books. Emphasis is placed on 
recursive sequences, that is, difference equations, allowing us to discuss discrete-time 
models in the biological sciences.

2 Limits We begin with limits of sequences as a follow-up to their introduction in 
Section 1.6. We feel that the basic idea of a limit is best understood in the context of 
sequences. Then it makes sense to follow with the limit of a function at infinity, which 
we present in the setting of the Monod growth function. Then we consider limits of 
functions at finite numbers, first geometrically and numerically, then algebraically. (The 
precise definition is given in Appendix D.) Continuity is illustrated by population har-
vesting and collapse.
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3 derivatives Derivatives are introduced in the context of rate of change of blood 
alcohol concentration and tangent lines. All the basic functions, including the exponen-
tial and logarithmic functions, are differentiated here. When derivatives are computed in 
applied settings, students are asked to explain their meanings.

4 applications of derivatives The basic facts concerning extreme values and shapes 
of curves are deduced using the Mean Value Theorem as the starting point. In the sec-
tion on l’Hospital’s Rule we use it to compare rates of growth of functions. Among the 
applications of optimization, we investigate foraging by bumblebees and aquatic birds. 
The Stability Criterion for Recursive Sequences is justified intuitively and a proof based 
on the Mean Value Theorem is given in Appendix E.

5 Integrals The definite integral is motivated by the area problem, the distance prob-
lem, and the measles pathogenesis problem. (The area under the pathogenesis curve up 
to the time symptoms occur is equal to the total amount of infection needed to develop 
symptoms.) Emphasis is placed on explaining the meanings of integrals in various con-
texts and on estimating their values from graphs and tables. There is no separate chapter 
on techniques of integration, but substitution and parts are covered here, as well as the 
simplest cases of partial fractions.

6 applications of Integrals The Kety-Schmidt method for measuring cerebral blood 
flow is presented as an application of areas between curves. Other applications include 
the average value of a fish population, blood flow in arteries, the cardiac output of the 
heart, and the volume of a liver. 

7 differential equations Modeling is the theme that unifies this introductory treat-
ment of differential equations. The chapter begins by constructing a model for yeast pop-
ulation size as a way to motivate the formulation of differential equations. We then show 
how phase plots allow us to gain considerable qualitative information about the behavior 
of differential equations; phase plots also provide a simple introduction to bifurcation 
theory. Examples range from cancer progression to individual growth, to ecology, to 
anesthesiology. Direction fields and Euler’s method are then studied before separable 
equations are solved explicitly, so that qualitative, numerical, and analytical approaches 
are given equal consideration. The final two sections of this chapter explore systems of 
two differential equations. This brief introduction is given here because it allows students 
to see some applications of systems of differential equations without requiring any addi-
tional mathematical preparation. A more complete treatment is then given in Chapter 10.

8 Vectors and Matrix Models We start by introducing higher-dimensional coordi-
nate systems and their applications in the life sciences including antigenic cartography 
and genome expression profiles. Vectors are then introduced, along with the dot product, 
and these are shown to provide insight ranging from influenza epidemiology, to cardiol-
ogy, to vaccine escape, to the discovery of new biological compounds. They also provide 
some of the tools necessary for the treatment of multivariable calculus in Chapter 9. 
The remainder of this chapter is then devoted to the application of further ideas from 
linear algebra to biology. A brief introduction to matrix algebra is followed by a section 
where these ideas are used to model many different biological phenomena with the aid 
of matrix diagrams. The final three sections are devoted to the mathematical analysis of 
such models. This includes a treatment of eigenvalues and eigenvectors, which will also 
be needed as preparation for Chapter 10, and a treatment of the long-term behavior of 
matrix models using Perron-Frobenius Theory.

9 Multivariable Calculus Partial derivatives are introduced by looking at a specific 
column in a table of values of the heat index (perceived air temperature) as a function of 
the actual temperature and the relative humidity. Applications include body mass index, 
infectious disease control, lizard energy expenditure, and removal of urea from the blood 
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in dialysis. If there isn’t time to cover the entire chapter, then it would make sense to 
cover just sections 9.1 and 9.2 (preceded by 8.1) and perhaps 9.6. But if Section 9.5 is 
covered, then Sections 8.2 and 8.3 are prerequisites.

10 systems of Linear differential equations Again modeling is the theme that uni-
fies this chapter. Systems of linear differential equations enjoy very wide application in 
the life sciences and they also form the basis for the study of systems of nonlinear dif-
ferential equations. To aid in visualization we focus on two-dimensional systems, and we 
begin with a qualitative exploration of the different sorts of behaviors that are possible 
in the context of population dynamics and radioimmunotherapy. The general solution to 
two-dimensional systems is then derived with the use of eigenvalues and eigenvectors. 
The third section then illustrates these results with four extended applications involving 
metapopulations, the immune system, gene regulation, and the transport of environmen-
tal pollutants. The chapter ends with a section that shows how the ideas from systems 
of linear differential equations can be used to understand local stability properties of 
equilibria in systems of nonlinear differential equations. To cover this chapter students 
will first need sections 8.1–8.4 and 8.6–8.7.

The content listed in the shaded area appears only in

Biocalculus: Calculus, Probability, and Statistics  
for the Life Sciences.

11 descriptive statistics Statistical analyses are central in most areas of biology. The 
basic ideas of descriptive statistics are presented here, including types of variables, mea-
sures of central tendency and spread, and graphical descriptions of data. Single variables 
are treated first, followed by an examination of the descriptive statistics for relationships 
between variables, including the calculus behind the least-square fit for scatter plots. A 
brief introduction to inferential statistics and its relationship to descriptive statistics is 
also given, including a discussion of causation in statistical analyses.

12 Probability Probability theory represents an important area of mathematics in the 
life sciences and it also forms the foundation for the study of inferential statistics. Basic 
principles of counting and their application are introduced first, and these are then used 
to motivate an intuitive definition of probability. This definition is then generalized to 
the axiomatic definition of probability in an accessible way that highlights the meanings 
of the axioms in a biological context. Conditional probability is then introduced with 
important applications to disease testing, handedness, color blindness, genetic disorders, 
and gender. The final two sections introduce discrete and continuous random variables 
and illustrate how these arise naturally in many biological contexts, from disease out-
breaks to DNA supercoiling. They also demonstrate how the concepts of differentiation 
and integration are central components of probability theory. 

13 Inferential statistics The final chapter addresses the important issue of how one 
takes information from a data set and uses it to make inferences about the population 
from which it was collected. We do not provide an exhaustive treatment of inferential 
statistics, but instead present some of its core ideas and how they relate to calculus. Sam-
pling distributions are explained, along with confidence intervals and the logic behind 
hypothesis testing. The chapter concludes with a simplified treatment of the central ideas 
behind contingency table analysis.
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Student Resources

Enhanced WebAssign®   
Printed Access Code ISBN: 978-1-285-85826-5 
Instant Access Code ISBN: 978-1-285-85825-8

Enhanced WebAssign is designed to allow you to do your homework online. This proven 
and reliable system uses content found in this text, then enhances it to help you learn 
calculus more effectively. Automatically graded homework allows you to focus on your 
learning and get interactive study assistance outside of class. Enhanced WebAssign for 
Biocalculus: Calculus for the Life Sciences contains the Cengage YouBook, an inter-
active ebook that contains animated figures, video clips, highlighting and note-taking 
features, and more!

CengageBrain.com 
To access additional course materials, please visit www.cengagebrain.com. At the Cen-
gageBrain.com home page, search for the ISBN of your title (from the back cover of 
your book) using the search box at the top of the page. This will take you to the product 
page where these resources can be found.

Stewart Website
www.stewartcalculus.com

This site includes additional biological background for selected examples, exercises, and 
projects, including animations, further references, and downloadable data files. In addi-
tion, the site includes the following:

■ Algebra Review

■ Additional Topics

■ Drill exercises

■ Challenge Problems

■ Web Links

■ History of Mathematics

■ Tools for Enriching Calculus (TEC)

Student Solutions Manual 
ISBN: 978-1-285-84252-3

Provides completely worked-out solutions to all odd-numbered exercises in the text, giv-
ing you a chance to check your answers and ensure you took the correct steps to arrive 
at an answer.

A Companion to Calculus
By Dennis Ebersole, Doris Schattschneider, Alicia Sevilla, and Kay Somers
ISBN 978-0-495-01124-8
Written to improve algebra and problem-solving skills of students taking a calculus 
course, every chapter in this companion is keyed to a calculus topic, providing concep-
tual background and specific algebra techniques needed to understand and solve calculus 
problems related to that topic. It is designed for calculus courses that integrate the review 
of precalculus concepts or for individual use. Order a copy of the text or access the 
eBook online at www.cengagebrain.com by searching the ISBN.
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Linear Algebra for Calculus
by Konrad J. Heuvers, William P. Francis, John H. Kuisti, 
Deborah F. Lockhart, Daniel S. Moak, and Gene M. Ortner
ISBN 978-0-534-25248-9
This comprehensive book, designed to supplement a calculus course, provides an intro-
duction to and review of the basic ideas of linear algebra. Order a copy of the text or 
access the eBook online at www.cengagebrain.com by searching the ISBN.

Instructor Resources

Enhanced WebAssign®  
Printed Access Code ISBN: 978-1-285-85826-5 
Instant Access Code ISBN: 978-1-285-85825-8

Exclusively from Cengage Learning, Enhanced WebAssign offers an extensive online 
program for Biocalculus: Calculus for the Life Sciences to encourage the practice that 
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To the Student

Reading a calculus textbook is different from reading a 
newspaper or a novel, or even a physics book. Don’t be 
discouraged if you have to read a passage more than once in 
order to understand it. You should have pencil and paper and 
calculator at hand to sketch a diagram or make a calculation.

Some students start by trying their homework problems 
and read the text only if they get stuck on an exercise. We 
suggest that a far better plan is to read and understand a sec-
tion of the text before attempting the exercises. In particular, 
you should look at the definitions to see the exact meanings 
of the terms. And before you read each example, we suggest 
that you cover up the solution and try solving the problem 
yourself. You’ll get a lot more from looking at the solution if 
you do so.

Part of the aim of this course is to train you to think logi-
cally. Learn to write the solutions of the exercises in a con-
nected, step-by-step fashion with explanatory sentences—
not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the 
back of the book. Some exercises ask for a verbal explana-
tion or interpretation or description. In such cases there is no 
single correct way of expressing the answer, so don’t worry 
that you haven’t found the definitive answer. In addition, 
there are often several different forms in which to express 
a numerical or algebraic answer, so if your answer differs 
from ours, don’t immediately assume you’re wrong. For 
example, if the answer given in the back of the book is 
s2 2 1 and you obtain 1y(1 1 s2 ), then you’re right and 
rationalizing the denominator will show that the answers are 
equivalent.

The icon ; indicates an exercise that definitely requires 
the use of either a graphing calculator or a computer with 
graphing software. (Calculators, Computers, and Other 

Graphing Devices discusses the use of these graphing 
devices and some of the pitfalls that you may encounter.) 
But that doesn’t mean that graphing devices can’t be used to 
check your work on the other exercises as well. The symbol 
CAS  is reserved for problems in which the full resources of a 
computer algebra system (like Derive, Maple, Mathematica, 
or the TI-89/92) are required.

You will also encounter the symbol , which warns you 
against committing an error. We have placed this symbol in 
the margin in situations where we have observed that a large 
proportion of students tend to make the same mistake.

Applications with additional Biology Background avail-
able on www.stewartcalculus.com are marked with the icon 
BB  in the text.

Tools for Enriching Calculus, which is a companion to 
this text, is referred to by means of the symbol  TEC  and 
can be accessed in Enhanced WebAssign (selected Visuals 
and Modules are available at www.stewartcalculus.com). It 
directs you to modules in which you can explore aspects of 
calculus for which the computer is particularly useful.

We recommend that you keep this book for reference 
purposes after you finish the course. Because you will likely 
forget some of the specific details of calculus, the book will 
serve as a useful reminder when you need to use calculus in 
subsequent courses. And, because this book contains more 
material than can be covered in any one course, it can also 
serve as a valuable resource for a working biologist.

Calculus is an exciting subject, justly considered to be 
one of the greatest achievements of the human intellect. 
We hope you will discover that it is not only useful but also 
intrinsically beautiful.

james stewart
troy day
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Calculators, Computers, and  
Other Graphing Devices

Advances in technology continue to bring a wider variety of tools for 
doing mathematics. Handheld calculators are becoming more power-
ful, as are software programs and Internet resources. In addition, many 
mathematical applications have been released for smartphones and tab-
lets such as the iPad.

Some exercises in this text are marked with a graphing icon ;, 
which indicates that the use of some technology is required. Often this 
means that we intend for a graphing device to be used in drawing the 
graph of a function or equation. You might also need technology to find 
the zeros of a graph or the points of intersection of two graphs. In some 
cases we will use a calculating device to solve an equation or evaluate 
a definite integral numerically. Many scientific and graphing calcula-
tors have these features built in, such as the Texas Instruments TI-84 or 
TI-Nspire CX. Similar calculators are made by Hewlett Packard, Casio, 
and Sharp.
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You can also use computer software such as 
Graphing Calculator by Pacific Tech (www.
pacifict.com) to perform many of these func-
tions, as well as apps for phones and tablets, 
like Quick Graph (Columbiamug) or Math-
Studio (Pomegranite Software). Similar func-
tionality is available using a web interface at 
WolframAlpha.com.

xxvi
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In general, when we use the term “calculator” in this book, we 
mean the use of any of the resources we have mentioned.

The CAS  icon is reserved for problems in which the full resources 
of a computer algebra system (CAS) are required. A CAS is capable 
of doing mathematics (like solving equations, computing derivatives or 
integrals) symbolically rather than just numerically.

Examples of well-established computer algebra systems are the com-
puter software packages Maple and Mathematica. The WolframAlpha 
website uses the Mathematica engine to provide CAS functionality via 
the Web.

Many handheld graphing calculators have CAS capabilities, such as 
the TI-89 and TI-Nspire CX CAS from Texas Instruments. Some tablet 
and smartphone apps also provide these capabilities, such as the previ-
ously mentioned MathStudio.
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xxviii

Diagnostic Tests

Success in calculus depends to a large extent on knowledge of the mathematics 
that precedes calculus. The following tests are intended to diagnose weaknesses 
that you might have. After taking each test you can check your answers against 
the given answers and, if necessary, refresh your skills by referring to the review 
materials that are provided.

a Diagnostic Test: Algebra

  1. Evaluate each expression without using a calculator.

 (a) s23d4 (b) 234 (c) 324

 (d) 
523

521  (e) S 2

3D
22

 (f) 1623y4

  2.  Simplify each expression. Write your answer without negative exponents.

 (a) s200 2 s32  

 (b) s3a3b3ds4ab2d2

 (c) S 3x 3y2y 3

x 2y21y2D22

  3. Expand and simplify.

   (a) 3sx 1 6d 1 4s2x 2 5d (b) sx 1 3ds4x 2 5d

   (c) ssa 1 sb dssa 2 sb d (d) s2x 1 3d2

   (e) sx 1 2d3

  4. Factor each expression.

 (a) 4x 2 2 25 (b) 2x 2 1 5x 2 12

 (c) x 3 2 3x 2 2 4x 1 12 (d) x 4 1 27x

 (e) 3x 3y2 2 9x 1y2 1 6x21y2 (f) x 3y 2 4xy

  5. Simplify the rational expression.

   (a) 
x 2 1 3x 1 2

x 2 2 x 2 2
 (b) 

2x 2 2 x 2 1

x 2 2 9
?

x 1 3

2x 1 1

   (c) 
x 2

x 2 2 4
2

x 1 1

x 1 2
 (d) 

y

x
2

x

y

1

y
2

1

x
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  6. Rationalize the expression and simplify.

 (a) 
s10 

s5 2 2
 (b) 

s4 1 h 2 2

h

  7. Rewrite by completing the square.

 (a) x 2 1 x 1 1 (b) 2x 2 2 12x 1 11

  8. Solve the equation. (Find only the real solutions.)

 (a) x 1 5 − 14 2 1
2 x (b) 

2x

x 1 1
−

2x 2 1

x

 (c) x 2 2 x 2 12 − 0 (d) 2x 2 1 4x 1 1 − 0

 (e) x 4 2 3x 2 1 2 − 0 (f) 3| x 2 4 | − 10

 (g) 2xs4 2 xd21y2 2 3s4 2 x − 0

  9.  Solve each inequality. Write your answer using interval notation.

 (a) 24 , 5 2 3x < 17 (b) x 2 , 2x 1 8

 (c) xsx 2 1dsx 1 2d . 0 (d) | x 2 4 | , 3

 (e) 
2x 2 3

x 1 1
< 1

  10. State whether each equation is true or false.

 (a) sp 1 qd2 − p2 1 q 2 (b) sab − sa sb 

 (c) sa2 1 b2 − a 1 b (d) 
1 1 TC

C
− 1 1 T

 (e) 
1

x 2 y
−

1

x
2

1

y
 (f) 

1yx

ayx 2 byx
−

1

a 2 b

■  Answers to DiAgnostic test A: AlgebrA

 1. (a) 81  (b) 281 (c) 1
81

  (d) 25  (e) 9
4 (f) 1

8

 2. (a) 6s2 (b) 48a5b7 (c) 
x

9y7

 3. (a) 11x 2 2 (b) 4x 2 1 7x 2 15

  (c) a 2 b (d) 4x 2 1 12x 1 9

  (e) x 3 1 6x 2 1 12x 1 8

 4. (a) s2x 2 5ds2x 1 5d (b) s2x 2 3dsx 1 4d
  (c) sx 2 3dsx 2 2dsx 1 2d (d) xsx 1 3dsx 2 2 3x 1 9d
  (e) 3x21y2sx 2 1dsx 2 2d (f) xysx 2 2dsx 1 2d

 5. (a) 
x 1 2

x 2 2
 (b) 

x 2 1

x 2 3

  (c) 
1

x 2 2
 (d) 2sx 1 yd

 6. (a) 5s2 1 2s10  (b) 
1

s4 1 h 1 2

 7. (a) sx 1 1
2d2

1 3
4 (b)  2sx 2 3d2 2 7

 8. (a) 6  (b) 1 (c) 23, 4

  (d) 21 6 1
2s2  (e) 61, 6s2  (f) 2

3, 22
3

  (g) 12
5

 9. (a) f24, 3d (b) s22, 4d
  (c) s22, 0d ø s1, `d (d) s1, 7d
  (e) s21, 4g

 10. (a) False (b) True (c) False
  (d) False (e) False (f) True

If you had difficulty with these problems, you may wish to consult the  
Review of Algebra on the website www.stewartcalculus.com.

DIaGNOSTIC TESTS  xxix
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B Diagnostic Test: Analytic Geometry

  1.  Find an equation for the line that passes through the point s2, 25d and

 (a) has slope 23

 (b) is parallel to the x-axis

 (c) is parallel to the y-axis

 (d) is parallel to the line 2x 2 4y − 3

  2.  Find an equation for the circle that has center s21, 4d and passes through the point s3, 22d.

  3.  Find the center and radius of the circle with equation x 2 1 y 2 2 6x 1 10y 1 9 − 0.

  4.  Let As27, 4d and Bs5, 212d be points in the plane.

 (a)  Find the slope of the line that contains A and B.

 (b)  Find an equation of the line that passes through A and B. What are the intercepts?

 (c) Find the midpoint of the segment AB.

 (d) Find the length of the segment AB.

 (e) Find an equation of the perpendicular bisector of AB.

 (f) Find an equation of the circle for which AB  is a diameter.

  5.  Sketch the region in the xy-plane defined by the equation or inequalities.

 (a) 21 < y < 3 (b) | x | , 4 and | y | , 2

 (c) y , 1 2 1
2 x (d) y > x 2 2 1

 (e) x 2 1 y 2 , 4 (f) 9x 2 1 16y 2 − 144

■  Answers to DiAgnostic test B: AnAlytic geometry

 5. 

6et-dtba05a-f
5.20.06

y

x1 2
0

y

x0

y

x0 4

3

_1

2

y

x
0

y

x0 4_4

y

x0 2

1

(a) (b) (c)

(d) (e) (f)

_1

3
2

_2

y=≈-1

≈+¥=4

 

y=1-   x1
2

If you had difficulty with these problems, you may wish to consult  
the review of analytic geometry in Appendix B.

 1. (a) y − 23x 1 1 (b) y − 25

  (c) x − 2 (d) y − 1
2 x 2 6

 2. sx 1 1d2 1 sy 2 4d2 − 52

 3. Center s3, 25d, radius 5

 4. (a) 24
3

  (b) 4x 1 3y 1 16 − 0; x-intercept 24, y-intercept 216
3

  (c) s21, 24d
  (d) 20

  (e) 3x 2 4y − 13

  (f) sx 1 1d2 1 sy 1 4d2 − 100
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C Diagnostic Test: Functions

  1. The graph of a function f  is given at the left.
 (a) State the value of f s21d.
 (b) Estimate the value of f s2d.
 (c) For what values of x is f sxd − 2?
 (d) Estimate the values of x such that f sxd − 0.
 (e) State the domain and range of f .

  2. If f sxd − x 3, evaluate the difference quotient 
f s2 1 hd 2 f s2d

h
 and simplify your answer.

  3. Find the domain of the function.

 (a) f sxd −
2x 1 1

x 2 1 x 2 2
 (b) tsxd −

s3 x 

x 2 1 1
 (c) hsxd − s4 2 x 1 sx 2 2 1

  4. How are graphs of the functions obtained from the graph of f ?

 (a) y − 2f sxd (b) y − 2 f sxd 2 1 (c) y − f sx 2 3d 1 2

  5. Without using a calculator, make a rough sketch of the graph.

 (a) y − x 3 (b) y − sx 1 1d3 (c) y − sx 2 2d3 1 3

 (d) y − 4 2 x 2 (e) y − sx  (f) y − 2sx 

 (g) y − 22x (h) y − 1 1 x21

  6. Let f sxd − H1 2 x 2

2x 1 1

if x < 0

if x . 0

 (a) Evaluate f s22d and f s1d. (b) Sketch the graph of f.

  7.  If f sxd − x 2 1 2x 2 1 and tsxd − 2x 2 3, find each of the following functions.
 (a) f 8 t (b) t 8 f  (c) t 8 t 8 t

y

0 x

1

1

Figure For Problem 1

■  Answers to DiAgnostic test c: Functions

 5. 

6et-dtCa05a-h
5.20.06

y

x0

(a)

1

1

y(b)

x0

1

_1

(c) y

x0

(2, 3)

y(d)

x0

4

2

(e) y

x0 1

(f ) y

x0 1

(g) y

x
0

1
_1

y(h)

x0

1

1

 1. (a) 22  (b) 2.8
  (c) 23, 1 (d) 22.5, 0.3
  (e) f23, 3g, f22, 3g

 2. 12 1 6h 1 h 2

 3. (a) s2`, 22d ø s22, 1d ø s1, `d
  (b) s2`, `d
  (c) s2`, 21g ø f1, 4g

 4. (a) Reflect about the x-axis
  (b)  Stretch vertically by a factor of 2, then shift 1 unit  

downward
  (c) Shift 3 units to the right and 2 units upward
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If you had difficulty with these problems, you should look at  
sections 1.1–1.3 of this book.

    6. (a) 23, 3  (b) 

4c3DTCax06b
10/30/08

y

x0_1

1

d Diagnostic Test: Trigonometry

  1. Convert from degrees to radians.

 (a) 3008  (b) 2188

  2. Convert from radians to degrees.

 (a) 5�y6 (b) 2

  3.  Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle  
of 308.

  4. Find the exact values.

 (a) tans�y3d (b) sins7�y6d (c) secs5�y3d

  5.  Express the lengths a and b in the figure in terms of �.

  6.  If sin x − 1
3 and sec y − 5

4, where x and y lie between 0 and �y2, evaluate sinsx 1 yd.

  7. Prove the identities.

 (a) tan � sin � 1 cos � − sec � (b) 
2 tan x

1 1 tan2x
− sin 2x

  8.  Find all values of x such that sin 2x − sin x and 0 < x < 2�.

  9.  Sketch the graph of the function y − 1 1 sin 2x without using a calculator.

a

¨
b

24

Figure For Problem 5

■  Answers to DiAgnostic test D: trigonometry

 6. 1
15 s4 1 6s2 d

 8. 0, �y3, �, 5�y3, 2�

 9. 

4c3DTDax09
10/30/08

_π π x0

2
y

If you had difficulty with these problems, you should look at  
Appendix C of this book.

 1. (a) 5�y3 (b) 2�y10

 2. (a) 1508  (b) 3608y� < 114.68

 3. 2� cm

 4. (a) s3  (b) 21
2 (c) 2

 5. (a) 24 sin � (b) 24 cos �

 7. (a) s f 8 tdsxd − 4x 2 2 8x 1 2 

  (b) st 8 f dsxd − 2x 2 1 4x 2 5

  (c) st 8 t 8 tdsxd − 8x 2 21

xxxii  Diagnostic tests
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xxxiii

Galileo was keenly aware of the role of mathematics in the study of nature. In 1610 he 
famously wrote:

Philosophy [Nature] is written in that great book which ever lies before our eye—I mean the 
universe—but we cannot understand it if we do not first learn the language and grasp the 
symbols in which it is written. The book is written in the language of mathematics and the 
symbols are triangles, circles, and other geometrical figures, without whose help it is impos-
sible to comprehend a single word of it; without which one wanders in vain through a dark 
labyrinth.1

Indeed, in the seventeenth and later centuries Newton and other scientists employed 
mathematics in trying to explain physical phenomena. First physics and astronomy, and 
later chemistry, were investigated with the methods of mathematics. Most of the applica-
tions of mathematics to biology, however, occurred much later. 

A connection between mathematics and biology that was noticed at an early stage 
was phyllotaxy, which literally means leaf arrangement. For some trees, such as the elm, 
the leaves occur alternately, on opposite sides of a branch, and we refer to 12 phyllotaxis 
because the next leaf is half of a complete turn (rotation) beyond the first one. For beech 
trees each leaf is a third of a turn beyond the preceding one and we have 1

3 phyllotaxis. 

Oak trees exhibit 25 phyllotaxis, poplar trees 38 phyllotaxis, and willow trees 5
13 phyllotaxis. 

These fractions
1

2
 

1

3
 

2

5
 

3

8
 

5

13
 ∙ ∙ ∙

are related to the Fibonacci numbers

1 1 2 3 5 8 13 21 34 . . .

which we will study in Section 1.6. Each of the Fibonacci numbers is the sum of the two 
preceding numbers. Notice that each of the phyllotaxis fractions is a ratio of Fibonacci 
numbers spaced two apart. It has been suggested that the adaptive advantage of this 
arrangement of leaves comes from maximizing exposure to sunlight and rainfall.

The Fibonacci numbers also arise in other botanical examples of phyllotaxis: the 
spiral patterns of the florets of a sunflower, the scales of a fir cone, and the hexagonal 
cells of a pineapple. Shown are three types of spirals on a pineapple: 5 spirals sloping up 
gradually to the right, 8 spirals sloping up to the left, and 13 sloping up steeply.

5 parallel spirals 13 parallel spirals

 5 parallel spirals 8 parallel spirals 13 parallel spirals
5 parallel spirals 8 parallel spirals 13 parallel spirals13 parallel spirals

Prologue: Mathematics and Biology

1. Galileo Galilei, Le Opere di Galileo Galilei, Edizione Nationale, 20 vols., ed. Antonio Favaro (Florence: 
G. Barbera, 1890–1909; reprinted 1929–39, 1964–66), vol. 4, p. 171.
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Another early application of mathematics to biology was the study of the spread of 
smallpox by the Swiss mathematician Daniel Bernoulli in the 1760s. Bernoulli formu-
lated a mathematical model of an epidemic of an infectious disease in the form of a 
differential equation. (Such equations will be studied in Chapter 7.) In particular, Ber-
noulli showed that, under the assumptions of his model, life expectancy would increase 
by more than three years if the entire population were inoculated at birth for smallpox. 
His work was the start of the field of mathematical epidemiology, which we will explore 
extensively in this book.

Aside from a few such instances, however, mathematical biology was slow to develop, 
probably because of the complexity of biological structures and processes. In the last few 
decades, however, the field has burgeoned. In fact, Ian Stewart has predicted that “Biol-
ogy will be the great mathematical frontier of the twenty-first century.”2

Already the scope of mathematical applications to biology is enormous, having led 
to important insights that have revolutionized our understanding of biological processes 
and spawned new fields of study. These successes have reached the highest levels of 
scientific recognition, resulting in Nobel Prizes to Ronald Ross in 1902 for his work on 
malaria transmission dynamics, to Alan Lloyd Hodgkin and Andrew Fielding Huxley 
in 1963 for their work on the transmission of nerve impulses, and to Alan Cormack and 
Godfrey Hounsfield in 1979 for the development of the methodology behind the now- 
common medical procedure of CAT scans. You will learn some of the mathematics 
behind each of these fundamental discoveries throughout this book.

Perhaps even more telling of the importance of mathematics to modern biology is the 
breadth of biological areas to which mathematics contributes. For example, mathemati-
cal analyses are central to our understanding of disease, from the function of immune 
molecules like natural killer cells and the occurrence of autoimmune diseases like lupus, 
to the spread of drug resistance. Likewise, modern medical treatments and techniques, 
from drug pharmacokinetics and dialysis, to the lung preoxygenation and hemodilution 
techniques used for surgery, have all been developed through the use of mathematical 
models.

The reach of mathematics in modern biology extends far beyond medicine, however, 
and is fundamental to virtually all areas of biology. Mathematical models and analyses 
are now routinely used in the study of physiology, from the growth and morphological 
structure of organisms, to photosynthesis, to the emergence of ordered patterns during 
cell division, to the dynamics of cell cycles and genome expression. Mathematics is used 
to understand organism movement, from humans to jellyfish, and to understand popula-
tion and ecological processes, as well as the roles of habitat destruction and harvesting 
in the conservation of endangered species. 

All of these applications are just a few of those explored in this book (a complete list 
can be found at the back of the book). But this book is just the beginning of the story. 
Modern biology and mathematics are now connected by a two-way street, with bio-
logical phenomena providing the impetus for advanced mathematical and computational 
analyses that go well beyond introductory calculus, probability, and statistics. High-
tech research companies like Microsoft now have computational biology departments 
that examine the parallels between biological systems and computation. And these, in 
turn, are providing critical insight into a broad array of questions. From the dramatic 
failure and subsequent discontinuation of the breast cancer drug bevacizumab (Avastin) 
in 2011,3 to the very nature of life itself, mathematics and biology are now moving for-

2. I. Stewart, The Mathematics of Life (New York: Basic Books, 2011).
3. N. Savage, “Computing Cancer,” Nature (2012) 491: S62.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



prOLOGuE  xxxv

ward hand in hand. Techniques in advanced geometry are being developed to quantify 
similarities between different biological patterns, from electrical impulses in the neural 
cortex, to peptide sequences and patterns of protein folding. And these analyses have 
very close mathematical connections to other kinds of pattern matching as well, includ-
ing those used by Web search engines like Google. Likewise, seemingly abstract topics 
from advanced algebra are being used in the statistical analysis of the reams of DNA 
sequence data that are now available and such biological questions are, in turn, reinvigo-
rating these abstract areas of mathematics.4

This textbook provides the first steps into this exciting and fast-moving area that 
combines mathematics with biology. As motivation for our studies, we conclude this 
prologue with a brief description of some of the areas of application that will be covered.

Calculus and Biology

Living organisms change: they move, they grow, they reproduce. Calculus can be 
regarded as the mathematics of change. So it is natural that calculus plays a major role in 
mathematical biology. The following highlighted examples of applications are some of 
the recurring themes throughout the book. As we learn more calculus, we repeatedly 
return to these topics with increasing depth.

■ Species Richness
It seems reasonable that the larger the area of a region, the larger will be the 
number of species that inhabit that region. To make scientific progress, however, 
we need to describe this relationship more precisely. Can we describe such 
species–area relationships mathematically, and can we use mathematics to better 
understand the processes that give rise to these patterns?

In Examples 1.2.6 and 1.5.14 we show that the species–area relation for bats in Mexican 
caves is well modeled using functions called power functions. Later, in Exercise 3.3.48, 
we show the same is true for tree species in Malaysian forests and then use the model  
to determine the rate at which the number of species grows as the area increases. When 
we study differential equations in Chapter 7, we show how assumptions about rates  
of increase of species lead naturally to such power-function models. In Example 4.2.5  
we also see, however, that for very large areas the power-function model is no longer 
appropriate. 

■ Vectorcardiography
Heartbeat patterns can be used to diagnose a variety of different medical 
conditions. These patterns are usually recorded by measuring the electrical 
potential on the surface of the body using several (often 12) wires, or “leads.” How 
can we use the measurements from these leads to diagnose heart problems?

In Section 1.1 and Example 4.1.4 we introduce the idea of using functions to describe 
heartbeats. We then consider, in Exercises 4.1.5–6, how the shapes of their graphs are 
diagnostic of different heart conditions. In Chapter 8 we introduce vectors and show how 
the direction of the voltage vector created by a heartbeat can be measured with ECG 
leads using the dot product (Example 8.3.7) and how this can be used to diagnose spe-

4. L. Pachter and B. Sturmfels, Algebraic Statistics for Computational Biology (Cambridge: Cambridge 
University Press, 2005).
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cific heart conditions (Exercises 8.2.39, 8.3.40, and 8.7.7). We also show how the tech-
niques of matrix algebra can be used to model the change in the heartbeat voltage vector 
(Exercises 8.5.16, 8.6.30, and 8.6.35).

■ Drug and Alcohol Metabolism
Biomedical scientists study the chemical and physiological changes that result 
from the metabolism of drugs and alcohol after consumption. How does the level 
of alcohol in the blood vary over time after the consumption of a drink, and can 
we use mathematics to better understand the processes that give rise to these 
patterns?

In Exercise 1.1.26 we present some data that we use to sketch the graph of the blood 
alcohol concentration (BAC) function, illustrating the two stages of the reaction in the 
human body: absorption and metabolism. In Exercises 1.4.34 and 1.5.69 we model the 
second stage with a decaying exponential function to determine when the BAC will be 
less than the legal limit. In Chapter 3 we model the entire two-stage process with a surge 
function and use it to estimate the rate of increase of the BAC in the first stage and the 
rate of decrease in the second stage (Exercise 3.5.59). Later we find the maximum value 
of the BAC (Example 4.1.7), the limiting value (Example 4.3.9), and the average value 
(Exercise 6.2.16).

■ Population Dynamics
One of the central goals of population biology and ecology is to describe the 
abundance and distribution of organisms and species over time and space. 
Can we use mathematical models to describe the processes that alter these 
abundances, and can these models then be used to predict population sizes?

In Section 1.1 we begin by using different representations of functions to describe the 
human population. Section 1.4 then illustrates how exponential functions can be used to 
model population change, from humans to malaria. Section 1.6 introduces recursion 
equations, which are fundamental tools used to study population dynamics. Several 
examples and exercises in Chapters 3 and 4 use calculus to show how derivatives of 
functions can tell us important information about the rate of growth of populations, while 
Chapters 5 and 6 illustrate how integration can be used to quantify the size of popula-
tions. Chapters 7, 8 and 10 then use differential equations and techniques from matrix 
algebra to model populations and show that populations can even exhibit chaotic behav-
ior (see the project on page 430). 

■ Antigenic Cartography and Vaccine Design
Cartography is the study of mapmaking. “Antigenic cartography” involves making 
maps of the antigenic properties of viruses. This allows us to better under-
stand the changes that occur from year to year in viruses such as influenza. 
How can we describe these changes? Why is it that flu vaccines need to be 
updated periodically because of vaccine escape, and can we use mathematics to 
understand this process and to design new vaccines?

In Exercises 4.1.7 and 4.1.8 we use calculus to explore the epidemiological consequences 
of the antigenic change that occurs during an influenza pandemic. In the project on page 
479 we model these processes using differential equations and determine the vaccine 
coverage needed to prevent an outbreak. Chapter 8 introduces the ideas of vectors and 
the geometry of higher-dimensional space and uses them in antigenic cartography (Exam-

©
 m

on
tic

el
lo

 / 
Sh

ut
te

rs
to

ck
.c

om
©

 C
re

at
iv

eN
at

ur
e.

nl
 / 

Sh
ut

te
rs

to
ck

.c
om

©
 A

nd
rii

 M
uz

yk
a 

/ S
hu

tt
er

st
oc

k.
co

m

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



prOLOGuE  xxxvii

ples 8.1.3, 8.1.6, and 8.1.8 and Exercise 8.1.39) and in vaccine design (Exercise 8.1.38). 
Vectors are then used to quantify antigenic evolution in Example 8.2.1 and Exercises 
8.2.46, 8.3.37, 8.5.17, 8.6.31, and differential equations are used in the project on page 
514 to understand vaccine escape. 

■ Biomechanics of Human Movement
When you walk, the horizontal force that the ground exerts on you is a function of 
time. Understanding human movement, and the energetic differences between 
walking, running, and other animal gaits, like galloping, requires an understanding 
of these forces. Can we quantify these processes using mathematical models?

The description of these forces when you are walking is investigated in Exercises 1.1.16 
and 3.2.14. If you now start walking faster and faster and then begin to run, your gait 
changes. The metabolic power that you consume is a function of your speed and this is 
explored in Examples 1.1.10 and 3.2.7. In the project on page 40 we use trigonometric 
functions of time to model the vertical force that you exert on the ground with different 
gaits. In Chapter 8 we then introduce a three-dimensional coordinate system, enabling us 
to analyze the trajectory of the center of a human walking on a treadmill. Vectors are 
introduced in Section 8.2 and so we can then talk about the force vectors, such as those 
that sprinters exert on starting blocks (Example 8.2.6 and Exercise 8.2.38).

■ Measles Pathogenesis
Infection with the measles virus results in symptoms and viral transmission in 
some patients and not in others. What causes these different outcomes, and can 
we predict when each is expected to occur?

The level of the measles virus in the bloodstream of a patient with no immunity peaks 
after about two weeks and can be modeled using a third-degree polynomial (Exercise 
4.4.8). The area under this curve for the first 12 days turns out to be the total amount of 
infection needed for symptoms to develop (see the heading Pathogenesis on page 325 
and Exercises 5.1.9 and 5.3.45). In the project on page 394 we consider patients with 
partial immunity, and by evaluating areas between curves we are able to decide which 
patients will be symptomatic and infectious (or noninfectious), as well as those who will 
be asymptomatic and noninfectious.

■ Blood Flow
The heart pumps blood through a series of interconnected vessels in your 
body. Several medical problems involve abnormal blood pressure and flow. 
Can we predict blood pressure and flow as a function of various physiological 
characteristics?

In Example 3.3.9 and Exercises 3.3.49 and 3.5.92 we use Poiseuille’s law of laminar 
flow to calculate the rate at which the velocity of blood flow in arteries changes with 
respect to the distance from the center of the artery and with respect to time. In Exer-
cise 6.3.10 we show how blood pressure depends on the radius of an artery. In the section 
Cerebral Blood Flow on page 390 we explain the Kety-Schmidt method, which is a 
diagnostic technique for measuring cerebral blood flow using inhaled nitrous oxide as a 
tracer. This method depends on knowing the area between two curves representing the 
concentration of nitrous oxide as blood enters the brain and the concentration as blood 
leaves the brain in the jugular vein. (See Example 6.1.4 and Exercises 6.1.21–22.) 
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■ Conservation Biology
Human impacts arising from natural resource extraction and pollution are 
having devastating effects on many ecosystems. It is crucial that we be able to 
forecast these effects in order to better manage our impact on the environment. 
Mathematics is playing a central role in this endeavor. 

Exercise 3.1.41 shows how derivatives can be used to study thermal pollution, while 
Exercises 3.5.91 and 3.8.43 use derivatives to determine the effect of habitat fragmenta-
tion on population dynamics. The project on page 239, as well as Example 4.4.5 and 
Exercises 4.4.21 and 4.5.21, use derivatives to explore the effect of harvesting on popu-
lation sustainability. The project on page 298 then extends these ideas with an introduc-
tion to game theory. In Exercises 7.4.32–34 and Section 10.3 we use differential equa-
tions to model the effects of habitat destruction and pollution, while in Example 8.5.1 
and Exercise 8.5.22 techniques from matrix algebra are used to model the conservation 
biology of right whales and spotted owls, respectively. The stability of coral reef ecosys-
tems is explored using differential equations in Exercise 10.4.34.

The content listed in the shaded areas appears only in

Biocalculus: Calculus, Probability, and Statistics  
for the Life Sciences.

Probability, Statistics, and Biology

The mathematical tools of probability and statistics (both of which rely on calculus) are 
also fundamental to many areas of modern biology. Many biological processes––like 
species extinctions, the inheritance of genetic diseases, and the likelihood of success of 
medical procedures––involve aspects of chance that can be understood only with the use 
of probability theory. Furthermore, the statistical analysis of data forms the basis of all 
of science, including biology, and the tools of statistics are rooted in calculus and prob-
ability theory. Although this book is not the place for a thorough treatment of statistics, 
you will be introduced to some of the central concepts of the subject in Chapters 11  
and 13.

Performance-enhancing Drugs
Erythropoietin (EPO) is a hormone that stimulates red blood cell production. 
Synthetic variants of EPO are sometimes used by athletes in an attempt to 
increase aerobic capacity during competition. How effective is EPO at increasing 
performance?

In Exercise 11.1.19 we summarize data for the performance of athletes both before 
and after they have been given EPO, using various summary statistics. In Exercises 
11.3.7 and 11.3.18 we then explore these data graphically. After learning some prob-
ability theory in Chapter 12, we can then begin to analyze the effects of EPO more rig-
orously using statistical techniques. Examples 13.3.2, 13.3.3, and 13.3.6 illustrate how 
we can use these techniques to test the hypothesis that EPO alters athletic performance.
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DNA Supercoiling
When DNA is packaged into chromosomes, it is often coiled and twisted to make it 
more compact. This is called supercoiling. Some of these coils are very dynamic, 
repeatedly forming and disappearing at different locations throughout the genome. 
What causes this process?

One hypothesis is that the coils form and disappear randomly over time, as a result of 
chance twisting and untwisting of the DNA. To explore whether this hypothesis provides 
a reasonable explanation, we need to determine the pattern of supercoiling that it would 
cause. In Chapter 12 we introduce the necessary ideas of probability theory to model this 
process. The project after Section 12.4 then uses these ideas to model the random twist-
ing and untwisting of supercoils. You will see that the available supercoiling data match 
the model predictions remarkably well.

Huntington’s Disease
Huntington’s disease is a genetic disorder causing neurodegeneration and 
eventual death. Symptoms typically appear in a person’s thirties and death occurs 
around 20 years after the onset of symptoms. What causes the variability in the 
age of onset, and how likely are you to inherit this disease if one of your parents 
has it? 

In Exercise 11.1.14 we summarize data for the age of onset, and Exercises 11.2.15 and 
11.2.29 explore the data graphically. Exercises 13.1.14 and 13.1.23 then use so-called 
“normal curves” to estimate the fraction of cases having different ages of onset. In Exer-
cises 13.2.7 and 13.3.7 we use confidence intervals and hypothesis testing, respectively, 
to better understand the mean age of onset. Exercises 11.3.14 and 11.3.20 use statistical 
techniques to explore how the age of onset is related to different DNA sequences, and 
Examples 12.3.3 and 12.3.9 illustrate how probability theory can be used to predict the 
likelihood of a child inheriting the disease from its parents.
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A mathematical model is a mathematical description (often 

by means of a function or an equation) of a real-world phe-

nomenon, such as the size of a population, the speed of a 

falling object, the frequency of a particular gene, the concen-

tration of an antibiotic in a patient, or the life expectancy of 

a person at birth. The purpose of the model is to understand 

the phenomenon and perhaps to make predictions about 

future behavior.

Figure 1 illustrates the process of mathematical modeling. 

Given a real-world problem, the first task is to formulate a 

mathematical model by identifying and naming the relevant 

quantities and making assumptions that simplify the phe-

nomenon enough to make it mathematically tractable. We 

use our knowledge of the biological situation and our math-

ematical skills to obtain equations that relate the quantities. 

In situations where there is no physical law to guide us, we 

may need to collect data (either from a library or the Internet 

or by conducting our own experiments) and examine the data 

to discern patterns.

The second stage is to apply the mathematics that we 

know (such as the calculus that will be developed throughout 

this book) to the mathematical model that we have formu-

lated in order to derive mathematical conclusions. Then, in 

the third stage, we take those mathematical conclusions and 

interpret them as information about the original biological 

phenomenon by way of offering explanations or making pre-

dictions. The final step is to test our predictions by checking 

them against new real data. If the predictions don’t compare 

well with reality, we need to refine our model or to formulate 

a new model and start the cycle again.

A mathematical model is never a completely accurate 

representation of a physical situation—it is an idealization. 

Picasso once said that “art is a lie that makes us realize 

truth.” The same could be said about mathematical models. 

A good model simplifies reality enough to permit mathemati-

cal calculations, but is nevertheless realistic enough to teach 

us something important about the real world. Because mod-

els are simplifications, however, it is always important to keep 

their limitations in mind. In the end, Mother Nature has the 

final say.

Throughout this book we will explore a variety of different 

mathematical models from the life sciences. In each case we 

provide a brief description of the real-world problem as well 

as a brief mention of the real-world predictions that result 

from the mathematical analysis. Nevertheless, the main body 

of this text is designed to teach important mathematical con-

cepts and techniques and therefore its focus is primarily on 

the center portion of Figure 1.

To better illustrate the entirety of the modeling process, 

however, we also provide a pair of case studies in math-

ematical modeling. Each case study is an extended, self- 

contained example of mathematical modeling from the scien-

tific literature. In the following pages the real-world problem 

at the center of each case study is introduced as motivation 

for learning the mathematics in this book. Then, throughout 

subsequent chapters, these case studies are periodically 

revisited as we develop our mathematical skills further. In 

doing so, we illustrate how these mathematical skills help to 

address real-world problems. Additional case studies can be 

found on the website www.stewartcalculus.com.

xli  

Case Studies in  
Mathematical Modeling

Figure 1 The modeling process

Real-world
problem

Mathematical
model

Real-world
predictions

Mathematical
conclusions

Test

SolveFormulate Interpret
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Case study 1 Kill Curves and Antibiotic Effectiveness

Antibiotics are often prescribed to patients who have bacterial infections. 
When a single dose of antibiotic is taken, its concentration at the site of 
infection initially increases very rapidly before slowly decaying back to zero as 
the antibiotic is metabolized.1 The curve shown in Figure 1 illustrates this pattern and is 
referred to as the antibiotic concentration profile.

The clinical effectiveness of an antibiotic is determined not only by its concentration 
profile but also by the effect that any given concentration has on the growth rate of the 
bacteria population. This effect is characterized by a dose response relationship, which is 
a graph of the growth rate of the bacteria population as a function of antibiotic concentra-
tion. Bacteria typically grow well under low antibiotic concentrations, but their growth 
rate becomes negative (that is, their population declines) if the antibiotic concentration is 
high enough. Figure 2 shows an example of a dose response relationship.2
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Figure 1
Antibiotic concentration profile in plasma of a 
healthy human volunteer after receiving 500 mg 
of ciprofloxacin

Figure 2
Dose response relationship for ciprofloxacin with 
the bacteria E. coli

Together, the antibiotic concentration profile and the dose response relationship deter-
mine how the bacteria population size changes over time. When the antibiotic is first 
administered, the concentration at the site of infection will be high and therefore the 
growth rate of the bacteria population will be negative (the population will decline). As 
the antibiotic concentration decays, the growth rate of the bacteria population eventually 
changes from negative to positive and the bacteria population size then rebounds. The 
plot of the bacteria population size as a function of time after the antibiotic is given is 
called the kill curve. An example is shown in Figure 3.

To determine how much antibiotic should be used to treat an infection, clinical 
researchers measure kill curves for different antibiotic doses. Figure 4 presents a family 
of such curves: Notice that as the dose of antibiotic increases, the bacteria population 
tends to decline to lower levels and to take longer to rebound.

When developing new antibiotics, clinical researchers summarize kill curves like 
those in Figure 4 into a simpler form to see more clearly the relationship between the 

xlii  

1. Adapted from S. Imre et al., “Validation of an HPLC Method for the Determination of Ciprofloxacin in 
Human Plasma,” Journal of Pharmaceutical and Biomedical Analysis 33 (2003): 125–30.

2. Adapted from A. Firsov et al., “Parameters of Bacterial Killing and Regrowth Kinetics and Antimicrobial 
Effect Examined in Terms of Area under the Concentration-Time Curve Relationships: Action of Ciprofloxa-
cin against Escherichia coli in an In Vitro Dynamic Model,” Antimicrobial Agents and Chemotherapy 41 
(1997): 1281–87.
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Figure 3
The kill curve of ciprofloxacin for E. coli when measured in a  
growth chamber. A dose corresponding to a concentration of  
0.6 mgymL was given at t − 0.

Figure 4
The kill curves of ciprofloxacin for E. coli when measured in 
a growth chamber. The concentration of ciprofloxin at t − 0 is 
indicated above each curve (in mgymL).

magnitude of antibiotic treatment and its effectiveness. This is done by obtaining both a 
measure of the magnitude of antibiotic treatment, from the antibiotic concentration pro-
file underlying each kill curve, and a measure of the killing effectiveness, from the kill 
curve itself. These measures are then plotted on a graph of killing effectiveness against 
the magnitude of antibiotic treatment.

As an example, Figure 5 plots the magnitude of the drop in population size before the 
rebound occurs (a measure of killing effectiveness) against the peak antibiotic concen-
tration (a measure of the magnitude of antibiotic treatment). Each of the eight colored 
points corresponds to the associated kill curve in Figure 4. (Peak concentration is mea-
sured in dimensionless units, as will be explained in Case Study 1a.) The points indicate 
that, overall, as the peak concentration increases, the magnitude of the drop in population 
size increases as well. This  relationship can then be used by the researchers to choose an 
antibiotic dose that gives the peak concentration required to kill the bacterial infection.
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This approach for choosing a suitable antibiotic dose may seem sensible, but there are 
many different measures for the killing effectiveness of an antibiotic, as well as many 
different measures for the magnitude of antibiotic treatment. Different measures capture 
different properties of the bacteria–antibiotic interaction. For example, Figure 4 shows 
that many different antibiotic doses produce approximately the same magnitude of drop 
in bacteria population despite the fact that the doses result in large differences in the time 
necessary for population rebound to occur. Thus the magnitude of the drop in population 
size before rebound occurs does not completely capture the killing effectiveness of the 
different antibiotic doses.

For this reason, researchers typically quantify antibiotic killing effectiveness in sev-
eral ways. The three most common are (1) the time taken to reduce the bacteria popula-
tion to 90% of its initial value, (2) the drop in population size before rebound occurs, as 
was used in Figure 5, and (3) a measure that combines the drop in population size and 
the duration of time that the population size remains small (because effective treatment 
not only produces a large drop in bacteria population but maintains the population at a 
low level for a long period of time). 

Similarly, there are many measures for the magnitude of antibiotic treatment. The 
most commonly used measures include (1) peak antibiotic concentration, as was used 
in Figure 5, (2) duration of time for which the antibiotic concentration is high enough to 
cause negative bacteria growth, and (3) a measure that combines both peak concentration 
and duration of time that the concentration remains high.

The conclusions clinical researchers obtain about suitable antibiotic doses can differ 
depending on which measures are used. For example, Figure 6 shows the relationship 
between the time taken to reduce the bacteria population to 90% of its initial value plotted 
against the same measure of peak antibiotic concentration as was used in Figure 5 for the 
kill curves shown in Figure 4. Unlike Figure 5, Figure 6 shows no consistent relationship 
between effectiveness (as measured by the speed of the population decline) and strength 
of treatment.
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To use appropriate measures to formulate effective antibiotic doses, we therefore need 
to understand what determines the shape of the relationships between measures, and 
when and why these relationships will differ depending on the measures used. This is 
where mathematical modeling can play an important role: By modeling the biological 
processes involved, we can better understand what drives the different patterns, and we 
can then use models to make predictions about what we expect to observe in other situa-
tions. Making such predictions is the goal of this case study.

The order in which mathematical tools are used by researchers is not always the same 
as the order in which they are best learned. For example, when analyzing the problem in 

Figure 6
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this case study, researchers would first use techniques from Chapter 3 and then Chapter 6 
to model the dynamics of the drug and bacteria and to quantity the strength of treatment 
and effectiveness of killing. They would then analyze these models using the techniques 
of Chapters 1 and 2.

For our learning objectives, however, this case study will be developed in the opposite 
order: In Case Study 1a we will use a given model for the effect of antibiotics on bacteria 
growth to draw conclusions about the differences in the relationships shown in Figures 
5 and 6. In Case Study 1b we will begin to fill in the gaps by deriving the model used 
in Case Study 1a. In Case Study 1c we will continue to fill in gaps from Case Study 1a 
by deriving different measures for the magnitude of antibiotic treatment. We will also 
show how a process called dose fractionation can be used to alter various aspects of these 
measures. Finally, in Case Study 1d we will use the model derived in Case Study 1b to 
make new predictions about the effectiveness of antibiotics and compare these predic-
tions to data.
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Case study 2 Hosts, Parasites, and Time-Travel

By definition, a parasite has an antagonistic relationship with the host it 
infects. For this reason we might expect the host to evolve strategies that 
resist infection, and the parasite to evolve strategies that subvert this host resis-
tance. The end result might be a never-ending coevolutionary cycle between host and 
parasite, with neither party gaining the upper hand. Indeed, we might expect the ability 
of the parasite to infect the host to remain relatively unchanged over time despite the fact 
that both host and parasite are engaged in cycles of evolutionary conflict beneath this 
seemingly calm surface.

This is an intriguing idea, but how might it be examined scientifically? Ideally we 
would like to hold the parasite fixed in time and see if its ability to infect the host declines 
as the host evolves resistance. Alternatively, we might hold the host fixed in time and see 
if the parasite’s ability to infect the host increases as it evolves ways to subvert the host’s 
current defenses. 

Another possibility would be to challenge the host with parasites from its evolution-
ary past. In this case we might expect the host to have the upper hand, since it will have 
evolved resistance to these ancestral parasites. Similarly, if we could challenge the host 
with parasites from its evolutionary future, then we might expect the parasite to have the 
upper hand, since it will have evolved a means of subverting the current host defenses.

Exactly this sort of “time-travel” experiment has been done using a bacterium as 
the host and a parasite called a bacteriophage.1 To do so, researchers let the host and 
parasite coevolve together for several generations. During this time, they periodically 
took samples of both the host and the parasite and placed the samples in a freezer. After 
several generations they had a frozen archive of the entire temporal sequence of hosts 
and parasites. The power of their approach is that the host and parasite could then be 
resuscitated from this frozen state. This allowed the researchers to resuscitate hosts from 
one point in time in the sequence and then challenge them with resuscitated parasites 
from their past, present, and future.

The results of one such experiment are shown in Figure 1. The data show that hosts 
are indeed better able to resist parasites from their past, but are much more susceptible to 
infection by those from their future.

This is a compelling experiment but, by its very nature, it was conducted in a highly 
artificial setting. It would be interesting to somehow explore this idea in a natural host–
parasite system. Incredibly, researchers have done exactly that with a species of fresh-
water crustacean and its parasite.2

Daphnia are freshwater crustacea that live in many lakes. They are parasitized by 
many different microbes, including a species of bacteria called Pasteuria ramosa. These 
two organisms have presumably been coevolving in lakes for many years, and the ques-
tion is whether or not they too have been undergoing cycles of evolutionary conflict.

Occasionally, both the host and the parasite produce dormant offspring (called propa-
gules) that sink to the bottom of the lake. As a time passes, sediment containing these 
propagules accumulates at the bottom of the lake. Over many years this sediment builds 
up, providing a historical record of the host and parasite (see Figure 2). A sediment core 
can then be taken from the bottom of the lake, giving an archive of the temporal sequence 
of hosts and parasites over evolutionary time (see Figure 3). And again, as with the first 
experiment, these propagules can be resuscitated and infection experiments conducted.
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Figure 1
Horizontal axis is the time from which 
the parasite was taken, relative to the 
host’s point in time.

Figure 2
Sedimentation

1. A. Buckling et al. 2002. “Antagonistic Coevolution between a Bacterium and a Bacteriophage.” Proceedings 
of the Royal Society: Series B 269 (2002): 931–36.

2. E. Decaestecker et al. “Host-Parasite ‘Red Queen’ Dynamics Archived in Pond Sediment.” Nature 450 
(2007): 870–73.xlvi  
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The results of the second experiment are shown in Figure 4: The pattern is quite dif-
ferent from that in Figure 1, with hosts being able to resist parasites from their past and 
their future, more than those taken from a contemporary point in time.

How can we understand these different patterns? Is it possible that this Daphnia– 
parasite system is also undergoing the same dynamic as the bacteriophage system, but 
that the different pattern seen in this experiment is simply due to differences in con-
ditions? More generally, what pattern would we expect to see in the Daphnia experi-
ment under different conditions if such coevolutionary conflict is actually occurring? To 
answer these questions we need a more quantitative approach. This is where mathemati-
cal modeling comes into play. 

Models begin by simplifying reality (recall that a model is “a lie that makes us realize 
truth”). Thus, let’s begin by supposing that there are only two possible host genotypes 
(A and a) and two possible parasite genotypes (B and b). Suppose that parasites of type 
B can infect only hosts of type A, while parasites of type b can infect only hosts of type 
a. Although we know reality is likely more complicated than this, these simplifying 
assumptions capture the essential features of an antagonistic interaction between a host 
and its parasite.

Under these assumptions we might expect parasites of type B to flourish when hosts 
of type A are common. But this will then give an advantage to hosts of type a, since they 
are resistant to type B parasites. As a result, type a hosts will then increase in frequency. 
Eventually, however, this will favor the spread of type b parasites, which then sets the 
stage for the return of type A hosts. At this point we might expect the cycle to repeat.

In this case study you will construct and analyze a model of this process. As is com-
mon in modeling, the order in which different mathematical tools are used by scientists 
is not always the same as the order in which they are best learned. For example, when 
scientists worked on this question they first used techniques from Chapter 7 and then 
Chapter 10 to formulate the model. They then used techniques from Chapter 6 and then 
Chapter 2 to draw important biological conclusions.3 To fit with our learning objectives, 
however, this case study is developed the other way around. Following Chapter 2, in 
Case Study 2a, we will use given functions to draw biological conclusions about host–
parasite coevolution. Following Chapter 6, in Case Study 2b, we will then begin to fill in 
the gaps by deriving these functions from the output of a model. Following Chapter 7, in 
Case Study 2c, we will then formulate this model explicitly, and following Chapter 10, 
in Case Study 2d, we will derive the output of the model that is used in Case Study 2b.

Figure 3
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Figure 4
Horizontal axis is the time from which 
the parasite was taken, relative to  
the host’s point in time.
Source: Adapted from S. Gandon et al., “Host-

Parasite Coevolution and Patterns of Adaptation 

across Time and Space,” Journal of Evolutionary 

Biology 21 (2008): 1861–66.

3. S. Gandon et al., “Host–Parasite Coevolution and Patterns of Adaptation across Time and Space,” Journal of 
Evolutionary Biology 21 (2008): 1861–66.
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1.3  New Functions from Old Functions
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Project: the coding Function of DNA

1.6  Sequences and Difference Equations
Project: Drug resistance in Malaria

cASe StUDY 1a: Kill curves and Antibiotic effectiveness

Often a graph is the best way to 

represent a function because it 

conveys so much information at a 

glance. The electrocardiograms 

shown are graphs that exhibit 

electrical activity in various parts 

of the heart (See Figure 1 on 

page 2.) They enable a cardiolo-

gist to view the heart from differ-

ent angles and thereby diagnose 

possible problems.

© Vydrin / Shutterstock.com
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2  Chapter 1 | Functions and Sequences

The FundamenTal ObjecTS ThaT we deal with in calculus are functions. 

This chapter prepares the way for calculus by discussing the basic ideas concern-

ing functions, their graphs, and ways of transforming and combining them. We 

stress that a function can be represented in different ways: by an equation, in a table, 

by a graph, or in words. We look at the main types of functions that occur in calculus 

and describe the process of using these functions as mathematical models in biology.  

A special type of function, namely a sequence, is often used in modeling biological 

phenomena. In particular, we study recursive sequences, also called difference equa-

tions, because they are useful in describing cell division, insect populations, and other 

biological processes.

1.1 Four ways to Represent a Function

Functions arise whenever one quantity depends on another. Consider the following four 
situations.

A. The area A of a circle depends on the radius r of the circle. The rule that connects 
r and A is given by the equation A − �r 2. With each positive number r there is 
associated one value of A, and we say that A is a function of r.

B. The human population of the world P depends on the time t. Table 1 gives esti-
mates of the world population Pstd at time t, for certain years. For instance,

Ps1950d < 2,560,000,000

  But for each value of the time t there is a corresponding value of P, and we say that 
P is a function of t.

C. The cost C of mailing an envelope depends on its weight w. Although there is no 
simple formula that connects w and C, the post office has a rule for determining C 
when w is known.

D.  Figure 1 shows a graph called an electrocardiogram (ECG), or rhythm strip, one of 
12 produced by an electrocardiograph. It measures the electric potential V  (mea-
sured in millivolts) as a function of time in a certain direction (toward the positive 
electrode of a lead) corresponding to a particular part of the heart. For a given 
value of the time t, the graph provides a corresponding value of V .

t 
(seconds)

V

0
1

1

2 3 4

(millivolts)

Each of these examples describes a rule whereby, given a number (r, t, w, or t), another 
number (A, P, C, or V) is assigned. In each case we say that the second number is a func-
tion of the first number.

definition A function f  is a rule that assigns to each element x in a set D 
exactly one element, called f sxd, in a set E. 

table 1

Year
Population 
(millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080
2010 6870

Figure 1
Electrocardiogram

Source: Courtesy of Dr. Brian Gilbert

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 1.1 | Four Ways to Represent a Function  3

We usually consider functions for which the sets D and E are sets of real numbers. 
The set D is called the domain of the function. The number f sxd is the value of f at x 
and is read “ f  of x.” The range of f  is the set of all possible values of f sxd as x varies 
throughout the domain. A symbol that represents an arbitrary number in the domain of a 
function f  is called an independent variable. A symbol that represents a number in the 
range of f  is called a dependent variable. In Example A, for instance, r is the indepen-
dent variable and A is the dependent variable.

It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain of 
the function f, then when x enters the machine, it’s accepted as an input and the machine 
produces an output f sxd according to the rule of the function. Thus we can think of the 
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a 
machine. For example, the square root key on your calculator computes such a function. 
You press the key labeled s   (or sx ) and enter the input x. If x , 0, then x is not in the 
domain of this function; that is, x is not an acceptable input, and the calculator will indi-
cate an error. If x > 0, then an approximation to sx  will appear in the display. Thus the 
sx  key on your calculator is not quite the same as the exact mathematical function f  
defined by f sxd − sx .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow 
connects an element of D to an element of E. The arrow indicates that f sxd is associated 
with x, f sad is associated with a, and so on.

f
D E

ƒ

f(a)a

x

The most common method for visualizing a function is its graph. If f  is a function 
with domain D, then its graph is the set of ordered pairs

hsx, f sxdd | x [ Dj

(Notice that these are input-output pairs.) In other words, the graph of f  consists of all 
points sx, yd in the coordinate plane such that y − f sxd and x is in the domain of f .

The graph of a function f  gives us a useful picture of the behavior of a function. Since 
the y-coordinate of any point sx, yd on the graph is y − f sxd, we can read the value of 
f sxd from the graph as being the height of the graph above the point x (see Figure 4). 
The graph of f  also allows us to picture the domain of f  on the x-axis and its range on 
the y-axis as in Figure 5.

{x, ƒ}

ƒ

f(1)
f(2)

0 1 2 x x

y

     
0

y � ƒ(x)

domain

range

x

y

Figure 4      Figure 5

Figure 2
Machine diagram for a function f

x
(input)

ƒ
(output)

f

Figure 3
Arrow diagram for f
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4  Chapter 1 | Functions and Sequences

 example 1  | The graph of a function f  is shown in Figure 6.
(a) Find the values of f s1d and f s5d.
(b) What are the domain and range of f ?

Solution
(a) We see from Figure 6 that the point s1, 3d lies on the graph of f , so the value of f   
at 1 is f s1d − 3. (In other words, the point on the graph that lies above x − 1 is 3 units 
above the x-axis.)

When x − 5, the graph lies about 0.7 units below the x-axis, so we estimate that 
f s5d < 20.7.

(b) We see that f sxd is defined when 0 < x < 7, so the domain of f  is the closed inter-
val f0, 7g. Notice that f  takes on all values from 22 to 4, so the range of f  is

 hy | 22 < y < 4j − f22, 4g ■

 example 2  | Sketch the graph and find the domain and range of each function.
(a) fsxd − 2x 2 1 (b) tsxd − x 2

Solution
(a) The equation of the graph is y − 2x 2 1, and we recognize this as being the equa-
tion of a line with slope 2 and y-intercept 21. (Recall the slope-intercept form of the 
equation of a line: y − mx 1 b. See Appendix B.) This enables us to sketch a portion 
of the graph of f  in Figure 7. The expression 2x 2 1 is defined for all real numbers, so 
the domain of f  is the set of all real numbers, which we denote by R. The graph shows 
that the range is also R.

x

y=2x-1

0
-1

y

1
2

Figure 7
      

(_1, 1)

(2, 4)

0

y

1

x1

y=≈

Figure 8

(b) Since ts2d − 22 − 4 and ts21d − s21d2 − 1, we could plot the points s2, 4d and 
s21, 1d, together with a few other points on the graph, and join them to produce the 
graph (Figure 8). The equation of the graph is y − x 2, which represents a parabola (see 
Appendix B). The domain of t is R. The range of t consists of all values of tsxd, that is, 
all numbers of the form x 2. But x 2 > 0 for all numbers x and any positive number y is a 
square. So the range of t is hy | y > 0j − f0, `d. This can also be seen from Figure 8. ■

 example 3  | Antihypertension medication Figure 9 shows the effect of 
nifedipine tablets (antihypertension medication) on the heart rate Hstd of a patient as a 
function of time.
(a) Estimate the heart rate after two hours.
(b) During what time period is the heart rate less than 65 beatsymin?

x

y

0

1

1

Figure 6

The notation for intervals is given in  
Appendix A.
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Section 1.1 | Four Ways to Represent a Function  5

Solution
(a) If Hstd is the rate at time t, we estimate from the graph in Figure 9 that

Hs2d < 62.5 beatsymin

(b) Notice that the curve lies below the line H − 65 for 1 < t < 5. In other words,  
the heart rate is less than 65 beatsymin from 1 hour to 5 hours after the tablet is  
administered. ■

 ExamplE 4  | If f sxd − 2x 2 2 5x 1 1 and h ± 0, evaluate 
f sa 1 hd 2 f sad

h
.

Solution We first evaluate f sa 1 hd by replacing x by a 1 h in the expression  
for f sxd:

f sa 1 hd − 2sa 1 hd2 2 5sa 1 hd 1 1

  − 2sa2 1 2ah 1 h2d 2 5sa 1 hd 1 1

  − 2a2 1 4ah 1 2h2 2 5a 2 5h 1 1

 Then we substitute into the given expression and simplify:

f sa 1 hd 2 f sad
h

−
s2a2 1 4ah 1 2h2 2 5a 2 5h 1 1d 2 s2a2 2 5a 1 1d

h

  −
2a2 1 4ah 1 2h2 2 5a 2 5h 1 1 2 2a2 1 5a 2 1

h

−
4ah 1 2h2 2 5h

h
− 4a 1 2h 2 5

■

■ Representations of Functions
There are four possible ways to represent a function:

■ verbally (by a description in words)

■ numerically (by a table of values)

■ visually (by a graph)

■ algebraically (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from 
one representation to another to gain additional insight into the function. (In Example 
2, for instance, we started with algebraic formulas and then obtained the graphs.) But 
certain functions are described more naturally by one method than by another. With this 
in mind, let’s reexamine the four situations that we considered at the beginning of this 
section.

A. The most useful representation of the area of a circle as a function of its radius is 
probably the algebraic formula Asrd − �r 2, though it is possible to compile a table 
of values or to sketch a graph (half a parabola). Because a circle has to have a posi-
tive radius, the domain is hr | r . 0j − s0, `d, and the range is also s0, `d.

The expression

f sa 1 hd 2 f sad
h

in Example 4 is called a difference 
quotient and occurs frequently in 
calculus. As we will see in Chapter 2, it 
represents the average rate of change of 
f sxd between x − a and x − a 1 h.
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FigurE 9
Source: Adapted from M. Brown et al., “Formula-

tion of Long-Acting Nifedipine Tablets Influences 

the Heart Rate and Sympathetic Nervous System 

Response in Hypertensive Patients,” British Jour-

nal of Clinical Pharmacology 65 (2008): 646–52.
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6  Chapter 1 | Functions and Sequences

B. We are given a description of the function in words: Pstd is the human population 
of the world at time t. Let’s measure t so that t − 0 corresponds to the year 1900. 
The table of values of world population provides a convenient representation of 
this function. If we plot these values, we get the graph (called a scatter plot) in 
Figure 10. It too is a useful representation; the graph allows us to absorb all the 
data at once. What about a formula? Of course, it’s impossible to devise an explicit 
formula that gives the exact human population Pstd at any time t. But it is possible 
to find an expression for a function that approximates Pstd. In fact, using methods 
explained in Section 1.2, we obtain the approximation

Pstd < f std − s1.43653 3 109d ∙ s1.01395dt

 Figure 11 shows that it is a reasonably good “fit.” The function f  is called a mathe-
matical model for population growth. In other words, it is a function with an 
explicit formula that approximates the behavior of our given function. We will see, 
however, that the ideas of calculus can be applied to a table of values; an explicit 
formula is not necessary.

  The function P is typical of the functions that arise whenever we attempt to apply 
calculus to the real world. We start with a verbal description of a function. Then 
we might be able to construct a table of values of the function, perhaps from 
instrument readings in a scientific experiment. Even though we don’t have com-
plete knowledge of the values of the function, we will see throughout the book that 
it is still possible to perform the operations of calculus on such a function.

C. Again the function is described in words: Let Cswd be the cost of mailing a large 
envelope with weight w. The rule that the US Postal Service used as of 2014 is as 
follows: The cost is 92 cents for up to 1 oz, plus 20 cents for each additional ounce 
(or less) up to 13 oz. The table of values shown in the margin is the most conve-
nient representation for this function, though it is possible to sketch a graph (see 
Example 11).

D. The graph shown in Figure 1 is the most natural representation of the voltage 
function Vstd that reflects the electrical activity of the heart. It’s true that a table of 
values could be compiled, and it is even possible to devise an approximate formula. 
But everything a doctor needs to know—amplitudes and patterns—can be seen 
easily from the graph. (The same is true for the patterns seen in polygraphs for 
lie-detection and seismographs for analysis of earthquakes.) The waves represent 

5x10'

20 40 60 80 100 120

P

t0

Years since 1900

Figure 11

5x10'

P

t20 40 60 80 100 1200

Years since 1900

Figure 10

A function defined by a table of values 
is called a tabular function.

 w (ounces) Cswd (dollars)

 0 , w < 1 0.92
 1 , w < 2 1.12
 2 , w < 3 1.32
 3 , w < 4 1.52
 4 , w < 5 1.72
 ∙ ∙
 ∙ ∙

 
∙ ∙

t 
(years since 1990)

Population 
(millions)

 0 1650
 10 1750
 20 1860
 30 2070
 40 2300
 50 2560
 60 3040
 70 3710
 80 4450
 90 5280

100 6080
110 6870
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SeCtion 1.1 | Four Ways to Represent a Function  7

the depolarization and repolarization of the atria and ventricles of the heart. They 
enable a cardiologist to see whether the patient has irregular heart rhythms and 
help diagnose different types of heart disease.

In the next example we sketch the graph of a function that is defined verbally.

 example 5  | When you turn on a hot-water faucet, the temperature T  of the water  
depends on how long the water has been running. Draw a rough graph of T  as a func-
tion of the time t that has elapsed since the faucet was turned on.

Solution The initial temperature of the running water is close to room temperature 
because the water has been sitting in the pipes. When the water from the hot-water tank 
starts flowing from the faucet, T  increases quickly. In the next phase, T  is constant at 
the tempera ture of the heated water in the tank. When the tank is drained, T  decreases  
to the temperature of the water supply. This enables us to make the rough sketch of T  
as a function of t in Figure 12. ■

 example 6  | BB  Bone mass A human femur (thighbone) is essentially a 
hollow tube filled with yellow marrow (see Figure 13). If the outer radius is r and the 
inner radius is r in, an important quantity characterizing such bones is 

k −
r in

r

The density of bone is approximately 1.8 gycm3 and that of marrow is about 1 gycm3. 
For a femur with length L, express its mass as a function of k.

Solution The mass of the tubular bone is obtained by subtracting the mass of the 
inner tube from the mass of the outer tube:

1.8�r 2L 2 1.8�r 2
inL − 1.8�r 2L 2 1.8�srkd2L

 Similarly, the mass of the marrow is

1 3 s�r 2
inLd − �srkd2L

So the total mass as a function of k is

mskd − 1.8�r 2L 2 1.8�srkd2L 1 �srkd2L

 − �r 2Ls1.8 2 0.8k 2d
 

■

 example 7  | Find the domain of each function.

(a) f sxd − sx 1 2  (b) tsxd −
1

x 2 2 x

Solution 
(a) Because the square root of a negative number is not defined (as a real number),  
the domain of f  consists of all values of x such that x 1 2 > 0. This is equivalent to 
x > 22, so the domain is the interval f22, `d.
(b) Since

tsxd −
1

x 2 2 x
−

1

xsx 2 1d

and division by 0 is not allowed, we see that tsxd is not defined when x − 0 or x − 1. 

Figure 12

t

T

0

nutrient canal

compact
bone tissue

spongy
bone
tissue

location of
yellow marrow

Figure 13
Structure of a human femur
Source: From Starr. Biology, 8E © 2011 Brooks/

Cole, a part of Cengage Learning, Inc. Reproduced 

by permission. www.cengage.com/permissions

domain convention
If a function is given by a formula and 
the domain is not stated explicitly, the 
convention is that the domain is the set 
of all numbers for which the formula 
makes sense and defines a real number.
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8  Chapter 1 | Functions and Sequences

Thus the domain of t is

hx | x ± 0, x ± 1j

which could also be written in interval notation as

s2`, 0d ø s0, 1d ø s1, `d
 

■

The graph of a function is a curve in the xy-plane. But the question arises: Which 
curves in the xy-plane are graphs of functions? This is answered by the following test.

The Vertical Line Test A curve in the xy-plane is the graph of a function of x 
if and only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 14. If each 
vertical line x − a intersects a curve only once, at sa, bd, then exactly one function value 
is defined by f sad − b. But if a line x − a intersects the curve twice, at sa, bd and sa, cd,  
then the curve can’t represent a function because a function can’t assign two different 
values to a.

a

x=a

(a, b)

0 a

(a, c)

(a, b)

x=a

0 x

y

x

y

For example, the parabola x − y 2 2 2 shown in Figure 15(a) is not the graph of a func-
tion of x because, as you can see, there are vertical lines that intersect the parabola twice. 
The parabola, however, does contain the graphs of two functions of x. Notice that the equa-
tion x − y 2 2 2 implies y 2 − x 1 2, so y − 6sx 1 2 . Thus the upper and lower halves 
of the parabola are the graphs of the functions f sxd − sx 1 2  [from Example 7(a)] and 
tsxd − 2sx 1 2 . [See Figures 15(b) and (c).] We observe that if we reverse the roles of x 
and y, then the equation x − hsyd − y 2 2 2 does define x as a function of y (with y as the 
independent variable and x as the dependent variable) and the parabola now appears as  
the graph of the function h.

(b) y=œ„„„„x+2

_2 0 x

y

(_2, 0)

(a) x=¥-2

0 x

y

(c) y=_œ„„„„x+2

_2
0

y

x

■ Piecewise Defined Functions
The functions in the following four examples are defined by different formulas in dif ferent 
parts of their domains. Such functions are called piecewise defined functions.

Figure 14

Figure 15
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Section 1.1 | Four Ways to Represent a Function  9

 ExamplE 8  | A function f  is defined by

f sxd − H1 2 x

x 2

if  x < 21

if  x . 21

Evaluate f s22d, f s21d, and f s0d and sketch the graph.

Solution Remember that a function is a rule. For this particular function the rule is 
the following: First look at the value of the input x. If it happens that x < 21, then the 
value of f sxd is 1 2 x. On the other hand, if x . 21, then the value of f sxd is x 2.

Since 22 < 21, we have f s22d − 1 2 s22d − 3.

 Since 21 < 21, we have f s21d − 1 2 s21d − 2.

 Since 0 . 21, we have f s0d − 02 − 0.

How do we draw the graph of f ? We observe that if x < 21, then f sxd − 1 2 x, so  
the part of the graph of f  that lies to the left of the vertical line x − 21 must coincide 
with the line y − 1 2 x, which has slope 21 and y-intercept 1. If x . 21, then 
f sxd − x 2, so the part of the graph of f  that lies to the right of the line x − 21 must 
coincide with the graph of y − x 2, which is a parabola. This enables us to sketch the 
graph in Figure 16. The solid dot indicates that the point s21, 2d is included on the 
graph; the open dot indicates that the point s21, 1d is excluded from the graph. ■

The next example of a piecewise defined function is the absolute value function. 
Recall that the absolute value of a number a, denoted by | a |, is the distance from a to 0 
on the real number line. Distances are always positive or 0, so we have

| a | > 0    for every number a

For example,

| 3 | − 3   | 23 | − 3   | 0 | − 0   | s2 2 1 | − s2 2 1   | 3 2 � | − � 2 3

In general, we have

 | a | − a if  a > 0

 | a | − 2a if  a , 0

(Remember that if a is negative, then 2a is positive.)

 ExamplE 9  | Sketch the graph of the absolute value function f sxd − | x |.
Solution From the preceding discussion we know that

| x | − Hx

2x

if  x > 0

if  x , 0

Using the same method as in Example 8, we see that the graph of f  coincides with the 
line y − x to the right of the y-axis and coincides with the line y − 2x to the left of 
the y-axis (see Figure 17). ■

2

y

_1

1

x

FigurE 16

For a more extensive review of absolute 
values, see Appendix A.

x

y=| x |

0

y

FigurE 17
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10  Chapter 1 | Functions and Sequences

 ExamplE 10  | BB  Metabolic power in walking and running Suppose 
you are walking slowly but then increase your pace and start running more and more 
quickly to catch a bus. When you start running, your gait (manner of movement) 
changes. Figure 18 shows a graph of metabolic power consumed by men walking 
and running (calculated from measurements of oxygen consumption) as a function of 
speed. Notice that it is a piecewise defined function and the second piece starts when 
you begin to run.

0 4 521 3

500

1000

1500

Running

Walking

Po
w

er
 (

W
)

Speed (m/s) ■

 ExamplE 11  | In Example C at the beginning of this section we considered the cost 
Cswd of mailing a large envelope with weight w. In effect, this is a piecewise defined 
function because, from the table of values on page 6, we have

Cswd −

 
0.92

1.12

1.32

1.52

if  0 , w < 1

if  1 , w < 2

if  2 , w < 3

if  3 , w < 4
 ∙
 

∙

 
∙

The graph is shown in Figure 19. You can see why functions similar to this one are 
called step functions—they jump from one value to the next. Such functions will be 
studied in Chapter 2. ■

■ Symmetry
If a function f  satisfies f s2xd − f sxd for every number x in its domain, then f  is called 
an even function. For instance, the function f sxd − x 2 is even because

f s2xd − s2xd2 − x 2 − f sxd

The geometric significance of an even function is that its graph is symmetric with respect 
to the y-axis (see Figure 20). This means that if we have plotted the graph of f  for x > 0, 
we obtain the entire graph simply by reflecting this portion about the y-axis.

0 x_x

f(_x) ƒ

An even function 

x

y

C

0.50

1.00

1.50

0 1 2 3 54 w

FigurE 19

FigurE 20
An even function

FigurE 18
Metabolic power is a piecewise defined 

function of speed
Source: Adapted from R. Alexander,  

Optima for Animals, 2nd ed. (Princeton, NJ:  

Princeton University Press, 1996), 53.
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Section 1.1 | Four Ways to Represent a Function  11

If f  satisfies f s2xd − 2f sxd for every number x in its domain, then f  is called an odd 
function. For example, the function f sxd − x 3 is odd because

f s2xd − s2xd3 − 2x 3 − 2f sxd

The graph of an odd function is symmetric about the origin (see Figure 21). If we already 
have the graph of f  for x > 0, we can obtain the entire graph by rotating this portion 
through 1808 about the origin.

 ExamplE 12  | Determine whether each of the following functions is even, odd, or  
neither even nor odd.
(a) f sxd − x 5 1 x (b) tsxd − 1 2 x 4 (c) hsxd − 2x 2 x 2

Solution
(a) f s2xd − s2xd5 1 s2xd − s21d5x 5 1 s2xd

  − 2x 5 2 x − 2sx 5 1 xd

  − 2f sxd

Therefore f  is an odd function.

(b) ts2xd − 1 2 s2xd4 − 1 2 x 4 − tsxd

So t is even.

(c) hs2xd − 2s2xd 2 s2xd2 − 22x 2 x 2

Since hs2xd ± hsxd and hs2xd ± 2hsxd, we conclude that h is neither even nor odd. ■

The graphs of the functions in Example 12 are shown in Figure 22. Notice that the 
graph of h is symmetric neither about the y-axis nor about the origin.

(a) Odd function (b) Even function (c) Neither even nor odd 

1

1

y

x

g 1

1 x

y

h1

_1

1

y

x

f

_1

■ Periodic Functions
Many phenomena in the life sciences display a recurring type of behavior: from breath-
ing, to the beating of the heart, to the cycling of female reproductive hormones, to sea-
sonal migration of butterflies. Such phenomena are referred to as periodic. To describe 
such processes mathematically we need functions that display this behavior.

Definition A function f  is called periodic if there is a positive constant T  such 
that f sx 1 Td − f sxd for all values of x in the domain of f . The smallest value of 
T  for which this is true is called the period of f.

FigurE 22

0
x

_x ƒ
x

y

FigurE 21
An odd function
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12  Chapter 1 | Functions and Sequences

The electrocardiogram shown in Figure 1 on page 2 is an example of an approxi-
mately periodic function. The period of the function V  appears to be about 0.9 seconds: 
Vst 1 0.9d < Vstd. The trigonometric functions are also periodic and are discussed in 
the next section.

 example 13  |  BB  Malarial fever Figure 23 shows a typical temperature 
chart for a fever in humans induced by a species of malaria called P. vivax. Notice that 
the temperature approximately satisfies

Tst 1 48d − Tstd

so the temperature function has a period of about 48 hours.

48 9672240

38

37

39

40

t (hours)

T (°C)

 ■

■ Increasing and decreasing Functions
The graph shown in Figure 24 rises from A to B, falls from B to C, and rises again from C 
to D. The function f  is said to be increasing on the interval fa, bg, decreasing on fb, cg, and 
increasing again on fc, dg. Notice that if x1 and x2 are any two numbers between a and b  
with x1 , x2, then f sx1 d , f sx2 d. We use this as the defining property of an increasing  
function.

definition A function f  is called increasing on an interval I if

f sx1 d , f sx2 d    whenever x1 , x2 in I

It is called decreasing on I if

f sx1 d . f sx2 d    whenever x1 , x2 in I

In the definition of an increasing function it is important to realize that the inequality 
f sx1 d , f sx2 d must be satisfied for every pair of numbers x1 and x2 in I with x1 , x2.

You can see from Figure 25 that the function f sxd − x 2 is decreasing on the interval 
s2`, 0g and increasing on the interval f0, `d.

Figure 23
Temperature chart for  

P. vivax infection 
Source: Adapted from L. Bruce-Chwatt,  

Essential Malariology (New York: Wiley, 1985).
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D

y=ƒ

f(x¡)
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y

0 xx¡ x™ b c d

f(x™)

Figure 24

0

y

x

y=≈

Figure 25
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SeCtion 1.1 | Four Ways to Represent a Function  13

 7. y

x0

1

1

 8. y

x0 1

1

 9.  Global temperature Shown is a graph of the global 
average temperature T during the 20th century.

  (a) What was the global average temperature in 1950?
  (b) In what year was the average temperature 14.28?
  (c) When was the temperature smallest? Largest?
  (d) Estimate the range of T.

  
t

T (•C)

1900 1950 2000

13

14

Source: Adapted from Globe and Mail [Toronto] 5 Dec. 2009. Print.

 10.  tree ring width� Trees grow faster and form wider rings 
in warm years and grow more slowly and form narrower 
rings in cooler years. The figure shows ring widths of a 
Siberian pine from 1500 to 2000.

  (a) What is the range of the ring width function?
  (b)  What does the graph tend to say about the temperature 

of the earth? Does the graph reflect the volcanic erup-
tions of the mid-19th century?

  

R
in

g 
w

id
th

 (
m

m
)

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
1500 1600 1700 1800 1900

Year

2000 t

R

  Source: Adapted from G. Jacoby et al., “Mongolian Tree Rings and 

20th-Century Warming,” Science 273 (1996): 771–73.

 1.  If f sxd − x 1 s2 2 x  and tsud − u 1 s2 2 u , is it true  
that f − t?

 2.  If

f sxd −
x 2 2 x

x 2 1
    and    tsxd − x

   is it true that f − t?

 3.  The graph of a function f  is given.
  (a) State the value of f s1d.
  (b) Estimate the value of f s21d.
  (c) For what values of x is f sxd − 1?
  (d) Estimate the value of x such that f sxd − 0.
  (e) State the domain and range of f .
  (f) On what interval is f  increasing?

y

0 x1

1

 4.  The graphs of f  and t are given.
  (a) State the values of f s24d and ts3d.
  (b) For what values of x is f sxd − tsxd?
  (c) Estimate the solution of the equation f sxd − 21.
  (d) On what interval is f  decreasing?
  (e) State the domain and range of f.
  (f) State the domain and range of t.

g

x

y

0

f
2

2

  5–8 Determine whether the curve is the graph of a function  
of x. If it is, state the domain and range of the function.

 5. y

x0 1

1

 6. y

x0 1

1

eXercISeS 1.1
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14  Chapter 1 | Functions and Sequences

  (b)  If you found about 100 ant species at a certain location, 
at roughly what latitude would you be?

  (c)  What symmetry property does this function possess?

  

200

100

90°N 60 30 0 30 60°S
0

Latitude
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 s
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  Source: Adapted from P. Russell et al., Biology: The Dynamic Science 

(Belmont, CA: Cengage Learning, 2011), 1190.

 14.  In this section we discussed examples of ordinary, every-
day functions: Population is a function of time, postage 
cost is a function of weight, water temperature is a function 
of time. Give three other examples of functions from 
everyday life that are described verbally. What can you say 
about the domain and range of each of your functions? If 
possible, sketch a rough graph of each function.

 15.  The graph shown gives the weight of a certain person as 
a function of age. Describe in words how this person’s 
weight varies over time. What do you think happened when 
this person was 30 years old?

  
Age

(years)

Weight
(pounds)

0

150

100

50

10

200

20 30 40 50 60 70

 16.  Ground reaction force in walking� The graph shows the 
horizontal force exerted by the ground on a person during 
walking. Positive values are forces in the forward direction 
and negative values are forces in the backward direction. 
Give an explanation for the shape of the graph of the force 
function, including the points where it crosses the axis.

  

0 t

Horizontal
ground

reaction
force (seconds)

(kN)

 11.  esophag�eal ph A healthy esophagus has a pH of about 
7.0. When acid reflux occurs, stomach acid (which has pH 
ranging from 1.0 to 3.0) flows backward from the stomach 
into the esophagus. When the pH of the esophagus is less 
than 4.0, the episode is called “clinical acid reflux” and can 
cause ulcers and damage the lining of the esophagus. The 
graph shows esophageal pH for a sleeping patient with acid 
reflux. During what time interval is the patient considered 
to have an episode of clinical acid reflux?

  

8
7
6
5
4
3
2
1

 AM

Time

AM AM AM

pH

Asleep

0
12:10 12:40 1:10 1:40

  Source: Adapted from T. Demeester et al., “Patterns of Gastroesophageal 

Reflux in Health and Disease,” Annals of Surgery 184 (1976): 459–70.

 12.  tadpole weig�hts The figure shows the average body 
weights of tadpoles raised in different densities. The 
function f  shows body weights when the density is 
10 tadpolesyL. For functions t and h the densities are 80 
and 160 tadpolesyL, respectively. What do these graphs tell 
you about the effect of crowding?

  

1.0

0.8

0.6
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0.2
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f g h

  Source: Adapted from P. Russell et al., Biology: The Dynamic Science 

(Belmont, CA: Cengage Learning, 2011), 1156.

 13.  Species richness Tropical regions receive more rainfall 
and intense sunlight and have longer growing seasons than 
regions farther from the equator. As a result, they enjoy 
greater species richness, that is, greater numbers of species. 
The graph shows how species richness varies with latitude 
for ants.

  (a)  How many species would you expect to find at 308S? 
At 208N?
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SeCtion 1.1 | Four Ways to Represent a Function  15

  (a)  Use the data to sketch a rough graph of the bird count as 
a function of time.

  (b)  Use your graph to estimate the count in 1997.

 26.  Blood alcohol concentration Researchers measured the 
blood alcohol concentration (BAC) of eight adult male sub-
jects after rapid consumption of 30 mL of ethanol (corre-
sponding to two standard alcoholic drinks). The table shows 
the data they obtained by averaging the BAC (in mgymL) of 
the eight men.

t (hours) 0.0 0.2 0.5 0.75 1.0 1.25 1.5

BAC 0 0.25 0.41 0.40 0.33 0.29 0.24

t (hours) 1.75 2.0 2.25 2.5 3.0 3.5 4.0

BAC 0.22 0.18 0.15 0.12 0.07 0.03 0.01

  (a)  Use the readings to sketch the graph of the BAC as a 
function of t.

  (b)  Use your graph to describe how the concentration of 
alcohol varies with time.

Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 

Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 

Biopharmaceutics 5 (1977): 207–24.

 27.  If f sxd − 3x 2 2 x 1 2, find f s2d,   f s22d,   f sad,   f s2ad, 
f sa 1 1d, 2 f sad,   f s2ad,   f sa2d, [ f sad]2, and   f sa 1 hd.

 28.  A spherical balloon with radius r inches has volume 
Vsrd − 4

3 �r 3. Find a function that represents the amount of 
air required to inflate the balloon from a radius of r inches 
to a radius of r 1 1 inches.

  29–32 Evaluate the difference quotient for the given function.  
Simplify your answer.

 29. f sxd − 4 1 3x 2 x 2,    
f s3 1 hd 2 f s3d

h

 30.  f sxd − x 3,    
f sa 1 hd 2 f sad

h

 31.  f sxd −
1

x
,    

f sxd 2 f sad
x 2 a

 32.  f sxd −
x 1 3

x 1 1
,    

f sxd 2 f s1d
x 2 1

  33–39 Find the domain of the function.

 33. f sxd −
x 1 4

x 2 2 9
 34. f sxd −

2x 3 2 5

x 2 1 x 2 6

 35. f std − s3 2t 2 1  36. tstd − s3 2 t 2 s2 1 t 

 37. hsxd −
1

s4 x 2 2 5x 
 38. f sud −

u 1 1

1 1
1

u 1 1

 39. Fspd − s2 2 sp  

 17.  You put some ice cubes in a glass, fill the glass with cold 
water, and then let the glass sit on a table. Describe how 
the temperature of the water changes as time passes. Then 
sketch a rough graph of the temperature of the water as a 
function of the elapsed time.

 18.  Three runners compete in a 100-meter race. The graph 
depicts the distance run as a function of time for each run-
ner. Describe in words what the graph tells you about this 
race. Who won the race? Did each runner finish the race?

  
0

y (m)

100

Time (seconds)20

A B C

D
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e 
(m
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er
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 19.  Bacteria count Shown is a typical graph of the number  
N of bacteria grown in a batch culture as a function of time 
t. Describe what you think is happening during each of the 
four phases.

  

N

t0

 20.  Sketch a rough graph of the number of hours of daylight as 
a function of the time of year.

 21.    Sketch a rough graph of the outdoor temperature as a func-
tion of time during a typical spring day.

 22.  You place a frozen pie in an oven and bake it for an hour. 
Then you take it out and let it cool before eating it. Describe 
how the temperature of the pie changes as time passes. Then 
sketch a rough graph of the temperature of the pie as a func-
tion of time.

 23.  Sketch the graph of the amount of a particular brand of cof-
fee sold by a store as a function of the price of the coffee.

 24.  Sketch a rough graph of the market value of a new car as a 
function of time for a period of 20 years. Assume the car is 
well maintained.

 25.  Bird count The table shows the number of house finches, 
in thousands, observed in the Christmas bird count in  
California.

Year 1980 1985 1990 1995 2000 2005 2010

Count 74 92 88 107 70 61 78
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16  Chapter 1 | Functions and Sequences

 60.  The function in Example 11 is called a step function 
because its graph looks like stairs. Give two other examples 
of step functions that arise in everyday life.

 61.  temperature chart The figure shows the temperature 
of a patient infected with the malaria species P. malariae. 
Estimate the period of the temperature function.

t
(hours)

T

96240 48 72

37

38

39

40

(°C)

Source: Adapted from L. Bruce-Chwatt, Essential Malariology (New York: 

Wiley, 1985).

 62.  Malarial fever A temperature chart is shown for a patient 
with a fever induced by the malaria species P. falciparum. 
What do you think is happening?

24 48 72 96 120 144 168 192 216 240 264 t
(hours)

T

37

38

39

40

41
(°C)

Source: Adapted from L. Bruce-Chwatt, Essential Malariology (New York: 

Wiley, 1985).

  63–64 Graphs of f  and t are shown. Decide whether each func-
tion is even, odd, or neither. Explain your reasoning.

 63. y

x

f

g
 64. y

x

f

g

 40.  Find the domain and range and sketch the graph of the  
function hsxd − s4 2 x 2 .

  41–52 Find the domain and sketch the graph of the function.

 41. f sxd − 2 2 0.4x 42. F sxd − x 2 2 2x 1 1

 43. f std − 2t 1 t 2  44. Hstd −
4 2 t 2

2 2 t

 45. tsxd − sx 2 5  46. Fsxd − | 2x 1 1 |

 47.   Gsxd −
3x 1 | x |

x
 48. tsxd − | x | 2 x

 49. f sxd − Hx 1 2

1 2 x

if  x , 0

if  x > 0

 50. f sxd − H3 2 1
2 x

2x 2 5

if  x < 2

if  x . 2

 51. f sxd − Hx 1 2

x 2

if  x < 21

if  x . 21

 52. f sxd − Hx 1 9

22x

26

if x , 23

if | x | < 3

if x . 3

  53–57 Find a formula for the described function and state its 
domain.

 53.  A rectangle has perimeter 20 m. Express the area of the 
rect angle as a function of the length of one of its sides.

 54.  A rectangle has area 16 m2. Express the perimeter of the 
rect angle as a function of the length of one of its sides.

 55.  Express the area of an equilateral triangle as a function of 
the length of a side.

 56.  Express the surface area of a cube as a function of its  
volume.

 57.  An open rectangular box with volume 2 m3 has a square 
base. Express the surface area of the box as a function of the 
length of a side of the base.

 58.  A cell phone plan has a basic charge of $35 a month. The 
plan includes 400 free minutes and charges 10 cents for 
each additional minute of usage. Write the monthly cost C 
as a function of the number x of minutes used and graph C 
as a function of x for 0 < x < 600.

 59.  A hotel chain charges $75 each night for the first two nights 
and $50 for each additional night’s stay. Express the total 
cost T as a function of the number of nights x that a guest 
stays.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SeCtion 1.2 | A Catalog of Essential Functions  17

  67–72 Determine whether f  is even, odd, or neither. If you 
have a graphing calculator, use it to check your answer  
visually.

 67. f sxd −
x

x 2 1 1
 68. f sxd −

x 2

x 4 1 1

 69. f sxd −
x

x 1 1
 70. f sxd − x | x |

 71. f sxd − 1 1 3x 2 2 x 4 72. f sxd − 1 1 3x 3 2 x 5

 73.  If f  and t are both even functions, is f 1 t even? If  f  and 
t are both odd functions, is f 1 t odd? What if f  is even 
and t is odd? Justify your answers.

 74.  If f  and t are both even functions, is the product ft even? 
If f  and t are both odd functions, is ft odd? What if f  is 
even and t is odd? Justify your answers.

 65. (a)  If the point s5, 3d is on the graph of an even function, 
what other point must also be on the graph?

  (b)  If the point s5, 3d is on the graph of an odd function, 
what other point must also be on the graph?

 66.  A function f  has domain f25, 5g and a portion of its graph 
is shown.

  (a) Complete the graph of f  if it is known that f  is even.
  (b) Complete the graph of f  if it is known that f  is odd.

  

x0

y

5_5

1.2 A Catalog of Essential Functions

In Case Studies in Mathematical Modeling (page xli), we discussed the idea of a math-
ematical model and the process of mathematical modeling. There are many different 
types of functions that can be used to model relationships observed in the real world. In 
this section we discuss the behavior and graphs of these functions and give examples of 
situations appropriately modeled by such functions.

■ Linear Models
When we say that y is a linear function of x, we mean that the graph of the function is 
a line, so we can use the slope-intercept form of the equation of a line to write a formula 
for the function as

y − f sxd − mx 1 b

where m is the slope of the line and b is the y-intercept.
A characteristic feature of linear functions is that they grow at a constant rate. For 

instance, Figure 1 shows a graph of the linear function f sxd − 3x 2 2 and a table of 
sample values. Notice that whenever x increases by 0.1, the value of f sxd increases by 
0.3. So f sxd increases three times as fast as x. Thus the slope of the graph y − 3x 2 2, 
namely 3, can be interpreted as the rate of change of y with respect to x.

x f sxd − 3x 2 2

1.0  1.0

1.1  1.3

1.2  1.6

1.3  1.9

1.4  2.2

1.5  2.5

The coordinate geometry of lines is 
reviewed in Appendix B.

x

y

0

y=3x-2

_2

1

Figure 1
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18  Chapter 1 | Functions and Sequences

A special case of a linear function occurs when we talk about direct variation. If the 
quantities x and y are related by an equation y − kx for some constant k ± 0, we say that 
y varies directly as x, or y is proportional to x. The constant k is called the constant 
of proportionality. Equivalently, we can write f sxd − kx, where f  is a linear function 
whose graph has slope k and y-intercept 0.

 example 1 
(a) As dry air moves upward, it expands and cools. If the ground temperature is 20°C 
and the temperature at a height of 1 km is 10°C, express the temperature T (in °C) as a 
function of the height h (in kilometers), assuming that a linear model is appropriate.
(b) Draw the graph of the function in part (a). What does the slope represent?
(c) What is the temperature at a height of 2.5 km?

Solution 
(a) Because we are assuming that T  is a linear function of h, we can write

T − mh 1 b

We are given that T − 20 when h − 0, so

20 − m ? 0 1 b − b

In other words, the y-intercept is b − 20.
We are also given that T − 10 when h − 1, so

10 − m ? 1 1 20

  The slope of the line is therefore m − 10 2 20 − 210 and the required linear function 
is

T − 210h 1 20

(b) The graph is sketched in Figure 2. The slope is m − 210°Cykm, and this repre-
sents the rate of change of temperature with respect to height.

(c) At a height of h − 2.5 km, the temperature is

T − 210s2.5d 1 20 − 258C ■

If there is no physical law or principle to help us formulate a model, we construct an 
empirical model, which is based entirely on collected data. We seek a curve that “fits” 
the data in the sense that it captures the basic trend of the data points.

 example 2  | BB  Carbon dioxide in the atmosphere Table 1 lists the 
average carbon dioxide level in the atmosphere, measured in parts per million at Mauna 
Loa Observatory from 1980 to 2012. Use the data in Table 1 to find a model for the 
carbon dioxide level.

Solution We use the data in Table 1 to make the scatter plot in Figure 3, where t 
represents time (in years) and C represents the CO2 level (in parts per million, ppm).

T=_10h+20

T

h0

10

20

1 3

Figure 2
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C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010

Figure 3 Scatter plot for the average CO2 level

Notice that the data points appear to lie close to a straight line, so it’s natural to 
choose a linear model in this case. But there are many possible lines that approximate 
these data points, so which one should we use? One possibility is the line that passes 
through the first and last data points. The slope of this line is

393.8 2 338.7

2012 2 1980
−

55.1

32
− 1.721875 < 1.722

We write its equation as

C 2 338.7 − 1.722st 2 1980d
or

(1) C − 1.722t 2 3070.86 

Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed 
in Figure 4.

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010

Figure 4
Linear model through  

first and last data points

  CO2 level  CO2 level
 Year (in ppm) Year (in ppm)

 1980 338.7 1998 366.5
 1982 341.2 2000 369.4
 1984 344.4 2002 373.2
 1986 347.2 2004 377.5
 1988 351.5 2006 381.9
 1990 354.2 2008 385.6
 1992 356.3 2010 389.9
 1994 358.6 2012 393.8
 1996 362.4

table 1
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20  Chapter 1 | Functions and Sequences

Notice that our model gives values higher than most of the actual CO2 levels. A better 
linear model is obtained by a procedure from statistics called linear regression. If we use  
a graphing calculator, we enter the data from Table 1 into the data editor and choose the 
linear regression command. (With Maple we use the fit[leastsquare] command in the 
stats package; with Mathematica we use the Fit command.) The machine gives the slope 
and y-intercept of the regression line as

m − 1.71262      b − 23054.14

So our least squares model for the CO2 level is

(2) C − 1.71262t 2 3054.14 

In Figure 5 we graph the regression line as well as the data points. Comparing with 
Figure 4, we see that it gives a better fit than our previous linear model.

 

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010  ■

 example 3  | Interpolating and extrapolating the CO2 level Use the 
linear model given by Equa tion 2 to estimate the average CO2 level for 1987 and to 
predict the level for the year 2020. According to this model, when will the CO2 level 
exceed 420 parts per million?

Solution Using Equation 2 with t − 1987, we estimate that the average CO2 level 
in 1987 was

Cs1987d − s1.71262ds1987d 2 3054.14 < 348.84

This is an example of interpolation because we have estimated a value between 
observed values. (In fact, the Mauna Loa Observatory reported that the average CO2 
level in 1987 was 348.93 ppm, so our estimate is remarkably accurate.)

With t − 2020, we get

Cs2020d − s1.71262ds2020d 2 3054.14 < 405.35

So we predict that the average CO2 level in the year 2020 will be 405.4 ppm. This is an 
example of extrapolation because we have predicted a value outside the time frame of 
observations. Consequently, we are far less certain about the accuracy of our prediction.

Using Equation 2, we see that the CO2 level exceeds 420 ppm when

1.71262t 2 3054.14 . 420

Figure 5
The regression line

A computer or graphing calculator 
finds the regression line by the method 
of least squares, which is to minimize 
the sum of the squares of the vertical 
distances between the data points and 
the line.  The details are explained in  
Section 11.3.
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Solving this inequality, we get

t .
3474.14

1.71262
< 2028.55

We therefore predict that the CO2 level will exceed 420 ppm by the year 2029. This 
pre diction is risky because it involves a time quite remote from our observations. In 
fact, we see from Figure 5 that the trend has been for CO2 levels to increase rather 
more rapidly in recent years, so the level might exceed 420 ppm well before 2029. ■

■ Polynomials
A function P is called a polynomial if

Psxd − an xn 1 an21 xn21 1 ∙ ∙ ∙ 1 a2 x 2 1 a1 x 1 a0

where n is a nonnegative integer and the numbers a0, a1, a2, . . . , an are constants called 
the coefficients of the polynomial. The domain of any polynomial is R − s2`, `d. If the 
leading coefficient an ± 0, then the degree of the polynomial is n. For example, the  
function

Psxd − 2x 6 2 x 4 1 2
5 x 3 1 s2 

is a polynomial of degree 6.
A polynomial of degree 1 is of the form Psxd − mx 1 b and so it is a linear function.  

A polynomial of degree 2 is of the form Psxd − ax 2 1 bx 1 c and is called a quadratic 
function. Its graph is always a parabola obtained by shifting the parabola y − ax 2, as we 
will see in the next section. The parabola opens upward if a . 0 and downward if a , 0.  
(See Figure 6.)

0

y

2

x1

(a) y=≈+x+1

y

2

x1

(b) y=_2≈+3x+1

A polynomial of degree 3 is of the form

Psxd − ax 3 1 bx 2 1 cx 1 d    a ± 0

and is called a cubic function. Figure 7 shows the graph of a cubic function in part (a) 
and graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why 
the graphs have these shapes.

(a) y=˛-x+1

x

1

y

10

(b) y=x$-3≈+x

x

2

y

1

(c) y=3x%-25˛+60x

x

20

y

1

Figure 6
The graphs of quadratic  
functions are parabolas.

Figure 7
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22  Chapter 1 | Functions and Sequences

Polynomials are commonly used to model various quantities that occur in biology. 
Figure 8 shows a quadratic model of the vertical trajectory of zebra finches. (Digi-
tized points representing the position of the bird’s eye were used in fitting the curve.) 
Such birds use “flap-bounding.” This means that they flap their wings rapidly to gain 
dynamic energy and then fold their wings into their body for a period of time and act as a  
projectile.

0.1 0.2

y=_4.3958≈+1.5355x+0.0344

0

D
is

pl
ac

em
en

t (
m

)

Time (s)

0.10

0.20

Figure 8 Zebra finch trajectory
Source: Adapted from B. Tobalske et al., “Kinematics of Flap-Bounding Flight in the 

Zebra Finch Over a Wide Range of Speeds,” Journal of Experimental Biology 202 (1999): 

1725–39.

In the following example we use a quadratic function to model the fall of a ball.

 example 4  | A ball is dropped from the upper observation deck of the CN Tower, 
450 m above the ground, and its height h above the ground is recorded at 1-second 
intervals in Table 2. Find a model to fit the data and use the model to predict the time at 
which the ball hits the ground.

Solution We draw a scatter plot of the data in Figure 9 and observe that a linear 
model is inappropriate. But it looks as if the data points might lie on a parabola, so we 
try a quadratic model instead. Using a graphing calculator or computer algebra system 
(which uses the least squares method), we obtain the following quadratic model:

(3) h − 449.36 1 0.96t 2 4.90t 2 

2

200

400

4 6 8 t0

200

400

t
(seconds)

0 2 4 6 8

hh (meters)

 

Figure 9
Scatter plot for a falling ball

 

Figure 10
Quadratic model for a falling ball
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table 2

Time 
(seconds)

Height 
(meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9  61
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In Figure 10 we plot the graph of Equation 3 together with the data points and see that 
the quadratic model gives a very good fit.

The ball hits the ground when h − 0, so we solve the quadratic equation

24.90t 2 1 0.96t 1 449.36 − 0

The quadratic formula gives

t −
20.96 6 ss0.96d2 2 4s24.90d s449.36d

2s24.90d

The positive root is t < 9.67, so we predict that the ball will hit the ground after about 
9.7 seconds. ■

If a scatter plot of data has a single peak, then it may be appropriate to use a quadratic 
polynomial as a model (as in Figure 8). But the more fluctuation the data exhibit, the 
higher the degree of the polynomial needed to model the data. In particular, marine 
biologists sometimes use cubic polynomials to model the length of fish as a function of 
age in order to track fish populations. (See Exercise 27.) Then the model can be used to 
estimate the age of fish whose length has been measured.

■ Power Functions
A function of the form f sxd − xp, where p is a constant, is called a power function. We 
consider several cases.

(i) p − n, where n is a positive integer

The graphs of f sxd − xn for n − 1, 2, 3, 4, and 5 are shown in Figure 11. (These are 
polynomials with only one term.) We already know the shape of the graphs of y − x  
(a line through the origin with slope 1) and y − x 2 [a parabola, see Example 1.1.2(b)].

The general shape of the graph of f sxd − xn depends on whether n is even or odd. If  
n is even, then f sxd − xn is an even function and its graph is similar to the parabola 
y − x 2. If n is odd, then f sxd − xn is an odd function and its graph is similar to that of  
y − x 3. Notice from Figure 12 (on page 24), however, that as n increases, the graph of 
y − xn becomes flatter near 0 and steeper when | x | > 1. (If x is small, then x 2 is smaller, 
x 3 is even smaller, x 4 is smaller still, and so on.)

Figure 11 Graphs of f sxd − xn for n − 1, 2, 3, 4, 5
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y=x$

(1, 1)(_1, 1)

y=x^
y=≈

(_1, _1)

(1, 1)

0

y

x

x

y

0

y=x#

y=x%

(ii) p − 1yn, where n is a positive integer

The function f sxd − x 1yn − sn x is a root function. For n − 2 it is the square root  
function f sxd − sx  , whose domain is f0, `d and whose graph is the upper half of the  
parabola x − y 2. [See Figure 13(a).] For other even values of n, the graph of y − sn x  is 
similar to that of y − sx . For n − 3 we have the cube root function f sxd − s3 x  whose 
domain is R (recall that every real number has a cube root) and whose graph is shown 
in Figure 13(b). The graph of y − sn x  for n odd sn . 3d is similar to that of y − s3 x .

(b) ƒ=Œ„x

x

y

0

(1, 1)

(a) ƒ=œ„x

x

y

0

(1, 1)

(iii) p − 21

The graph of the reciprocal function f sxd − x21 − 1yx is shown in Figure 14. Its graph 
has the equation y − 1yx, or xy − 1, and is a hyperbola with the coordinate axes as its 
asymptotes. This function arises in many areas of the life sciences; one such area is 
described in the following example.

 ExamplE 5  | BB  Anesthesiology1 Anesthesiologists often put patients on 
ventilators during surgery to maintain a steady state concentration C of carbon dioxide 
in the lungs. If P is the rate of production of CO2 by the body (measured in mgymin)  
and V  is the ventilation rate (measured as lung volume exchanged per minute, 
mLymind, then at steady state the production of CO2 exactly balances removal by 
ventilation:

P 
mg

min
− SC 

mg

mLD SV 
mL

minD
Thus the steady state concentration of CO2 is inversely proportional to the ventilation 
rate:

C −
P

V

where P is a constant. The graph of C as a function of V  is shown in Figure 15 and has 
the same general shape as the right half of Figure 14. ■

A family of functions is a collection of 
functions whose equations are related. 
Figure 12 shows two families of power 
functions, one with even powers and 
one with odd powers.

FigurE 12

FigurE 13
Graphs of root functions

x

1

y

10

y=∆

FigurE 14
The reciprocal function

V 
(mL/min)

C (mg/mL)

0

FigurE 15
Concentration of CO2 as a function of 
ventilation rate

1. Adapted from S. Cruickshank, Mathematics and Statistics in Anaesthesia (New York: Oxford University 
Press, USA, 1998).
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 ExamplE 6  | BB   Species richness in bat caves It makes sense that the 
larger the area of a region, the larger the number of species that inhabit the region. 
Many ecologists have modeled the species–area relation with a power function and, in 
particular, the number of species S of bats living in caves in central Mexico has been 
related to the surface area A of the caves by the equation S − 0.14A0.64. (In Example 
1.5.14 this model will be derived from collected data.)
(a) The cave called Misión Imposible near Puebla, Mexico, has a surface area of
A − 60 m2. How many species of bats would you expect to find in that cave?
(b) If you discover that four species of bats live in a cave, estimate the area of the 
cave.

Solution A graph of the power function model is shown in Figure 16.
(a) According to the model S − 0.14A0.64, the expected number of species in a cave 
with surface area A − 60 m2 is

S − 0.14s60d0.64 < 1.92

So we would expect there to be two species of bats in this cave.

(b) For a cave with four species of bats we have

S − 0.14A0.64 − 4    ?    A0.64 −
4

0.14
 

So A − S 4

0.14D
1y0.64

< 188

We predict that a cave with four species of bats would have a surface area of about 
190 m2. ■

Power functions are also used to model other species–area relationships (Exercise 25), 
the weight of a bird as a function of wingspan (Exercise 24), illumination as a function 
of distance from a light source (Exercise 23), and the period of revolution of a planet as 
a function of its distance from the sun (Exercise 26).

■ Rational Functions
A rational function f  is a ratio of two polynomials:

f sxd −
Psxd
Qsxd

where P and Q are polynomials. The domain consists of all values of x such that Qsxd ± 0.  
A simple example of a rational function is the function f sxd − 1yx, whose domain is 
hx | x ± 0j; this is the reciprocal function graphed in Figure 14. The function 

f s pd −
p2 2 2p

p2 2 2

arises in models for the spread of drug resistance (see the project on page 78) and is a 
rational function with domain h p | p ± 6s2 j. Its complete graph is shown in Figure 17, 
though when we use the model we will restrict this domain.

■ Algebraic Functions
A function f  is called an algebraic function if it can be constructed using algebraic 
operations (such as addition, subtraction, multiplication, division, and taking roots) start-
ing with polynomials. Any rational function is automatically an algebraic function. Here 
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FigurE 16
The number of different bat species in a 
cave is related to the size of the cave by 
a power function.
Source: Derived from A. Brunet et al., “The 

Species–Area Relationship in Bat Assemblages 

of Tropical Caves,” Journal of Mammalogy 82 

(2001): 1114–22.
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26  Chapter 1 | Functions and Sequences

are two more examples:

f sxd − sx 2 1 1      tsxd −
x 4 2 16x 2

x 1 sx 
1 sx 2 2ds3 x 1 1

When we sketch algebraic functions in Chapter 4, we will see that their graphs can 
assume a variety of shapes. Figure 18 illustrates some of the possibilities.

x
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y

1

(a) ƒ=xœ„„„„x+3

x

1

y

50

(b) ©=$œ„„„„„„≈-25

x

1

y

10

(c) h(x)=x@?#(x-2)@

_3

An example of an algebraic function occurs in the theory of relativity. The mass of a 
particle with velocity v is

m − f svd −
m0

s1 2 v 2yc 2 

where m0 is the rest mass of the particle and c − 3.0 3 105 kmys is the speed of light in a  
vacuum.

■ Trigonometric Functions
Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also 
in Appendix C. In calculus the convention is that radian measure is always used (except 
when otherwise indicated). For example, when we use the function f sxd − sin x, it is  
understood that sin x means the sine of the angle whose radian measure is x. Thus the 
graphs of the sine and cosine functions are as shown in Figure 19.

Notice that for both the sine and cosine functions the domain is s2`, `d and the range 
is the closed interval f21, 1g. Thus, for all values of x, we have

21 < sin x < 1      21 < cos x < 1

or, in terms of absolute values,

| sin x | < 1      | cos x | < 1

FigurE 18
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The Reference Pages are located at the 
front of the book.

Curves with this general shape are 
sometimes called sinusoidal.
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Also, the zeros of the sine function occur at the integer multiples of �; that is,

sin x − 0    when    x − n�  n an integer

The sine and cosine functions are periodic functions and have period 2�; that is, for  
all values of x,

sinsx 1 2�d − sin x      cossx 1 2�d − cos x

Although the sine and cosine functions are simple periodic functions, they can be man-
ipulated and combined in ways described in Section 1.3 to model a wide variety of 
periodic phenomena. For instance, in Example 1.3.4 we will see that a reasonable model 
for the number of hours of daylight in Philadelphia t days after January 1 is given by the 
function

Lstd − 12 1 2.8 sinF 2�

365
st 2 80dG

The tangent function is related to the sine and cosine functions by the equation

tan x −
sin x

cos x

and its graph is shown in Figure 20. It is undefined whenever cos x − 0, that is, when 
x − 6�y2, 63�y2, . . . . Its range is s2`, `d. Notice that the tangent function has per-
iod �:

tansx 1 �d − tan x    for all x

The remaining three trigonometric functions (cosecant, secant, and cotangent) are  
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in  
Appendix C.

■ Exponential Functions
The exponential functions are the functions of the form f sxd − bx, where the base b is 
a positive constant. The graphs of y − 2x and y − s0.5dx are shown in Figure 21. In both 
cases the domain is s2`, `d and the range is s0, `d.

y
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y

x
1

10

(a) y=2® (b) y=(0.5)®

Exponential functions will be studied in detail in Section 1.4, and we will see that they  
are useful for modeling many natural phenomena, such as population growth (if b . 1)  
and radioactive decay (if b , 1d.

■ Logarithmic Functions
The logarithmic functions f sxd − logb x, where the base b is a positive constant, are 
the inverse functions of the exponential functions. They will be studied in Section 1.5.  
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y − tan x

FigurE 21
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EXERCISES 1.2

  1–2 Classify each function as a power function, root function, 
polynomial (state its degree), rational function, algebraic func-
tion, trigonometric function, exponential function, or logarith-
mic function.

 1. (a) f sxd − log2 x (b) tsxd − s4 x 

  (c) hsxd −
2x 3

1 2 x 2  (d) ustd − 1 2 1.1t 1 2.54t 2

  (e) vstd − 5 t (f) ws�d − sin � cos2�

 2. (a) y − � x (b) y − x�

  (c) y − x 2s2 2 x 3d (d) y − tan t 2 cos t

  (e) y −
s

1 1 s
 (f) y −

sx 3 2 1

1 1 s3 x 

  3–4 Match each equation with its graph. Explain your choices. 
(Don’t use a computer or graphing calculator.)

 3. (a) y − x 2     (b) y − x 5     (c) y − x 8

 

f

0

g
h

y

x

 4. (a) y − 3x (b) y − 3x

  (c) y − x 3 (d) y − s3 x 

 G

f

g

F
y

x

 5.  (a)  Find an equation for the family of linear functions with 
slope 2 and sketch several members of the family.

  (b)  Find an equation for the family of linear functions such 
that f s2d − 1 and sketch several members of the family.

  (c)  Which function belongs to both families?

 6.  What do all members of the family of linear functions 
f sxd − 1 1 msx 1 3d have in common? Sketch several 
members of the family.

 7.  What do all members of the family of linear functions 
f sxd − c 2 x have in common? Sketch several members of 
the family.

Figure 22 shows the graphs of four logarithmic functions with various bases. In each 
case the domain is s0, `d, the range is s2`, `d, and the function increases slowly when 
x . 1.

 ExamplE 7  | Classify the following functions as one of the types of functions that 
we have discussed.
(a) f sxd − 5x (b) tsxd − x 5

(c) hsxd −
1 1 x

1 2 sx 
 (d) ustd − 1 2 t 1 5t 4

Solution 
(a) f sxd − 5x is an exponential function. (The x is the exponent.)

(b) tsxd − x 5 is a power function. (The x is the base.) We could also consider it to be a 
polynomial of degree 5.

(c) hsxd −
1 1 x

1 2 sx 
  is an algebraic function.

(d) ustd − 1 2 t 1 5t 4 is a polynomial of degree 4. ■
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y=log£ x

y=log™ x

y=log∞ x
y=log¡¸ x

FigurE 22
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 15.  Biologists have noticed that the chirping rate of crickets 
of a certain species is related to temperature, and the rela-
tionship appears to be very nearly linear. A cricket produces 
113 chirps per minute at 708F and 173 chirps per minute  
at 808F.

  (a)  Find a linear equation that models the temperature T as 
a function of the number of chirps per minute N.

  (b)  What is the slope of the graph? What does it represent?
  (c)  If the crickets are chirping at 150 chirps per minute, 

estimate the temperature.

 16.  The monthly cost of driving a car depends on the number 
of miles driven. Lynn found that in May it cost her $380 to 
drive 480 mi and in June it cost her $460 to drive 800 mi.

  (a)  Express the monthly cost C as a function of the distance 
driven d, assuming that a linear relationship gives a suit-
able model.

  (b)   Use part (a) to predict the cost of driving 1500 miles per 
month.

  (c)   Draw the graph of the linear function. What does the 
slope represent?

  (d)  What does the C-intercept represent?
  (e)  Why does a linear function give a suitable model in this 

situation?

  17–18 For each scatter plot, decide what type of function you 
might choose as a model for the data. Explain your choices.

 17. (a) 

0 x

y  (b) 

0 x

y

 18. (a) 

0 x

y  (b) 

0 x

y

	 ; 19.  peptic ulcer rate The table on page 30 shows (lifetime) 
peptic ulcer rates (per 100 population) for various fam-
ily incomes as reported by the National Health Interview 
Survey.

  (a)  Make a scatter plot of these data and decide whether a  
linear model is appropriate.

  (b)  Find and graph a linear model using the first and last 
data points.

  (c) Find and graph the least squares regression line.

 8.  Find expressions for the quadratic functions whose graphs 
are shown.

  

y

(0, 1)

(1, _2.5)

(_2, 2)
y

x0

(4, 2)

f

g
x0

3

 9.  Find an expression for a cubic function f  if f s1d − 6 and 
f s21d − f s0d − f s2d − 0.

 10.  Climate change Recent studies indicate that the average 
surface temperature of the earth has been rising steadily. 
Some scientists have modeled the temperature by the linear 
function T − 0.02t 1 8.50, where T is temperature in °C 
and t represents years since 1900.

  (a)  What do the slope and T-intercept represent?
  (b)  Use the equation to predict the average global surface  

temperature in 2100.

 11.  Drug dosage If the recommended adult dosage for a 
drug is D (in mg), then to determine the appropriate dos-
age c for a child of age a, pharmacists use the equation 
c − 0.0417Dsa 1 1d. Suppose the dosage for an adult is 
200 mg.

  (a)  Find the slope of the graph of c. What does it  
represent?

  (b)  What is the dosage for a newborn?

 12.  At the surface of the ocean, the water pressure is the same 
as the air pressure above the water, 15 lbyin2. Below the 
surface, the water pressure increases by 4.34 lbyin2 for every 
10 ft of descent.

  (a)  Express the water pressure as a function of the depth 
below the ocean surface.

  (b)  At what depth is the pressure 100 lbyin2?

 13.  The relationship between the Fahrenheit sFd and Celsius 
sCd temperature scales is given by the linear function 
F − 9

5 C 1 32.
  (a) Sketch a graph of this function.
  (b)  What is the slope of the graph and what does it repre-

sent? What is the F-intercept and what does it represent?

 14.  absorbing cerebrospinal fluid Cerebrospinal fluid is 
continually produced and reabsorbed by the body at a rate 
that depends on its current volume. A medical researcher 
finds that absorption occurs at a rate of 0.35 mLymin when 
the volume of fluid is 150 mL and at a rate of 0.14 mLymin 
when the volume is 50 mL.

  (a)  Suppose the absorption rate A is a linear function of the 
volume V. Sketch a graph of AsVd.

  (b)  What is the slope of the graph and what does it  
represent?

  (c)  What is the A-intercept of the graph and what does it 
represent?
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30  Chapter 1 | Functions and Sequences

  (a)  Make a scatter plot of the data.
  (b) Find and graph the regression line that models the data.
  (c)  An anthropologist finds a human femur of length 

53 cm. How tall was the person?

	 ; 22.  asbestos and lung tumors When laboratory rats are 
exposed to asbestos fibers, some of them develop lung 
tumors. The table lists the results of several experiments by 
different scientists.

  (a)  Find the regression line for the data.
  (b)  Make a scatter plot and graph the regression line. Does 

the regression line appear to be a suitable model for the 
data?

  (c)  What does the y-intercept of the regression line  
represent?

Asbestos 
exposure 

(fibersymL)

Percent of mice 
that develop 
lung tumors

Asbestos 
exposure 

(fibersymL)

Percent of mice 
that develop 
lung tumors

50 2 1600 42
400 6 1800 37
500 5 2000 38
900 10 3000 50

1100 26

 23.  Many physical quantities are connected by inverse square 
laws, that is, by power functions of the form f sxd − kx22. 
In particular, the illumination of an object by a light source 
is inversely proportional to the square of the distance from 
the source. Suppose that after dark you are in a room with 
just one lamp and you are trying to read a book. The light 
is too dim and so you move halfway to the lamp. How 
much brighter is the light?

 24.  Wingspan and weight The weight W (in pounds) of a 
bird (that can fly) has been related to the wingspan L (in 
inches) of the bird by the power function L − 30.6W 0.3952. 
(In Exercise 1.5.66 this model will be derived from data.)

  (a)  The bald eagle has a wingspan of about 90 inches. Use 
the model to estimate the weight of the eagle.

  (b)  An ostrich weighs about 300 pounds. Use the model to 
estimate what the wingspan of an ostrich should be in 
order for it to fly.

  (c)  The wingspan of an ostrich is about 72 inches. Use your 
answer to part (b) to explain why ostriches can’t fly.

	 ; 25.  Species–area relation for reptiles The table shows the 
number N of species of reptiles and amphibians inhabiting 
Caribbean islands and the area A of the island in square 
miles.

  (a)  Use a power function to model N as a function of A.
  (b)  The Caribbean island of Dominica has area 291 mi2. 

How many species of reptiles and amphibians would 
you expect to find on Dominica?

  (d)  Use the linear model in part (c) to estimate the ulcer 
rate for an income of $25,000.

  (e)  According to the model, how likely is someone with an 
income of $80,000 to suffer from peptic ulcers?

  (f)  Do you think it would be reasonable to apply the 
model to someone with an income of $200,000?

 
Income

Ulcer rate 
(per 100 population)

 $4,000  14.1
 $6,000  13.0
 $8,000  13.4
 $12,000  12.5
 $16,000  12.0
 $20,000  12.4
 $30,000  10.5
 $45,000  9.4
 $60,000  8.2

	 ; 20.  Cricket chirping rate In Exercise 15 we modeled tem-
perature as a linear function of the chirping rate of crickets 
from limited data. Here we use more extensive data in the 
following table to construct a linear model.

Temperature 
s8Fd

Chirping rate 
(chirpsymin)

Temperature 
s8Fd

Chirping rate 
(chirpsymin)

50  20 75 140
55  46 80 173
60  79 85 198
65  91 90 211
70 113

  (a) Make a scatter plot of the data.
  (b) Find and graph the regression line.
  (c)  Use the linear model in part (b) to estimate the chirping 

rate at 1008F.

	 ; 21.  Femur length Anthropologists use a linear model that 
relates human femur (thighbone) length to height. The 
model allows an anthropologist to determine the height of 
an individual when only a partial skeleton (including the 
femur) is found. Here we find the model by analyzing the 
data on femur length and height for the eight males given 
in the following table.

Femur length 
(cm)

Height 
(cm)

Femur length 
(cm)

Height 
(cm)

50.1  178.5 44.5 168.3
48.3  173.6 42.7 165.0
45.2  164.8 39.5 155.4
44.7  163.7 38.0 155.8
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Section 1.3 | New Functions from Old Functions  31

    (ear bones in their heads). Scientists have proposed a cubic 
polynomial to model the data.

  (a)  Use a cubic polynomial to model the data. Graph the 
polynomial together with a scatter plot of the data.

  (b)  Use your model to estimate the length of a 5-year-old 
rock bass.

  (c)  A fisherman catches a rock bass that is 20 inches long. 
Use your model to estimate its age.

Age 
(years)

Length 
(inches)

Age 
(years)

Length 
(inches)

1  4.8  9  18.2
2  8.8  9  17.1
2  8.0 10  18.8
3  7.9 10  19.5
4  11.9 11  18.9
5  14.4 12  21.7
6  14.1 12  21.9
6  15.8 13  23.8
7  15.6 14  26.9
8  17.8 14  25.1

Photo by Karna McKinney, AFSC, NOAA Fisheries

Island A N

Saba  4  5
Monserrat  40  9
Puerto Rico  3,459  40
Jamaica  4,411  39
Hispaniola  29,418  84
Cuba  44,218  76

	 ; 26.  The table shows the mean (average) distances d of the 
planets from the sun (taking the unit of measurement to be 
the distance from the earth to the sun) and their periods T 
(time of revolution in years).

Planet d T

Mercury  0.387  0.241
Venus  0.723  0.615
Earth  1.000  1.000
Mars  1.523  1.881
Jupiter  5.203  11.861
Saturn  9.541  29.457
Uranus  19.190  84.008
Neptune  30.086  164.784

  (a)  Fit a power model to the data.
  (b)  Kepler’s Third Law of Planetary Motion states that

    “The square of the period of revolution of a planet  
is propor tional to the cube of its mean distance from 
the sun.”

   Does your model corroborate Kepler’s Third Law?

	 ; 27.  Fish growth The table gives the lengths of rock bass 
    caught at different ages, as determined by their otoliths  BB

1.3 New Functions from Old Functions

In this section we start with the basic functions we discussed in Section 1.2 and obtain 
new functions by shifting, stretching, and reflecting their graphs. We also show how to 
combine pairs of functions by the standard arithmetic operations and by composition.

■ Transformations of Functions
By applying certain transformations to the graph of a given function we can obtain 
the graphs of related functions. This will give us the ability to sketch the graphs of  
many functions quickly by hand. It will also enable us to write equations for given graphs. 

Let’s first consider translations. If c is a positive number, then the graph of y − f sxd 1 c 
is just the graph of y − f sxd shifted upward a distance of c units (because each y-coordi-
nate is increased by the same number c). Likewise, if tsxd − f sx 2 cd, where c . 0, then 
the value of t at x is the same as the value of f  at x 2 c (c units to the left of x). There- 
fore the graph of y − f sx 2 cd is just the graph of y − f sxd shifted c units to the right 
(see Figure 1).
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