CLINICAL

 CALCULATIONS
Fifth Edition
 MA DE EASY

SOLVING PROBLEMS USING DIMENSIONAL ANALYSIS

©. Wolters Kluwer
Health
Lippincott
Williams \& Wilkins

APPROXIMATE EQUIVALENTS FOR METRIC, APOTHECARY, AND HOUSEHOLD WEIGHTS AND VOLUMES

APPROXIMATE EQUIVALENTS FOR WEIGHT		
Metric	Apothecary	
$1 \mathrm{~kg}(1000 \mathrm{~g})$ $1 \mathrm{~g}(1000 \mathrm{mg})$ 60 mg	$\begin{aligned} & 2.2 \mathrm{lb} \\ & 15 \mathrm{gr} \\ & 1 \mathrm{gr} \end{aligned}$	
APPROXIMATE EQUIVALENTS FOR VOLUME		
Metric	Apothecary	Household
$\begin{aligned} & 4000 \mathrm{~mL} \\ & 1 \mathrm{~L}(1000 \mathrm{~mL}) \\ & 500 \mathrm{~mL} \\ & 240 \mathrm{~mL} \\ & 30 \mathrm{~mL} \\ & 15 \mathrm{~mL} \\ & 5 \mathrm{~mL} \\ & 1 \mathrm{~mL} \end{aligned}$	1 gal (4 qt) 1 qt (2 pt) 1 pt (16 fl oz) 8 oz 1 oz (8 dr) $1 / 2$ oz (4 dr) $1 \mathrm{dr}(60 \mathrm{M})$ 15 M 1 M	$\begin{aligned} & 1 \mathrm{cup} \\ & 2 \mathrm{tbsp} \\ & 1 \mathrm{tbsp}(3 \mathrm{tsp}) \\ & 1 \mathrm{tsp}(60 \mathrm{gtt}) \\ & 15 \mathrm{gtt} \\ & 1 \mathrm{gtt} \end{aligned}$

GELSIUS AND FAHRENHEIT TEMPERATURE EQUIVALENTS

${ }^{* *}$ CelsiusConversion Chart to	
35.0	Fahrenheit

To convert from Fahrenheit to Celsius:
${ }^{\circ} \mathbf{C}=\left({ }^{\circ} \mathbf{F}-32\right) \div 1.8$
To convert from Celsius to Fahrenheit:
${ }^{\circ} \mathrm{F}={ }^{\circ} \mathbf{C} \times 1.8+32$
${ }^{\circ} \mathbf{C}=$ temperature in degrees Celsius
${ }^{\circ} \mathbf{F}=$ temperature in degrees Fahrenheit

Clinical Calculations Made Easy FIFTH EDITION

 Solving Problems Using Dimensional Analysis

 Solving Problems Using Dimensional Analysis}

Gloria P. Craig, EdD, MSN, RN

Professor
South Dakota State University
College of Nursing
Brookings, South Dakota

Senior Acquisitions Editor: Hilarie Surrena
Product Manager: Eric Van Osten \& Michelle Clarke
Editorial Assistant: Shawn Loht
Director of Nursing Production: Helen Ewan
Senior Designer: Joan Wendt
Art Director, Illustration: Brett MacNaughton
Manufacturing Coordinator: Karin Duffield
Compositor: Aptara, Inc.

Fifth Edition
Copyright © 2012 Wolters Kluwer Health | Lippincott Williams \& Wilkins
Copyright © 2009, 2005, 2001 by Lippincott Williams \& Wilkins. Copyright © 1997 by Lippincott-Raven Publishers. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams \& Wilkins at Two Commerce Square, 2001 Market Street, Philadelphia, PA 19103, via email at permissions@lww.com or via website at lww.com (products and services).

987654321
Printed in China

Library of Congress Cataloging-in-Publication Data

Craig, Gloria P., 1949-
Clinical calculations made easy : solving problems using dimensional analysis / Gloria P. Craig. — 5th ed. p.; cm.

Includes bibliographical references and index.
ISBN 978-1-60831-790-5 (alk. paper)

1. Pharmaceutical arithmetic. 2. Dimensional analysis. 3. Nursing-Mathematics. I. Title.
[DNLM: 1. Pharmaceutical Preparations—administration \& dosage. 2. Mathematics. 3. Nurses'
Instruction. 4. Problem Solving. 5. Problems and Exercises. QV 748 C886ca 2009]
RS57.C73 2009
615'.14—dc22
2007042536
Care has been taken to confirm the accuracy of the information presented and to describe generally accepted practices. However, the authors, editors, and publisher are not responsible for errors or omissions or for any consequences from application of the information in this book and make no warranty, expressed or implied, with respect to the currency, completeness, or accuracy of the contents of the publication. Application of this information in a particular situation remains the professional responsibility of the practitioner; the clinical treatments described and recommended may not be considered absolute and universal recommendations.

The authors, editors, and publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accordance with the current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new or infrequently employed drug.

Some drugs and medical devices presented in this publication have Food and Drug Administration (FDA) clearance for limited use in restricted research settings. It is the responsibility of the health care provider to ascertain the FDA status of each drug or device planned for use in his or her clinical practice.

Reviewers

Teresa Aprigliano, EdD, RN
Associate Professor, Director
Molloy College
Rockville Centre, New York
Patricia Ann Dudley, MSN, RN, CRNP
Nursing Faculty
University of Alabama at Birmingham
Birmingham, Alabama
Sharon Koval Falkenstern, PhD, CRNP, PNP-C
Instructor, Family Nurse Practitioner Program Coordinator
Pennsylvania State University
University Park, Pennsylvania
Barbara J. Hoerst, PhD, RN
Assistant Professor
La Salle University
Philadelphia, Pennsylvania
Cathy Malone, MSN, BSN, RN
Assistant Professor
University of North Alabama
Florence, Alabama
Anna Sanford, mSN, APRN, BC
Associate Professor
Northern Michigan University
Marquette, Michigan
\section*{Cynthia L. Terry, msn, RN, cCRN}
Professor
Lehigh Carbon Community College
Schnecksville, Pennsylvania
Ina E. Warboys, MS, RN
Clinical Assistant Professor
University of Alabama in Huntsville
Huntsville, Alabama

Loretta L. White, DNS, RN
Assistant Professor
Indiana State University
Terre Haute, Indiana
Rosemary Wittstadt, EdD, RN
Adjunct Professor
Howard Community College
Columbia, Maryland

Preface

Many people experience stumbling blocks calculating math problems because of a lack of mathematical ability or associated "math anxiety." Even people with strong math skills often set up medication problems incorrectly, putting the patient at an increased risk for incorrect dosages and the ensuing consequences. However, dosage calculation need not be difficult if you use a problem-solving method that is easy to understand and to implement.

As a student, I experienced anxiety related to poor mathematical abilities and consequently had difficulty with medication calculations. However, a friend introduced me to a problem-solving method that was easy to visualize. By using this method, I was able to easily understand medication problems and thereby avoid the stumbling blocks that I had experienced with other methods of dosage calculations. Later, as a practicing nurse and nursing instructor, I realized that many of my colleagues and students shared my experience with "math anxiety," so I began sharing this problem-solving method with them.

During my baccalaureate nursing education, this problem-solving method became my teaching plan. During my master's education, it became my research. During my doctoral education, it became my dissertation. Now, I would like to share this method with anyone who ever believed that they were mathematically "challenged" or trembled at the thought of solving a medication problem.

The method, called dimensional analysis (also known as factor-label method or conversion-factor method), is a systematic, straightforward approach to setting up and solving problems that require conversions. It is a way of thinking about problems that can be used when two quantities are directly proportional to each other, but one needs to be converted using a conversion factor in order for the problem to be solved.

Dimensional Analysis as a Teaching Tool

Dimensional analysis empowers the learner to solve a variety of medication problems using just one prob-lem-solving method. Research has shown that students experience less frustration and create fewer medication errors if one problem-solving method is used to solve all medication problems. As a method of reducing errors and improving calculation abilities, dimensional analysis has many possibilities. Whether it is used in practice or education, it is a strong approach when the goals are improving medication dosage-calculation skills, reducing medication errors, and improving patient safety. Ultimately, this improved methodology has the potential to reduce the medication errors that occur within the discipline of nursing.

Dimensional analysis helps the learner see and understand the significance of the whole process, since it focuses on how to learn, rather than what to learn. It provides a framework for understanding the principles of the problem-solving method and supports the critical thinking process. It helps the learner to organize and evaluate data, and to avoid errors in setting up problems. Dimensional analysis thus supports the conceptual mastery and higher-level thinking skills that have become the core of curricula at all levels of nursing education.

Organization of the Text

This text uses the simple-to-complex approach in teaching students clinical calculations and is, therefore, divided into four sections.

Section 1: Clinical Calculations

Chapter 1 provides an arithmetic pretest to help gauge the amount of time a student will need to spend reviewing the basic arithmetic skills presented in this chapter.

Chapter 2 reviews systems of measurement, common equivalents, calculating patient intake and output, and converting standard time and military time.
Chapter 3 introduces the student to dimensional analysis and uses common equivalents to help the student practice problem solving with this new method.
Chapter 4 builds on the previous chapter by introducing one-factor conversions.
Chapter 5 continues the growth process by presenting two-factor conversions.
Chapter 6 completes the student's understanding of clinical calculations by introducing threefactor conversions.

Section 2: Practice Problems

Section 2 allows the student the opportunity to refine the skills presented in section 1 by providing additional one-, two-, and three-factor practice problems followed by comprehensive questions to ensure accurate understanding of clinical calculations.

Section 3: Case Studies

Section 3 helps the student relate dosage calculations to real clinical situations. Thirty-five case studies that are related to different fields of nursing are included in this section.

Section 4: Comprehensive Post-Test

Section 4 contains a post-test of 20 questions allowing the instructor to assess the student's mastery of solving clinical calculations using dimensional analysis. The answers to these questions as well as additional post-tests are available to instructors on thePoint. .

Special Features

Each chapter in Section 1 contains numerous Examples with detailed explanations. Thinking It Through provides additional explanations to help students more fully understand complex topics. In-chapter Exercises occur after the presentation and explanation of each new concept, providing an opportunity for the student to gain ability and confidence in the material before proceeding to the next concept. Additional Practice Problems are provided at the end of the chapter so that students can practice the skills and assess areas where more review may be necessary. An Answer Key for all Exercises and Practice Problems is also located at the end of each chapter. Additionally, a Post-Test, designed so that students can tear it out of the book and hand it in to their instructor, appears at the end of each chapter. Additional Post-Tests and answers are available to instructors on thePoint.

In addition:

- Actual drug labels are liberally used throughout the text to provide the student with clinically realistic examples.

- A special feature, Preventing Medication Errors, helps identify key concepts necessary for avoiding clinical calculation errors.

- A special icon identifying pediatric medication problems allows students and teachers to quickly find all pediatric problems in the text.

New to This Edition

The fifth edition provides many more opportunities for students to practice their skills. More problems have been added throughout the text and all problems have been updated to follow guidelines from the Institute for Safe Medication Practices. Calculation of intake and output and converting standard time and military time are included to aid students in learning accurate medical recording. Ten new case studies including pediatric problems have also been added as well as a new Comprehensive Post-Test.

Resources on thePoint

 thePoint. (http://thepoint.lww.com), a trademark of Wolters Kluwer Health, is a web-based course and content management system providing every resource that instructors and students need in one easy-to-use site. Advanced technology and superior content combine at thePoint to allow instructors to design and deliver on-line and off-line courses, maintain grades and class rosters, and communicate with students.Instructors will also find

- Additional Post-Tests Answer keys
- Instructor's Manual
- PowerPoint presentations

Students can visit thePoint to access supplemental multimedia resources to enhance their learning experience, download content, upload assignments, and join an on-line study group.

Also available to students are

- Additional practice problems
- Additional post-tests

By using this text and all of its resources, it is my hope that this fifth edition will help students find that clinical calculation can indeed be made easy using dimensional analysis.

Gloria P. Craig

Acknowledgments

There are many people who have assisted me with my professional growth and development, including:

Pauline Callahan, who believed that I would be a great nurse and nursing instructor when I could not believe in myself.

Jackie Kehm, who introduced me to dimensional analysis and helped me pass the medication module that I was sure would be my stumbling block.

Dr. Sandra L. Sellers, for her expertise and guidance throughout the process of writing my thesis and dissertation and her encouragement to write a textbook.

Margaret Cooper, for her friendship and editing support throughout the writing of this textbook.

My students, colleagues, and reviewers, for helping me develop my abilities to explain and teach the problem-solving method of dimensional analysis.

The numerous pharmaceutical companies listed throughout this book that supplied medication labels and gave permission for the labels to be included in this textbook.

The faculty at South Dakota State University, College of Nursing, for allowing dimensional analysis to be integrated into the curriculum as the problem-solving method for medication calculation.

The Lippincott editorial and production teams, for all of their hard work: Hilarie Surrena, Senior Acquisitions Editor; Eric Van Osten and Michelle Clarke, Product Managers; and Joan Wendt, Design Coordinator.

To these people and many more, I would like to express my sincere appreciation for their mentoring, guidance, support, and encouragement that have helped to turn a dream into a reality.

This fifth edition of my text is dedicated to my children, Lori (and her husband, Michael) and Randy (and his wife Samantha), and to my granddaughters, Zoë, Ava, and Lily.

Contents

section 1
 Clinical Calculations 1

ARITHMETIC REVIEW 3

CHAPTER 1

Arithmetic Review 5

Arabic Numbers and Roman Numerals 6

Exercise 1.1 Arabic Numbers and Roman Numerals 7

Fractions 9

Multiplying Fractions 9
Exercise 1.2 Multiplying Fractions 10
Dividing Fractions 11
Exercise 1.3 Dividing Fractions 12
Decimals 12
Rounding Decimals 13
Exercise 1.4 Rounding Decimals 13
Multiplying Decimals 14
Exercise 1.5 Multiplying Decimals 14
Dividing Decimals 15
Exercise 1.6 Dividing Decimals 15
Converting Fractions to Decimals 16
Exercise 1.7 Converting Fractions to Decimals 16
Practice Problems 18
Post-Test 21
Answer Key 23

ChAPter 2

Systems of Measurement and
Common Equivalents 31
Systems of Measurement 32
The Metric System 32
The Apothecaries' System 33
The Household System 33
Intake and Output 35
Temperature 35
Time 36

Common Equivalents 3

Practice Problems 40
Post-Test 43
Answer Key 45

CHAPTER 3

Solving Problems Using

Dimensional Analysis 47

Terms Used in Dimensional Analysis 48
 The Five Steps of Dimensional Analysis 48

Exercise 3.1 Dimensional Analysis 52
Practice Problems 57
Post-Test 59
Answer Key 61

ChAPTER 4

One-Factor Medication Problems 67

Interpretation of Medication Orders 68

Right Patient 68
Right Drug 68
Right Dosage 69
Right Route 69
Right Time 69
Right Documentation 69 Exercise 4.1 Interpretation of Medication Orders 70
Medication Administration Record 70
Exercise 4.2 Medication Administration Record 71
One-Factor Medication Problems 72
Principles of Rounding 75
Exercise 4.3 One-Factor Medication Problems 78
Components of a Drug Label 78
Identifying the Components 78
Exercise 4.4 Identifying the Components of Drug Labels 79

Solving Problems With Components of
Drug Labels 81
Exercise 4.5 Problems With Components of Drug Labels 83
Administering Medication by Different Routes 84
Enteral Medications 84
Exercise 4.6 Administering Enteral Medications 89 89
Parenteral Medications 90
Exercise 4.7 Administering Parenteral Medications 95
Practice Problems 97
Post-Test 10Answer Key 109
CHAPTER 5
Two-Factor Medication Problems 114
Medication Problems Involving Weight 115
Exercise 5.1 Pediatric Medication Problems Involving Weight 117
Medication Problems Involving Reconstitution 119
Exercise 5.2 Medication Problems InvolvingReconstitution 123
Medication Problems Involving
Intravenous Pumps 124
Exercise 5.3 Medication Problems Involving Intravenous Pumps 127
Medication Problems Involving Drop Factors 128Exercise 5.4 Medication Problems InvolvingDrop Factors 132
Medication Problems Involving IntermittentInfusion 132Exercise 5.5 Medication Problems Involving IntermittentInfusion 134
Practice Problems 136
Post-Test 141
Answer Key 147
CHAPTER 6
Three-Factor Medication Problems 151
Exercise 6.1 Medication Problems Involving Dosage, Weight, and Time 158
Practice Problems 164
Post-Test 169
Answer Key 175
SECTION 2
Practice Problems 179
One-Factor Practice Problems 179
Two-Factor Practice Problems 19
Three-Factor Practice Problems 204
Comprehensive Practice Problems 210

SECTION 3
 Case Studies 229

Case Study 1 Congestive Heart Failure 229
Case Study 2 COPD/Emphysema 230
Case Study 3 Small Cell Lung Cancer 231
Case Study 4 Acquired ImmunodeficiencySyndrome (AIDS)231
Case Study 5 Sickle Cell Anemia 232
Case Study 6 Deep Vein Thrombosis 233
Case Study 7 Bone Marrow Transplant 234
Case Study 8 Pneumonia 235
Case Study 9 Pain 235
Case Study 10 Cirrhosis 236
Case Study 11 Hyperemesis Gravidarum 237
Case Study 12 Preeclampsia 238
Case Study 13 Premature Labor 238
Case Study 14 Cystic Fibrosis 239
Case Study 15 Respiratory Syncytial Virus(RSV) 240
Case Study 16 Leukemia 24
Case Study 17 Sepsis 242
Case Study 18 Bronchopulmonary Dysplasia 243
Case Study 19 Cerebral Palsy 24
Case Study 20 Hyperbilirubinemia 245
Case Study 21 Spontaneous Abortion 245
Case Study 22 Bipolar Disorder 246
Case Study 23 Anorexia Nervosa 247
Case Study 24 Clinical Depression 248
Case Study 25 Alzheimer's Disease 249
Case Study 26 Otitis Media 249
Case Study 27 Seizures 250
Case Study 28 Fever of Unknown Origin 251
Case Study 29 TURP with CBI 252
Case Study 30 Hypercholesterolemia 252
Case Study 31 Hypertension 253
Case Study 32 Diabetic Ketoacidosis 254
Case Study 33 End-Stage Renal Failure 255
Case Study 34 Fluid Volume Deficit 256
Case Study 35 Increased IntracranialPressure 256
Case Study 36 Breast Cancer 257

Case Study 37 Severe Abdominal Pain 258

Case Study 38 Acute Asthma Attack 259
Case Study 39 Right Total Hip Replacement 260
Case Study 40 Colon Resection 260
Case Study 41 Left Total Knee Replacement 261
Case Study 42 Chest Pain 262
Case Study 43 Pneumococcal Meningitis 263
Case Study 44 Diabetic Ketoacidosis 264
Case Study 45 C-Section Delivery 264
Answer Key 267

section 4

Comprehensive Post-Test 281

Appendix
Educational Theory of Dimensional Analysis 287

Index 289

SECTION

Clinical Calculations

Chapter 1 Pre-Test

Arithmetic Review

Name \qquad Date \qquad

Converting Between Arabic Numbers and Roman Numerals

1. $7=$ \qquad
2. $\mathrm{XI}=$ \qquad
3. $17=$ \qquad
4. $\mathrm{XVI}=$ \qquad
Multiplying and Dividing Fractions
5. $\frac{2}{8} \times \frac{2}{2}=$
6. $\frac{2}{5} \div \frac{1}{10}=$
7. $\frac{2}{6} \times \frac{1}{2}=$
8. $\frac{1}{3} \div \frac{3}{9}=$
9. $\frac{3}{4} \times \frac{2}{3}=$
10. $\frac{2}{4} \div \frac{1}{2}=$

Converting Fractions to Decimals
11. $\frac{4}{8}=$
12. $\frac{2}{6}=$
13. $\frac{5}{9}=$
14. $\frac{1}{4}=$

Multiplying and Dividing Decimals
15. $2.75 \times 1.25=$
16. $0.25 \div 0.4=$
17. $4.50 \times 0.75=$
18. $10.50 \div 4.5=$
19. $1.2 \times 2=$
20. $1.5 \div 0.75=$

CHAPTER

Arithmetic Review

Objectives

After completing this chapter, you will successfully be able to:

1. Express Arabic numbers as Roman numerals.
2. Express Roman numerals as Arabic numbers.
3. Identify the numerator and denominator in a fraction.
4. Multiply and divide fractions.
5. Multiply and divide decimals.
6. Convert fractions to decimals.

Outline

ARABIC NUMBERS AND ROMAN NUMERALS 6
Exercise 1.1: Arabic Numbers and Roman Numerals 7
FRACTIONS 9
Multiplying Fractions 9
Exercise 1.2: Multiplying Fractions 10
Dividing Fractions 11
Exercise 1.3: Dividing Fractions 12
DECIMALS 12
Rounding Decimals 13
Exercise 1.4: Rounding Decimals 13
Multiplying Decimals 14
Exercise 1.5: Multiplying Decimals 14
Dividing Decimals 15
Exercise 1.6: Dividing Decimals 15
CONVERTING FRACTIONS TO DECIMALS 16
Exercise 1.7: Converting Fractions to Decimals 16
Practice Problems for Chapter 1: Arithmetic Review 18
Post-Test for Chapter 1: Arithmetic Review 21
Answer Key for Chapter 1: Arithmetic Review 23

Every nurse must know and practice the six rights of medication administration including the

1. Right drug
2. Right dose
3. Right route
4. Right time
5. Right patient
6. Right documentation

Although the right drug, route, time, patient, and documentation may be readily identified, the right dose requires arithmetic skills that may be difficult for you. This chapter reviews the basic arithmetic skills (multiplication and division) necessary for calculating medication dosage problems using the problem-solving method of dimensional analysis. Calculating the right dose of medication to be administered to a patient is one of the first steps toward preventing medication errors.

0PREVENTING MEDICATION ERRORS

Correctly identifying Roman numerals will assist in preventing medication errors. Some medication orders may include a Roman numeral.
Example: Administer X gr of aspirin, which is correctly interpreted as administer 10 gr of aspirin. However, according to the Institute for Safe Medication Practices (ISMP), abbreviations increase the risk of medication errors. Additionally, while some health care providers may still use roman numerals and the apothecaries' system, the ISMP recommends using the metric system.

ARABIC NUMBERS AND ROMAN NUMERALS

Most medication dosages are ordered by the physician or the nurse practitioner in the metric and household systems for weights and measures using the Arabic number system with symbols called digits (ie, 1, 2, 3, 4, 5). Occasionally, orders are received in the apothecaries' system of weights and measures using the Roman numeral system with numbers represented by symbols (ie, I, V, X). The Roman numeral system uses seven basic symbols, and various combinations of these symbols represent all numbers in the Arabic number system.

Table 1.1 includes the seven basic Roman numerals and the corresponding Arabic numbers.

The combination of Roman numeral symbols is based on three specific principles:

1. Symbols are used to construct a number, but no symbol may be used more than three times. The exception is the symbol for five (V), which is used only once because there is a symbol for $10(\mathrm{X})$ and a combination of symbols for 15 (XV).

EXAMPLE 1.1

$$
\begin{aligned}
\text { III } & =(1+1+1)=3 \\
X X X & =(10+10+10)=30
\end{aligned}
$$

2. When symbols of lesser value follow symbols of greater value, they are added to construct a number.

EXAMPLE 1.2

VIII $=(5+3)=8$
$X V I I=(10+5+1+1)=17$
3. When symbols of greater value follow symbols of lesser value, those of lesser value are subtracted from those of higher value to construct a number.

EXAMPLE 1.3

$\mathrm{IV}=(5-1)=4$
$I X=(10-1)=9$

TABLE 1.1 Seven Basic Roman Numerals

Roman Numerals	Arabic Numbers
I	1
V	5
L	10
C	50
D	100
M	500
	1000

Fxercise 1.1 Arabic Numbers and Roman Numerals

Express the following Arabic numbers as Roman numerals.

1. $1=$ \qquad
2. $2=$ \qquad
3. $3=$ \qquad
4. $4=$ \qquad
5. $5=$ \qquad
6. $6=$ \qquad
$7.7=$ \qquad
7. $8=$ \qquad
8. $9=$ \qquad
9. $10=$ \qquad
10. $11=$ \qquad
11. $12=$ \qquad
12. $13=$ \qquad
13. $14=$ \qquad
14. $15=$ \qquad
15. $16=$ \qquad
16. $17=$ \qquad
17. $18=$ \qquad
18. $19=$ \qquad
19. $20=$ \qquad
Although medication orders rarely involve Roman numerals higher than 20, for additional practice, express the following Arabic numbers as Roman numerals.
$21.43=$ \qquad
20. $24=$ \qquad
21. $55=$ \qquad
22. $32=$ \qquad
23. $102=$ \qquad
24. $150=$ \qquad
25. $75=$ \qquad
```
28. }92
```

\qquad

```
29. \(64=\)
``` \(\qquad\)
```

30. $69=$
``` \(\qquad\)

Express the following Roman numerals as Arabic numbers.
\[
\begin{array}{ll}
31 . \mathrm{II} & = \\
32 . \mathrm{IV} & = \\
33 . \mathrm{VI} & = \\
34 . \mathrm{X} & = \\
35 . \mathrm{VIII} & = \\
36 . \mathrm{XIX} & = \\
37 . \mathrm{XX} & = \\
38 . \mathrm{XVIII} & = \\
39 . \mathrm{I} & = \\
40 . \mathrm{XV} & = \\
41 . \mathrm{III} & = \\
42 . \mathrm{V} & = \\
43 . \mathrm{IX} & = \\
44 . \mathrm{VII} & = \\
45 . \mathrm{XI} & = \\
46 . \mathrm{XIV} & = \\
47 . \mathrm{XVI} & = \\
48 . \mathrm{XII} & = \\
49 . \mathrm{XVII} & = \\
50 . \mathrm{XIII} & =
\end{array}
\]

To increase your abilities to use either system, convert the following Arabic numbers or Roman numerals.
51. \(19=\) \(\qquad\)
52. XII \(=\) \(\qquad\)
\(53.7=\) \(\qquad\)
54. IX = \(\qquad\)
55. IV \(=\) \(\qquad\)
56. \(11=\) \(\qquad\)
57. VIII \(=\) \(\qquad\)
```

58.16=

```
\(\qquad\)
```

59. XX =
```
\(\qquad\)
```

$60.5=$

``` \(\qquad\)
```

61. $\mathrm{I}=$
``` \(\qquad\)
```

62. $18=$
``` \(\qquad\)
```

63. VI $=$
``` \(\qquad\)
```

64. $2=$
``` \(\qquad\)
```

65. $\mathrm{III}=$
``` \(\qquad\)
```

66. $10=$
``` \(\qquad\)
```

67. XIII $=$
``` \(\qquad\)
```

68. $14=$
``` \(\qquad\)
```

69. $\mathrm{XV}=$
``` \(\qquad\)
```

70. $17=$
``` \(\qquad\)

\section*{FRAGTIONS}

Medication dosages with fractions are occasionally ordered by the physician or used by the pharmaceutical manufacturer on the drug label. A fraction is a number that represents part of a whole number and contains three parts:
1. Numerator-the number on the top portion of the fraction that represents the number of parts of the whole fraction.
2. Dividing line-the line separating the top portion of the fraction from the bottom portion of the fraction.
3. Denominator-the number on the bottom portion of the fraction that represents the number of parts into which the whole is divided.
\(\frac{3}{4}=\frac{\text { numerator }}{\text { denominator }}\)
To solve medication dosage calculation problems using dimensional analysis, you must be able to identify the numerator and denominator portion of the problem. You also must be able to multiply and divide numbers, fractions, and decimals.

\section*{Multiplying Fractions}

The three steps for multiplying fractions are:
1. Multiply the numerators.
2. Multiply the denominators.
3. Reduce the product to the lowest possible fraction.

\section*{EXAMPLE 1.4}
\(\frac{2}{4} \times \frac{1}{8}=\frac{2}{32}=\frac{1}{16}\)
or
\(\frac{2(\text { numerator })}{4(\text { denominator })} \times \frac{1(\text { numerator })}{8(\text { denominator })}=\frac{2(\text { numerator })}{32(\text { denominator })}\)
\(=\frac{1}{16}\) (reduced to lowest possible fraction)

\section*{EXAMPLE 1.5}
\(\frac{1}{2} \times \frac{2}{4}=\frac{2}{8}=\frac{1}{4}\)
or
\(\frac{1 \text { (numerator })}{2(\text { denominator })} \times \frac{2(\text { numerator })}{4(\text { denominator })}=\frac{2(\text { numerator })}{8(\text { denominator })}\)
\(=\frac{1}{4}(\) reduced to lowest possible fraction \()\)

\section*{Exercise 1.2 Multiplying Fractions}
(See pages 23-24 for answers)
To increase your abilities when working with fractions, multiply the following fractions and reduce to the lowest fractional term.
1. \(\frac{3}{4} \times \frac{5}{8}=\)
2. \(\frac{1}{3} \times \frac{4}{9}=\)
3. \(\frac{2}{3} \times \frac{4}{5}=\)
4. \(\frac{3}{4} \times \frac{1}{2}=\)
5. \(\frac{1}{8} \times \frac{4}{5}=\)
6. \(\frac{2}{3} \times \frac{5}{8}=\)
7. \(\frac{3}{8} \times \frac{2}{3}=\)
8. \(\frac{4}{7} \times \frac{2}{4}=\)
9. \(\frac{4}{5} \times \frac{1}{2}=\)
10. \(\frac{1}{4} \times \frac{1}{8}=\)

\section*{Dividing Fractions}

The four steps for dividing fractions are:
1. Invert (turn upside down) the divisor portion of the problem (the second fraction in the problem).
2. Multiply the two numerators.
3. Multiply the two denominators.
4. Reduce answer to lowest term (fraction or whole number).

\section*{EXAMPLE 1.6}
\[
\begin{aligned}
& \frac{2}{4} \div \frac{1}{8}=\frac{2}{4} \times \frac{8}{1}=\frac{16}{4}=4 \\
& \text { or } \\
& \frac{2(\text { numerator })}{4(\text { denominator })} \div \frac{1(\text { numerator })}{8(\text { denominator })} \\
& =\frac{2(\text { numerator }) \times 8(\text { (numerted fraction })}{4(\text { denominator }) \times 1(\text { denominator })=4} \\
& =4(\text { answer reduced to lowest term })
\end{aligned}
\]

\section*{EXAMPLE 1.7}
\[
\frac{1}{2} \div \frac{2}{4}=\frac{1}{2} \times \frac{4}{2}=\frac{4}{4}=1
\]
or
\[
\begin{aligned}
& \frac{1(\text { numerator })}{2(\text { denominator })} \div \frac{2(\text { numerator })}{4(\text { denominator })} \\
& =\frac{1(\text { numerator }) \times 4(\text { numerator })=4}{2(\text { denominator }) \times 2(\text { denominator })=4} \\
& =1(\text { answer reduced to lowest term })
\end{aligned}
\]

\section*{Exercise 1.3 Dividing Fractions}
(See page 24 for answers)
To increase your abilities when working with fractions, divide the following fractions and reduce to the lowest fractional term.
1. \(\frac{3}{4} \div \frac{2}{3}=\)
2. \(\frac{1}{9} \div \frac{3}{9}=\)
3. \(\frac{2}{3} \div \frac{1}{6}=\)
4. \(\frac{1}{5} \div \frac{4}{5}=\)
5. \(\frac{3}{6} \div \frac{4}{8}=\)
6. \(\frac{5}{8} \div \frac{5}{8}=\)
7. \(\frac{1}{8} \div \frac{2}{3}=\)
8. \(\frac{1}{5} \div \frac{1}{2}=\)
9. \(\frac{1}{4} \div \frac{1}{2}=\)
10. \(\frac{1}{6} \div \frac{1}{3}=\)

\section*{DECIMALS}

Medication orders are often written using decimals, and pharmaceutical manufacturers may use decimals when labeling medications. Therefore, you must understand the learning principles involving decimals and be able to multiply and divide decimals.
- A decimal point is preceded by a zero if not preceded by a number to decrease the chance of an error if the decimal point is missed.

\section*{EXAMPLE 1.8}
- A decimal point may be preceded by a number and followed by a number.

\section*{EXAMPLE 1.9}
1.25
- Numbers to the left of the decimal point are units, tens, hundreds, thousands, and ten-thousands.
- Numbers to the right of the decimal point are tenths, hundredths, thousandths, and ten-thousandths.

\section*{EXAMPLE 1.10}
```

    0.2 = 2 tenths
    0.05=5 hundredths
    0.25 = 25 hundredths
    1.25=1 unit and 25 hundredths
    110.25 = 110 units and 25 hundredths

```

\section*{Rounding Decimals}
- Decimals may be rounded off. If the number to the right of the decimal is greater than or equal to 5 , round up to the next number.
- If the number to the right of the decimal is less than 5, delete the remaining numbers.

\section*{EXAMPLE 1.11}
\(0.78=0.8\)
\(0.213=0.2\)

\section*{Exercise 1.4 Rounding Decimals}

\section*{(See page 24 for answers)}

Practice rounding off the following decimals to the tenth.
1. \(0.75=\)
2. \(0.88=\)
3. \(0.44=\)
4. \(0.23=\)
5. \(0.67=\)
6. \(0.27=\)
7. \(0.98=\)
8. \(0.92=\)
9. \(0.64=\)
10. \(0.250=\)

\section*{Multiplying Decimals}

When multiplying with decimals, the principles of multiplication still apply. The numbers are multiplied in columns, but the number of decimal points are counted and placed in the answer, counting places from right to left.

\section*{EXAMPLE 1.12}
2.3 (1 decimal point) \(\times 1.5\) (1 decimal point)
\(\overline{115}\)
230
3.45

\section*{Exercise 1.5 Multiplying Decimals}
(See pages 24-25 for answers)
Practice multiplying the following decimals.
1. 2.5
\(\times 4.6\)
2. 1.45
\(\times 0.25\)
3. 3.9
\(\times 0.8\)
4. 2.56
\(\times 0.45\)
5. 10.65
\(\times 0.05\)
6. 1.98
\(\times 3.10\)
7. 2.75
\(\times 5.0\)
8. 5.0
\(\times 0.45\)
9. 7.50
\(\times 0.25\)
10. 2.5
\(\times 0.01\)

\section*{Dividing Decimals}

When dividing with decimals, the principles of division still apply, except that the dividing number is changed to a whole number by moving the decimal point to the right. The number being divided also changes by accepting the same number of decimal point moves.

\section*{EXAMPLE 1.13}
\(0 . 5 \longdiv { 0 . 7 5 }\)
Step 1 Move decimal point one place to the right.
Step 2
\[
\begin{gathered}
1.5 \\
5 \longdiv { 7 . 5 } \\
\frac{5}{25} \\
\frac{25}{0}
\end{gathered}
\]
1.5

\section*{Exercise 1.6 Dividing Decimals}

Practice dividing the following decimals and rounding the answers to the tenth.
1. \(3 . 4 \longdiv { 9 . 6 }\)
2. \(0 . 2 5 \longdiv { 1 2 . 5 0 }\)
3. \(0 . 5 6 \longdiv { 1 8 . 6 5 }\)
4. \(0 . 3 \longdiv { 0 . 1 9 2 }\)
5. \(0 . 4 \longdiv { 1 2 . 4 3 }\)
6. \(0 . 5 \longdiv { 1 2 . 5 0 }\)
7. \(0 . 1 2 5 \longdiv { 0 . 2 5 }\)
8. \(0 . 0 8 \longdiv { 0 . 0 8 5 }\)
9. \(1 . 5 \longdiv { 2 2 . 5 }\)
10. \(5 . 5 \longdiv { 1 6 . 5 }\)

\section*{GONVERTING FRAGTIONS TO DEGIMALS}

When problem solving with dimensional analysis, medication dosage calculation problems may frequently contain both fractions and decimals. Some of you may have fraction phobia and prefer to convert fractions to decimals when solving problems. To convert a fraction to a decimal, divide the numerator portion of the fraction by the denominator portion of the fraction.

When dividing fractions, remember to add a decimal point and a zero if the numerator cannot be divided by the denominator.

PREVENTING MEDICATION ERRORS

Understanding the importance of converting fractions to decimals will assist in preventing medication errors. Many medication errors occur because of a simple arithmetic error with dividing. Every nurse should have a calculator to recheck answers for accuracy. If a recheck results in a different answer, the next recheck should include consulting with another nurse or pharmacist.

\section*{EXAMPLE 1.14}
\(\frac{1}{2}\) or \(\frac { 1 \text { (numerator) } } { 2 \text { (denominator) } } = 2 \longdiv { 0 . 5 } \begin{array} { l } { \frac { 0 . 5 } { 1 . 0 } } \\ { \frac { 1 0 } { } } \end{array} = 0 . 5\)

\section*{EXAMPLE1.15}
\[
\frac{3}{4} \text { or } \frac{3 \text { (numerator) }}{4 \text { (denominator) }}=4 \begin{aligned}
& \frac{0.75}{3.00} \\
& \frac{28}{20} \\
& \underline{20}
\end{aligned}
\]

\section*{Excreise 1.7 Converting Fractions to Decimals}
(See pages 27-28 for answers)

To decrease fraction phobia, practice converting the following fractions to decimals. Remember to follow the rules of rounding.
1. \(\frac{1}{8}=\)
2. \(\frac{1}{4}=\)
3. \(\frac{2}{5}=\)
4. \(\frac{3}{5}=\)
5. \(\frac{2}{3}=\)
6. \(\frac{6}{8}=\)
7. \(\frac{3}{8}=\)
8. \(\frac{1}{3}=\)
9. \(\frac{3}{6}=\)
10. \(\frac{2}{10}=\)

\section*{Summary}

This chapter has reviewed basic arithmetic that will assist you to successfully implement dimensional analysis as a problem-solving method for medication dosage calculations. To assess your understanding and retention, complete the following practice problems.

\section*{Practice Problems for Chepter 1}

\section*{Arithmetic Review}
(See pages 28-30 for answers)
Change the following Arabic numbers to Roman numerals.
1. \(2=\)
2. \(4=\)
3. \(5=\)
4. \(14=\)
5. \(19=\)
6. \(16=\)

Change the following Roman numerals to Arabic numbers.
7. VI \(=\)
8. IX \(=\)
9. XII \(=\)
10. XVII \(=\)
11. XIX =
12. \(\mathrm{XXV}=\)

Multiply the following fractions and reduce the answer to the lowest fractional term.
13. \(\frac{3}{4} \times \frac{2}{5}=\)
14. \(\frac{2}{3} \times \frac{5}{8}=\)
15. \(\frac{1}{2} \times \frac{2}{3}=\)
16. \(\frac{7}{8} \times \frac{1}{3}=\)
17. \(\frac{4}{5} \times \frac{2}{7}=\)
18. \(\frac{1}{8} \times \frac{1}{8}=\)

Divide the following fractions and reduce the answer to the lowest fractional term.
19. \(\frac{1}{2} \div \frac{3}{4}=\)
20. \(\frac{1}{3} \div \frac{7}{8}=\)
21. \(\frac{1}{5} \div \frac{1}{2}=\)
22. \(\frac{4}{8} \div \frac{2}{3}=\)
23. \(\frac{1}{3} \div \frac{2}{3}=\)
24. \(\frac{3}{4} \div \frac{7}{8}=\)

Multiply the following decimals.
25. 6.45
\(\times \underline{1.36}\)
26. 3.14
\(\times 2.20\)
27. 16.286
\(\times \underline{0.125}\)
28. 1.2
\(\times \underline{0.5}\)
29. 7.68
\(\times \underline{0.05}\)
30. 0.55
\(\times \underline{0.75}\)

Divide the following decimals.
31. \(0 . 5 \longdiv { 1 . 2 5 }\)
32. \(0 . 2 0 \longdiv { 4 0 . 8 0 }\)
33. \(0 . 1 2 5 \longdiv { 0 . 2 5 }\)
34. \(0 . 7 5 \longdiv { 0 . 1 2 5 }\)

\section*{SECTION 1 Clinical Calculations}
35. \(0 . 5 \longdiv { 7 . 3 0 }\)
36. \(0 . 3 \longdiv { 0 . 5 2 5 }\)

Convert the following fractions to decimals and round to the tenth.
37. \(\frac{1}{2}=\)
38. \(\frac{1}{3}=\)
39. \(\frac{3}{4}=\)
40. \(\frac{2}{3}=\)
41. \(\frac{1}{8}=\)
42. \(\frac{7}{8}=\)

\section*{Chapter 1 Post-Test}

Arithmetic Review

Name \(\qquad\) Date \(\qquad\)

Converting Between Arabic Numbers and Roman Numerals
1. \(4=\) \(\qquad\)
2. \(\mathrm{IX}=\) \(\qquad\)
Multiplying and Dividing Fractions
3. \(\frac{2}{4} \times \frac{1}{2}=\) \(\qquad\) 5. \(\frac{1}{6} \div \frac{1}{3}=\square\)
4. \(\frac{5}{6} \times \frac{3}{4}=\) \(\qquad\) 6. \(\frac{1}{150} \div \frac{1}{2}=\) \(\qquad\)

Converting Fractions to Decimals
7. \(\frac{1}{2}=\) \(\qquad\)
8. \(\frac{3}{4}=\) \(\qquad\)
9. \(\frac{2}{3}=\) \(\qquad\)
Multiplying and Dividing Decimals
10. \(0.25 \times 1.25=\) \(\qquad\)
11. \(0.125 \div 0.25=\) \(\qquad\)
12. \(1.5 \times 0.25=\) \(\qquad\)
13. \(0.125 \div 0.5=\) \(\qquad\)```

