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Preface	to	Third	Edition
There	are	a	new	features	added	to	this	third	edition.	The	new	development	platform	based
on	the	TM4C123	is	called	Tiva	LaunchPad.	Material	in	this	book	on	the	TM4C	also
applies	to	the	LM4F	because	Texas	Instruments	rebranded	the	LM4F	series	as	TM4C
(same	chips	new	name),	and	rebranded	StellarisWare™	as	TivaWare™.	These	new
microcontrollers	run	at	80	MHz,	include	single-precision	floating	point,	have	two	12-bit
ADCs,	and	support	DMA	and	USB.	A	wonderful	feature	of	these	new	boards	is	their	low
cost.	As	of	December	2013,	the	boards	are	available	on	TI.com	as	part	number	EK-
TM4C123GXL	for	$12.99.	They	are	also	available	from	$13	to	$24	at	regular	electronics
retailers	like	arrow.com,	newark.com,	mouser.com,	and	digikey.com.	The	book	can	be
used	with	either	a	LM3S	or	TM4C	microcontroller.	Although	this	edition	now	focuses	on
the	M4,	the	concepts	still	apply	to	the	M3,	and	the	web	site	associated	with	this	book	has
example	projects	based	on	the	LM3S811,	LM3S1968,	and	LM3S8962.



Preface	to	Fourth	Edition
This	fourth	edition	includes	the	new	TM4C1294-based	LaunchPad.	Most	of	the	code	in
the	book	is	specific	for	the	TM4C123-based	LaunchPad.	However,	the	book	website
includes	corresponding	example	projects	for	the	LM3S811,	LM3S1968,	LM4F120,	and
TM4C1294,	which	are	ARM ® 	Cortex™-M	microcontrollers	from	Texas	Instruments.
There	are	now	two	lost-cost	development	platforms	called	Tiva	LaunchPad.	The	EK-
TM4C123GXL	LaunchPad	retails	for	$12.99,	and	the	EK-TM4C1294XL	Connected
LaunchPad	retails	for	$19.99.	The	various	LM3S,	LM4F	and	TM4C	microcontrollers	are
quite	similar,	so	this	book	along	with	the	example	code	on	the	web	can	be	used	for	any	of
these	microcontrollers.	Compared	to	the	TM4C123,	the	new	TM4C1294	microcontroller
runs	faster,	has	more	RAM,	has	more	ROM,	includes	Ethernet,	and	has	more	I/O	pins.
This	fourth	edition	switches	the	syntax	from	C	to	the	industry-standard	C99,	adds	a	line-
tracking	robot,	designs	an	integral	controller	for	a	DC	motor,	and	includes	an	expanded
section	on	wireless	communication	and	Internet	of	Things.



Preface
Embedded	systems	are	a	ubiquitous	component	of	our	everyday	lives.	We	interact	with
hundreds	of	tiny	computers	every	day	that	are	embedded	into	our	houses,	our	cars,	our
toys,	and	our	work.	As	our	world	has	become	more	complex,	so	have	the	capabilities	of
the	microcontrollers	embedded	into	our	devices.	The	ARM ® 	CortexTM-M	family
represents	a	new	class	of	microcontrollers	much	more	powerful	than	the	devices	available
ten	years	ago.	The	purpose	of	this	book	is	to	present	the	design	methodology	to	train
young	engineers	to	understand	the	basic	building	blocks	that	comprise	devices	like	a	cell
phone,	an	MP3	player,	a	pacemaker,	antilock	brakes,	and	an	engine	controller.

This	book	is	the	second	in	a	series	of	three	books	that	teach	the	fundamentals	of	embedded
systems	as	applied	to	the	ARM ® 	CortexTM-M	family	of	microcontrollers.	The	three
books	are	primarily	written	for	undergraduate	electrical	and	computer	engineering
students.	They	could	also	be	used	for	professionals	learning	the	ARM	platform.	The	first
book	Embedded	Systems:	Introduction	to	ARM	Cortex-M	Microcontrollers	is	an
introduction	to	computers	and	interfacing	focusing	on	assembly	language	and	C
programming.	This	second	book	focuses	on	interfacing	and	the	design	of	embedded
systems.	The	third	book	Embedded	Systems:	Real-Time	Operating	Systems	for	ARM
Cortex-M	Microcontrollers	is	an	advanced	book	focusing	on	operating	systems,	high-
speed	interfacing,	control	systems,	and	robotics.		

An	embedded	system	is	a	system	that	performs	a	specific	task	and	has	a	computer
embedded	inside.	A	system	is	comprised	of	components	and	interfaces	connected	together
for	a	common	purpose.	This	book	presents	components,	interfaces	and	methodologies	for
building	systems.	Specific	topics	include	the	architecture	of	microcontrollers,	design
methodology,	verification,	hardware/software	synchronization,	interfacing	devices	to	the
computer,	timing	diagrams,	real-time	operating	systems,	data	collection	and	processing,
motor	control,	analog	filters,	digital	filters,	real-time	signal	processing,	wireless
communication,	and	the	internet	of	things.

In	general,	the	area	of	embedded	systems	is	an	important	and	growing	discipline	within
electrical	and	computer	engineering.	The	educational	market	of	embedded	systems	has
been	dominated	by	simple	microcontrollers	like	the	PIC,	the	9S12,	and	the	8051.	This	is
because	of	their	market	share,	low	cost,	and	historical	dominance.	However,	as	problems
become	more	complex,	so	must	the	systems	that	solve	them.	A	number	of	embedded
system	paradigms	must	shift	in	order	to	accommodate	this	growth	in	complexity.	First,	the
number	of	calculations	per	second	will	increase	from	millions/sec	to	billions/sec.
Similarly,	the	number	of	lines	of	software	code	will	also	increase	from	thousands	to
millions.	Thirdly,	systems	will	involve	multiple	microcontrollers	supporting	many
simultaneous	operations.	Lastly,	the	need	for	system	verification	will	continue	to	grow	as
these	systems	are	deployed	into	safety	critical	applications.	These	changes	are	more	than	a
simple	growth	in	size	and	bandwidth.	These	systems	must	employ	parallel	programming,
high-speed	synchronization,	real-time	operating	systems,	fault	tolerant	design,	priority
interrupt	handling,	and	networking.	Consequently,	it	will	be	important	to	provide	our
students	with	these	types	of	design	experiences.	The	ARM	platform	is	both	low	cost	and
provides	the	high	performance	features	required	in	future	embedded	systems.	Although
the	ARM	market	share	is	currently	not	huge,	its	share	will	grow.	Furthermore,	students



trained	on	the	ARM	will	be	equipped	to	design	systems	across	the	complete	spectrum
from	simple	to	complex.	The	purpose	of	writing	these	three	books	at	this	time	is	to	bring
engineering	education	into	the	21st	century.

This	book	employs	many	approaches	to	learning.	It	will	not	include	an	exhaustive
recapitulation	of	the	information	in	data	sheets.	First,	it	begins	with	basic	fundamentals,
which	allows	the	reader	to	solve	new	problems	with	new	technology.	Second,	the	book
presents	many	detailed	design	examples.	These	examples	illustrate	the	process	of	design.
There	are	multiple	structural	components	that	assist	learning.	Checkpoints,	with	answers
in	the	back,	are	short	easy	to	answer	questions	providing	immediate	feedback	while
reading.	Simple	homework,	with	answers	to	the	odd	questions	on	the	web,	provides	more
detailed	learning	opportunities.	The	book	includes	an	index	and	a	glossary	so	that
information	can	be	searched.	The	most	important	learning	experiences	in	a	class	like	this
are	of	course	the	laboratories.	Each	chapter	has	suggested	lab	assignments.	More	detailed
lab	descriptions	are	available	on	the	web.	Specifically,	look	at	the	lab	assignments	for
EE445L	and	EE445M.

There	is	a	web	site	accompanying	this	book	http://users.ece.utexas.edu/~valvano/arm.
Posted	here	are	ARM	KeilTM	uVision®	projects	for	each	the	example	programs	in	the
book.	Code	Composer	StudioTM	versions	are	also	available	for	most	examples.	You	will
also	find	data	sheets	and	Excel	spreadsheets	relevant	to	the	material	in	this	book.

These	three	books	will	cover	embedded	systems	for	ARM ® 	CortexTM-M
microcontrollers	with	specific	details	on	the	LM3S811,	LM3S1968,	LM3S8962,
LM4F120,	TM4C123,	and	TM4C1294.	Most	of	the	topics	can	be	run	on	the	low-cost
TM4C123.	Ethernet	examples	can	be	run	on	the	LM3S8962	and	TM4C1294.	In	these
books	the	terms	LM3S	and	LM4F	and	TM4C	will	refer	to	any	of	the	Texas	Instruments
ARM ® 	CortexTM-M	based	microcontrollers.	Although	the	solutions	are	specific	for	the
LM3S	LM4F	and	TM4C	families,	it	will	be	possible	to	use	these	books	for	other	ARM
derivatives.
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1.	Introduction	to	Embedded	Systems
Chapter	1	objectives	are	to:
•	Review	computer	architecture

•	Introduce	embedded	systems

•	Present	a	process	for	design

•	Discuss	practical	aspects	of	digital	logic,	including	open	collector

•	Review	how	numbers	are	represented	in	binary

•	Define	ethics
	

The	overall	objective	of	this	book	is	to	teach	the	design	of	embedded	systems.	It	is
effective	to	learn	new	techniques	by	doing	them.	But,	the	dilemma	in	teaching	a
laboratory-based	topic	like	embedded	systems	is	that	there	is	a	tremendous	volume	of
details	that	first	must	be	learned	before	hardware	and	software	systems	can	be	designed.	
The	approach	taken	in	this	book	is	to	learn	by	doing,	starting	with	very	simple	problems
and	building	up	to	more	complex	systems	later	in	the	book.

In	this	chapter	we	begin	by	introducing	some	terminology	and	basic	components	of	a
computer	system.		In	order	to	understand	the	context	of	our	designs,	we	will	overview	the
general	characteristics	of	embedded	systems.		It	is	in	these	discussions	that	we	develop	a
feel	for	the	range	of	possible	embedded	applications.		Next	we	will	present	a	template	to
guide	us	in	design.	We	begin	a	project	with	a	requirements	document.	Embedded	systems
interact	with	physical	devices.	Often,	we	can	describe	the	physical	world	with
mathematical	models.	If	a	model	is	available,	we	can	then	use	it	to	predict	how	the
embedded	system	will	interface	with	the	real	world.	When	we	write	software,	we
mistakenly	think	of	it	as	one	dimensional,	because	the	code	looks	sequential	on	the
computer	screen.	Data	flow	graphs,	call	graphs,	and	flow	charts	are	multidimensional
graphical	tools	to	understand	complex	behaviors.	Because	courses	taught	using	this	book
typically	have	a	lab	component,	we	will	review	some	practical	aspects	of	digital	logic.	

Next,	we	show	multiple	ways	to	represent	numbers	in	the	computer.	Choosing	the	correct
format	is	necessary	to	implement	efficient	and	correct	solutions.	Fixed-point	numbers	are
the	typical	way	embedded	systems	represent	non-integer	values.	Floating-point	numbers,
typically	used	to	represent	non-integer	values	on	a	general	purpose	computer,	will	also	be
presented.

Because	embedded	systems	can	be	employed	in	safety	critical	applications,	it	is	important
for	engineers	be	both	effective	and	ethical.	Throughout	the	book	we	will	present	ways	to
verify	the	system	is	operating	within	specifications.

	



1.1.	Computer	Architecture

1.1.1.	Computers,	microprocessors,	memory,	and
microcontrollers
A	computer	combines	a	processor,	random	access	memory	(RAM),	read	only	memory
(ROM),	and	input/output	(I/O)	ports.	The	common	bus	in	Figure	1.1	defines	the	von
Neumann	architecture,	where	instructions	are	fetched	from	ROM	on	the	same	bus	as	data
fetched	from	RAM.		Software	is	an	ordered	sequence	of	very	specific	instructions	that	are
stored	in	memory,	defining	exactly	what	and	when	certain	tasks	are	to	be	performed.	The
processor	executes	the	software	by	retrieving	and	interpreting	these	instructions	one	at	a
time.		A	microprocessor	is	a	small	processor,	where	small	refers	to	size	(i.e.,	it	fits	in	your
hand)	and	not	computational	ability.	For	example,	Intel	Xeon,	AMD	FX	and	Sun	SPARC
are	microprocessors.	An	ARM ® 	CortexTM-M	microcontroller	includes	a	processor
together	with	the	bus	and	some	peripherals.	A	microcomputer	is	a	small	computer,	where
again	small	refers	to	size	(i.e.,	you	can	carry	it)	and	not	computational	ability.	For
example,	a	desktop	PC	is	a	microcomputer.

Figure	1.1.	The	basic	components	of	a	computer	system	include	processor,
memory	and	I/O.
A	very	small	microcomputer,	called	a	microcontroller,	contains	all	the	components	of	a
computer	(processor,	memory,	I/O)	on	a	single	chip.		As	shown	in	Figure	1.2,	the	Atmel
ATtiny,	the	Texas	Instruments	MSP430,	and	the	Texas	Instruments	TM4C123	are
examples	of	microcontrollers.		Because	a	microcomputer	is	a	small	computer,	this	term
can	be	confusing	because	it	is	used	to	describe	a	wide	range	of	systems	from	a	6-pin
ATtiny4	running	at	1	MHz	with	512	bytes	of	program	memory	to	a	personal	computer
with	state-of-the-art	64-bit	multi-core	processor	running	at	multi-GHz	speeds	having
terabytes	of	storage.	



The	computer	can	store	information	in	RAM	by	writing	to	it,	or	it	can	retrieve	previously
stored	data	by	reading	from	it.		Most	RAMs	are	volatile;	meaning	if	power	is	interrupted
and	restored	the	information	in	the	RAM	is	lost.	Most	microcontrollers	have	static	RAM
(SRAM)	using	six	metal-oxide-semiconductor	field-effect	transistors	(MOSFET)	to	create
each	memory	bit.	Four	transistors	are	used	to	create	two	cross-coupled	inverters	that	store
the	binary	information,	and	the	other	two	are	used	to	read	and	write	the	bit.

Figure	1.2.	A	microcontroller	is	a	complete	computer	on	a	single	chip.
Information	is	programmed	into	ROM	using	techniques	more	complicated	than	writing	to
RAM.		From	a	programming	viewpoint,	retrieving	data	from	a	ROM	is	identical	to
retrieving	data	from	RAM.	ROMs	are	nonvolatile;	meaning	if	power	is	interrupted	and
restored	the	information	in	the	ROM	is	retained.	Some	ROMs	are	programmed	at	the
factory	and	can	never	be	changed.		A	Programmable	ROM	(PROM)	can	be	erased	and
reprogrammed	by	the	user,	but	the	erase/program	sequence	is	typically	10000	times
slower	than	the	time	to	write	data	into	a	RAM.		PROMs	used	to	need	ultraviolet	light	to
erase,	and	then	we	programmed	them	with	voltages.		Now,	most	PROMs	now	are
electrically	erasable	(EEPROM),	which	means	they	can	be	both	erased	and	programmed
with	voltages.	We	cannot	program	ones	into	the	ROM.	We	first	erase	the	ROM,	which
puts	ones	into	its	storage	memory,	and	then	we	program	the	zeros	as	needed.	Flash	ROM
is	a	popular	type	of	EEPROM.	Each	flash	bit	requires	only	two	MOSFET	transistors.	The
input	(gate)	of	one	transistor	is	electrically	isolated,	so	if	we	trap	charge	on	this	input,	it
will	remain	there	for	years.	The	other	transistor	is	used	to	read	the	bit	by	sensing	whether
or	not	the	other	transistor	has	trapped	charge.		In	regular	EEPROM,	you	can	erase	and
program	individual	bytes.	Flash	ROM	must	be	erased	in	large	blocks.	On	many	of
LM3S/LM4F/TM4C	microcontrollers,	we	can	erase	the	entire	ROM	or	just	a	1024-byte
block.	Because	flash	is	smaller	than	regular	EEPROM,	most	microcontrollers	have	a	large
flash	into	which	we	store	the	software.	For	all	the	systems	in	this	book,	we	will	store
instructions	and	constants	in	flash	ROM	and	place	variables	and	temporary	data	in	static
RAM.	

Checkpoint	1.1:	What	are	the	differences	between	a	microcomputer,	a	microprocessor
and	a	microcontroller?	

Checkpoint	1.2:	Which	has	a	higher	information	density	on	the	chip	in	bits	per	mm2:
static	RAM	or	flash	ROM?		Assume	all	MOSFETs	are	approximately	the	same	size	in
mm2.

Observation:	Memory	is	an	object	that	can	transport	information	across	time.



The	external	devices	attached	to	the	microcontroller	provide	functionality	for	the	system.
An	input	port	is	hardware	on	the	microcontroller	that	allows	information	about	the
external	world	to	be	entered	into	the	computer.	The	microcontroller	also	has	hardware
called	an	output	port	to	send	information	out	to	the	external	world.	Most	of	the	pins
shown	in	Figure	1.2	are	input/output	ports.	

An	interface	is	defined	as	the	collection	of	the	I/O	port,	external	electronics,	physical
devices,	and	the	software,	which	combine	to	allow	the	computer	to	communicate	with	the
external	world.	An	example	of	an	input	interface	is	a	switch,	where	the	operator	toggles
the	switch,	and	the	software	can	recognize	the	switch	position.	An	example	of	an	output
interface	is	a	light-emitting	diode	(LED),	where	the	software	can	turn	the	light	on	and	off,
and	the	operator	can	see	whether	or	not	the	light	is	shining.		There	is	a	wide	range	of
possible	inputs	and	outputs,	which	can	exist	in	either	digital	or	analog	form.	In	general,	we
can	classify	I/O	interfaces	into	four	categories

Parallel	-	binary	data	are	available	simultaneously	on	a	group	of	lines

Serial	-	binary	data	are	available	one	bit	at	a	time	on	a	single	line

Analog	-	data	are	encoded	as	an	electrical	voltage,	current,	or	power

Time	-	data	are	encoded	as	a	period,	frequency,	pulse	width,	or	phase	shift

	

Checkpoint	1.3:	What	are	the	differences	between	an	input	port	and	an	input	interface?	

Checkpoint	1.4:	List	three	input	interfaces	available	on	a	personal	computer.

Checkpoint	1.5:	List	three	output	interfaces	available	on	a	personal	computer.

In	this	book,	numbers	that	start	with	0x	(e.g.,	0x64)	are	specified	in	hexadecimal,	which
is	base	16	(0x64	=	6*161+4*160	=	100).	Some	assemblers	start	hexadecimal	numbers	with
$	(e.g.,	$64).	Other	assembly	languages	add	an	“H”	at	the	end	to	specify	hexadecimal
(e.g.,	64H	or	64h).	Yale	Patt’s	LC3	assembler	uses	just	the	“x”	(e.g.,	x64).

In	a	system	with	memory	mapped	I/O,	as	shown	in	Figure	1.1,	the	I/O	ports	are
connected	to	the	processor	in	a	manner	similar	to	memory.	I/O	ports	are	assigned
addresses,	and	the	software	accesses	I/O	using	reads	and	writes	to	the	specific	I/O
addresses.		The	software	inputs	from	an	input	port	using	the	same	instructions	as	it	would
if	it	were	reading	from	memory.	Similarly,	the	software	outputs	from	an	output	port	using
the	same	instructions	as	it	would	if	it	were	writing	to	memory.	A	bus	is	defined	as	a
collection	of	signals,	which	are	grouped	for	a	common	purpose.	The	bus	has	three	types	of
signals:	address	signals,	data	signals,	and	control	signals.		Together,	the	bus	directs	the
data	transfer	between	the	various	modules	in	the	computer.	There	are	five	buses	on
ARM ® 	CortexTM-M	processor,	as	illustrated	in	Figure	1.3.	The	address	specifies	which
module	is	being	accessed,	and	the	data	contains	the	information	being	transferred.	The
control	signals	specify	the	direction	of	transfer,	the	size	of	the	data,	and	timing
information.	The	ICode	bus	is	used	to	fetch	instructions	from	flash	ROM.	All	ICode	bus
fetches	contain	32	bits	of	data,	which	may	be	one	or	two	instructions.	The	DCode	bus	can
fetch	data	or	debug	information	from	flash	ROM.	The	system	bus	can	read/write	data
from	RAM	or	I/O	ports.	The	private	peripheral	bus	(PPB)	can	access	some	of	the



common	peripherals	like	the	interrupt	controller.	The	multiple-bus	architecture	allows
simultaneous	bus	activity,	greatly	improving	performance	over	single-bus	architectures.
For	example,	the	processor	can	simultaneously	fetch	an	instruction	out	of	flash	ROM
using	the	ICode	bus	while	it	writes	data	into	RAM	using	the	system	bus.	From	a	software
development	perspective,	the	fact	that	there	are	multiple	buses	is	transparent.	This	means
we	write	code	like	we	would	on	any	computer,	and	the	parallel	operations	occur
automatically.	The	TM4C123	has	256	kibibytes	(218	bytes)	of	flash	ROM	and	32768	bytes
of	RAM.	The	TM4C1294	has	1024	kibibytes	(220	bytes)	of	flash	ROM	and	256	kibibytes
of	RAM.	The	RAM	begins	at	0x2000.0000,	and	the	flash	ROM	begins	at	0x0000.0000.

	 TM4C123 	 	 TM4C1294

0x0000.0000 256k 	 0x0000.0000 1024k

∙∙∙ Flash 	 ∙∙∙ Flash

0x0003.FFFF ROM 	 0x000F.FFFF ROM

	 	 	 	 	

0x2000.0000 32k 	 0x2000.0000 256k

∙∙∙ Static 	 ∙∙∙ Static

0x2000.7FFF RAM 	 0x2003.FFFF RAM

	

Figure	1.3.	Harvard	architecture	of	an	ARM®Cortex� -M-based
microcontroller.
The	CortexTM-M4	series	includes	an	additional	bus	called	the	Advanced	High-
Performance	Bus	(AHB	or	AHPB).	This	bus	improves	performance	when	communicating
with	high-speed	I/O	devices	like	USB.		In	general,	the	more	operations	that	can	be
performed	in	parallel,	the	faster	the	processor	will	execute.	In	summary:

ICode	bus														Fetch	opcodes	from	ROM



DCode	bus														Read	constant	data	from	ROM

System	bus														Read/write	data	from	RAM	or	I/O,	fetch	opcode	from	RAM

PPB																												Read/write	data	from	internal	peripherals	like	the	NVIC

AHB																												Read/write	data	from	high-speed		I/O	and	parallel	ports	(M4	only)

	

Instructions	and	data	are	accessed	the	same	way	on	a	von	Neumann	machine.	The
CortexTM-M	processor	is	a	Harvard	architecture	because	instructions	are	fetched	on	the
ICode	bus	and	data	accessed	on	the	system	bus.	The	address	signals	on	the	ARM ®
CortexTM-M	processor	include	32	lines,	which	together	specify	the	memory	address
(0x0000.0000	to	0xFFFF.FFFF)	that	is	currently	being	accessed.	The	address	specifies
both	which	module	(input,	output,	RAM,	or	ROM)	as	well	as	which	cell	within	the
module	will	communicate	with	the	processor.	The	data	signals	contain	the	information	that
is	being	transferred	and	also	include	32	bits.	However,	on	the	system	bus	it	can	also
transfer	8-bit	or	16-bit	data.	The	control	signals	specify	the	timing,	the	size,	and	the
direction	of	the	transfer.	We	call	a	complete	data	transfer	a	bus	cycle.	Two	types	of
transfers	are	allowed,	as	shown	in	Table	1.1.	In	most	systems,	the	processor	always
controls	the	address	(where	to	access),	the	direction	(read	or	write),	and	the	control	(when
to	access.)	

Type Address	Driven
by

Data	Driven	by Transfer

Read	Cycle Processor RAM,	ROM	or
Input

Data	copied	to
processor

Write	Cycle Processor Processor Data	copied	to	output
or	RAM

Table	1.1.	Simple	computers	generate	two	types	of	bus	cycles.

	

A	read	cycle	is	used	to	transfer	data	into	the	processor.	During	a	read	cycle	the	processor
first	places	the	address	on	the	address	signals,	and	then	the	processor	issues	a	read
command	on	the	control	signals.	The	slave	module	(RAM,	ROM,	or	I/O)	will	respond	by
placing	the	contents	at	that	address	on	the	data	signals,	and	lastly	the	processor	will	accept
the	data	and	disable	the	read	command.

The	processor	uses	a	write	cycle	to	store	data	into	memory	or	I/O.	During	a	write	cycle
the	processor	also	begins	by	placing	the	address	on	the	address	signals.		Next,	the
processor	places	the	information	it	wishes	to	store	on	the	data	signals,	and	then	the
processor	issues	a	write	command	on	the	control	signals.	The	memory	or	I/O	will	respond
by	storing	the	information	into	the	proper	place,	and	after	the	processor	is	sure	the	data	has
been	captured,	it	will	disable	the	write	command.



The	bandwidth	of	an	I/O	interface	is	the	number	of	bytes/sec	that	can	be	transferred.	If
we	wish	to	transfer	data	from	an	input	device	into	RAM,	the	software	must	first	transfer
the	data	from	input	to	the	processor,	then	from	the	processor	into	RAM.	On	the	ARM,	it
will	take	multiple	instructions	to	perform	this	transfer.	The	bandwidth	depends	both	on	the
speed	of	the	I/O	hardware	and	the	software	performing	the	transfer.	In	some
microcontrollers	like	the	TM4C123	and	TM4C1294,	we	will	be	able	to	transfer	data
directly	from	input	to	RAM	or	RAM	to	output	using	direct	memory	access	(DMA).	When
using	DMA	the	software	time	is	removed,	so	the	bandwidth	only	depends	on	the	speed	of
the	I/O	hardware.	Because	DMA	is	faster,	we	will	use	this	method	to	interface	high
bandwidth	devices	like	disks	and	networks.		During	a	DMA	read	cycle	data	flows	directly
from	the	memory	to	the	output	device.	General	purpose	computers	also	support	DMA
allowing	data	to	be	transferred	from	memory	to	memory.	During	a	DMA	write	cycle	data
flows	directly	from	the	input	device	to	memory.

Input/output	devices	are	important	in	all	computers,	but	they	are	especially	significant	in
an	embedded	system.	In	a	computer	system	with	I/O-mapped	I/O,	the	control	bus	signals
that	activate	the	I/O	are	separate	from	those	that	activate	the	memory	devices.	These
systems	have	a	separate	address	space	and	separate	instructions	to	access	the	I/O	devices.
The	original	Intel	8086	had	four	control	bus	signals	MEMR,	MEMW,	IOR,	and	IOW.
MEMR	and	MEMW	were	used	to	read	and	write	memory,	while	IOR	and	IOW	were	used
to	read	and	write	I/O.	The	Intel	x86	refers	to	any	of	the	processors	that	Intel	has	developed
based	on	this	original	architecture.	Even	though	we	do	not	consider	the	personal	computer
(PC)	an	embedded	system,	there	are	embedded	systems	developed	on	this	architecture.
One	such	platform	is	called	the	PC/104	Embedded-PC.	The	Intel	x86	processors	continue
to	implement	this	separation	betweenmemory	and	I/O.	Rather	than	use	the	regular
memory	access	instructions,	the	Intel	x86	processor	uses	special in and out 	instructions	to
access	the	I/O	devices.	The	advantages	of	I/O-mapped	I/O	are	that	software	can	not
inadvertently	access	I/O	when	it	thinks	it	is	accessing	memory.	In	other	words,	it	protects
I/O	devices	from	common	software	bugs,	such	as	bad	pointers,	stack	overflow,	and	buffer
overflows.	In	contrast,	systems	with	memory-mapped	I/O	are	easier	to	design,	and	the
software	is	easier	to	write.

1.1.2.	CortexTM-M	processor
The	ARM ® 	CortexTM-M	processor	has	four	major	components,	as	illustrated	in	Figure
1.4.	There	are	four	bus	interface	units	(BIU)	that	read	data	from	the	bus	during	a	read
cycle	and	write	data	onto	the	bus	during	a	write	cycle.	Both	the	TM4C123	and	TM4C1294
microcontrollers	support	DMA.	The	BIU	always	drives	the	address	bus	and	the	control
signals	of	the	bus.	The	effective	address	register	(EAR)	contains	the	memory	address
used	to	fetch	the	data	needed	for	the	current	instruction.	CortexTM-M	microcontrollers
executeThumb ® 	instructions	extended	with	Thumb-2	technology.	An	overview	of	these
instructions	will	be	presented	in	Chapter	2.	The	CortexTM-M4F	microcontrollers	include	a
floating-point	processor.	However,	in	this	book	we	will	focus	on	integer	and	fixed-point
arithmetic.



Figure	1.4.	The	four	basic	components	of	a	processor.
The	control	unit	(CU)	orchestrates	the	sequence	of	operations	in	the	processor.	The	CU
issues	commands	to	the	other	three	components.	The	instruction	register	(IR)	contains
the	operation	code	(or	op	code)	for	the	current	instruction.	When	extended	with	Thumb-2
technology,	op	codes	are	either	16	or	32	bits	wide.		In	an	embedded	system	the	software	is
converted	to	machine	code,	which	is	a	list	of	instructions,	and	stored	in	nonvolatile	flash
ROM.	As	instructions	are	fetched,	they	are	placed	in	a	pipeline.	This	allows	instruction
fetching	to	run	ahead	of	execution.	Instructions	are	fetched	in	order	and	executed	in	order.
However,	it	can	execute	one	instruction	while	fetching	the	next.

The	registers	are	high-speed	storage	devices	located	in	the	processor	(e.g.,	R0	to	R15).
Registers	do	not	have	addresses	like	regular	memory,	but	rather	they	have	specific
functions	explicitly	defined	by	the	instruction.	Registers	can	contain	data	or	addresses.
The	program	counter	(PC)	points	to	the	memory	containing	the	instruction	to	execute
next.	On	the	ARM ® 	CortexTM-M	processor,	the	PC	is	register	15	(R15).	In	an	embedded
system,	the	PC	usually	points	into	nonvolatile	memory	like	flash	ROM.	The	information
stored	in	nonvolatile	memory	(e.g.,	the	instructions)	is	not	lost	when	power	is	removed.
The	stack	pointer	(SP)	points	to	the	RAM,	and	defines	the	top	of	the	stack.	The	stack
implements	last	in	first	out	(LIFO)	storage.	On	the	ARM ® 	CortexTM-M	processor,	the	SP
is	register	13	(R13).	The	stack	is	an	extremely	important	component	of	software
development,	which	can	be	used	to	pass	parameters,	save	temporary	information,	and
implement	local	variables.	The	program	status	register	(PSR)	contains	the	status	of	the
previous	operation,	as	well	as	some	operating	mode	flags	such	as	the	interrupt	enable	bit.
This	register	is	called	the	flag	register	on	the	Intel	computers.

The	arithmetic	logic	unit	(ALU)	performs	arithmetic	and	logic	operations.	Addition,
subtraction,	multiplication	and	division	are	examples	of	arithmetic	operations.	And,	or,
exclusive	or,	and	shift	are	examples	of	logical	operations.

		Checkpoint	1.6:	For	what	do	the	acronyms	CU	DMA	BIU	ALU	stand?

In	general,	the	execution	of	an	instruction	goes	through	four	phases.	First,	the	computer
fetches	the	machine	code	for	the	instruction	by	reading	the	value	in	memory	pointed	to	by
the	program	counter	(PC).	Some	instructions	are	16	bits,	while	others	are	32	bits.	After
each	instruction	is	fetched,	the	PC	is	incremented	to	the	next	instruction.	At	this	time,	the
instruction	is	decoded,	and	the	effective	address	is	determined	(EAR).	Many	instructions
require	additional	data,	and	during	phase	2	the	data	is	retrieved	from	memory	at	the
effective	address.	Next,	the	actual	function	for	this	instruction	is	performed.	During	the
last	phase,	the	results	are	written	back	to	memory.	All	instructions	have	a	phase	1,	but	the
other	three	phases	may	or	may	not	occur	for	any	specific	instruction.



On	the	ARM ® 	CortexTM-M	processor,	an	instruction	may	read	memory	or	write	memory,
but	it	does	not	both	read	and	write	memory	in	the	same	instruction.	Each	of	the	phases
may	require	one	or	more	bus	cycles	to	complete.	Each	bus	cycle	reads	or	writes	one	piece
of	data.	Because	of	the	multiple	bus	architecture,	most	instructions	execute	in	one	or	two
cycles.	For	more	information	on	the	time	to	execute	instructions,	see	Table	3.1	in	the
CortexTM-M	Technical	Reference	Manual.	ARM	is	a	reduced	instruction	set	computer
(RISC),	which	achieves	high	performance	by	implementing	very	simple	instructions	that
run	extremely	fast.

Phase Function Bus Address Comment

		1 Instruction
fetch

Read PC++ Put	into	IR

		2 Data	read Read EAR Data	passes	through
ALU

		3 Operation - - ALU	operations,	set
PSR

		4 Data	store Write EAR Results	stored	in
memory

Table	1.2.	Four	phases	of	execution.

An	instruction	on	a	RISC	processor	does	not	have	both	a	phase	2	data	read	cycle	and	a
phase	4	data	write	cycle.	In	general,	a	RISC	processor	has	a	small	number	of	instructions,
instructions	have	fixed	lengths,	instructions	execute	in	1	or	2	bus	cycles,	there	are	only	a
few	instructions	(e.g.,	load	and	store)	that	can	access	memory,	no	one	instruction	can	both
read	and	write	memory	in	the	same	instruction,	there	are	many	identical	general	purpose
registers,	and	there	are	a	limited	number	of	addressing	modes.

Conversely,	processors	are	classified	as	complex	instruction	set	computers	(CISC),
because	one	instruction	is	capable	of	performing	multiple	memory	operations.	For
example,	CISC	processors	have	instructions	that	can	both	read	and	write	memory	in	the
same	instruction.	Assume Data 	is	an	8-bit	memory	variable.	The	following	Intel	8080
instruction	will	increment	the	8-bit	variable,	requiring	a	read	memory	cycle,	ALU
operation,	and	then	a	write	memory	cycle.

		INR	Data					;	Intel	8080
	



Other	CISC	processors	like	the	6800,	9S12,	8051,	and	Pentium	also	have	memory
increment	instructions	requiring	both	a	phase	2	data	read	cycle	and	a	phase	4	data	write
cycle.	In	general,	a	CISC	processor	has	a	large	number	of	instructions,	instructions	have
varying	lengths,	instructions	execute	in	varying	times,	there	are	many	instructions	that	can
access	memory,	the	processor	can	both	read	and	write	memory	in	one	instruction,	the
processor	has	fewer	and	more	specialized	registers,	and	the	processor	has	many	addressing
modes.

1.1.3.	History
In	1968,	two	unhappy	engineers	named	Bob	Noyce	and	Gordon	Moore	left	the	Fairchild
Semiconductor	Company	and	created	their	own	company,	which	they	called	Integrated
Electronics	(Intel).	Working	for	Intel	in	1971,	Federico	Faggin,	Ted	Hoff,	and	Stan	Mazor
invented	the	first	single	chip	microprocessor,	the	Intel	4004.	It	was	a	four-bit	processor
designed	to	solve	a	very	specific	application	for	a	Japanese	company	called	Busicon.
Busicon	backed	out	of	the	purchase,	so	Intel	decided	to	market	it	as	a	“general	purpose”
microprocessing	system.		The	product	was	a	success,	which	lead	to	a	series	of	more
powerful	microprocessors:	the	Intel	8008	in	1974,	the	Intel	8080	also	in	1974.		Both	the
Intel	8008	and	the	Intel	8080	were	8-bit	microprocessors	that	operated	from	a	single	+5V
power	supply	using	N-channel	metal-oxide	semiconductor	(NMOS)	technology.

Seeing	the	long	term	potential	for	this	technology,	Motorola	released	its	MC6800	in	1974,
which	was	also	an	8-bit	processor	with	about	the	same	capabilities	of	the	8080.		Although
similar	in	computing	power,	the	8080	and	6800	had	very	different	architectures.		The	8080
used	isolated	I/O	and	handled	addresses	in	a	fundamentally	different	way	than	data.
Isolated	I/O	defines	special	hardware	signals	and	special	instructions	for	input/output.		On
the	8080,	certain	registers	had	capabilities	designed	for	addressing,	while	other	registers
had	capabilities	for	specific	for	data	manipulation.	In	contrast,	the	6800	used	memory-
mapped	I/O	and	handled	addresses	and	data	in	a	similar	way.		As	we	defined	earlier,
input/output	on	a	system	with	memory-mapped	I/O	is	performed	in	a	manner	similar	to
accessing	memory.															

During	the	1980s	and	1990s,	Motorola	and	Intel	traveled	down	similar	paths.	The
microprocessor	families	from	both	companies	developed	bigger	and	faster	products:	Intel
8085,	8088,	80x86,	…	and	the	Motorola	6809,	68000,	680x0…	During	the	early	1980’s
another	technology	emerged,	the	microcontroller.		In	sharp	contrast	to	the	microprocessor
family,	which	optimized	computational	speed	and	memory	size	at	the	expense	of	power
and	physical	size,	the	microcontroller	devices	minimized	power	consumption	and	physical
size,	striving	for	only	modest	increases	in	computational	speed	and	memory	size.	Out	of
the	Intel	architecture	came	the	8051	family	(www.semiconductors.philips.com),	and	out	of
the	Motorola	architecture	came	the	6805,	6811,	and	6812	microcontroller	family
(www.freescale.com).	Many	of	the	same	fundamental	differences	that	existed	between	the
original	8-bit	Intel	8080	and	Motorola	6800	have	persisted	over	forty	years	of
microprocessor	and	microcontroller	developments.		In	1999,	Motorola	shipped	its	2
billionth	MC68HC05	microcontroller.	In	2004,	Motorola	spun	off	its	microcontroller
products	as	Freescale	Semiconductor.	Microchip	is	a	leading	supplier	of	8-bit
microcontrollers.



The	first	ARM	processor	was	conceived	in	the	1983	by	Acorn	Computers,	which	at	the
time	was	one	of	the	leaders	of	business	computers	in	the	United	Kingdom.	The	first	chips
were	delivered	in	1985.	At	that	time	ARM	referred	to	Acorn	RISC	Machine.	In	1990,	a
new	company	ARM	Ltd	was	formed	with	Acorn,	Apple,	and	VLSI	Technology	as
founding	partners,	changing	the	ARM	acronym	to	Advanced	RISC	Machine.	As	a
company,	the	ARM	business	model	involves	the	designing	and	licensing	of	intellectual
property	(IP)	rather	than	the	manufacturing	and	selling	of	actual	semiconductor	chips.
ARM	has	sold	600	processor	licenses	to	more	than	200	companies.	Virtually	every
company	that	manufacturers	integrated	circuits	in	the	computer	field	produces	a	variant	of
the	ARM	processor.	ARM	currently	dominates	the	high-performance	low-power
embedded	system	market.	ARM	processors	account	for	approximately	90%	of	all
embedded	32-bit	RISC	processors	and	are	used	in	consumer	electronics,	including	PDAs,
cell	phones,	music	players,	hand-held	game	consoles,	and	calculators.	The	ARM	Cortex-A
is	used	in	applications	processors,	such	as	smartphones.	The	ARM	Cortex-R	is	appropriate
for	real-time	applications,	and	ARM	Cortex-M	targets	microcontrollers.	Examples	of
microcontrollers	built	using	the	ARM ® 	CortexTM-M	core	are	LM3S/TM4C	by	Texas
Instruments,	STM32	by	STMicroelectronics,	LPC17xx	by	NXP	Semiconductors,
TMPM330	by	Toshiba,	EM3xx	by	Ember,	AT91SAM3	by	Atmel,	and	EFM32	by	Energy
Micro.	As	of	June	2014	over	50	billion	ARM	processors	have	shipped	from	over	950
companies.

What	will	the	future	unfold?	One	way	to	predict	the	future	is	to	study	the	past.	How
embedded	systems	interact	with	humans	has	been	and	will	continue	to	be	critical.
Improving	the	human	experience	has	been	the	goal	of	many	systems.	Many	predict	the
number	of	microcontrollers	will	soon	reach	into	the	trillions.	As	this	happens,
communication,	security,	energy,	politics,	resources,	and	economics	will	be	become
increasingly	important.	When	there	are	this	many	computers,	it	will	be	possible	to	make
guesses	about	how	to	change,	then	let	a	process	like	evolution	select	which	changes	are
beneficial.	In	fact,	a	network	of	embedded	systems	with	tight	coupling	to	the	real	world,
linked	together	for	a	common	objective,	is	now	being	called	a	cyber-physical	system
(CPS).

One	constant	describing	the	history	of	computers	is	continuous	change	coupled	with
periodic	monumental	changes.	Therefore,	engineers	must	focus	their	education	on
fundamental	principles	rather	than	the	voluminous	details.	They	must	embrace	the	concept
of	lifelong	learning.	Most	humans	are	fundamentally	good,	but	some	are	not.	Therefore,
engineers	acting	in	an	ethical	manner	can	guarantee	future	prosperity	of	the	entire	planet.		



1.2.	Embedded	Systems
An	embedded	system	is	an	electronic	system	that	includes	a	one	or	more	microcontrollers
that	is	configured	to	perform	a	specific	dedicated	application,	drawn	previously	as	Figure
1.1.	To	better	understand	the	expression	“embedded	system,”	consider	each	word
separately.	In	this	context,	the	word	embedded	means	“a	computer	is	hidden	inside	so	one
can’t	see	it.”	The	word	“system”	refers	to	the	fact	that	there	are	many	components	which
act	in	concert	achieving	the	common	goal.		As	mentioned	earlier,	input/output	devices
characterize	the	embedded	system,	allowing	it	to	interact	with	the	real	world.

The	software	that	controls	the	system	is	programmed	or	fixed	into	flash	ROM	and	is	not
accessible	to	the	user	of	the	device.		Even	so,	software	maintenance	is	still	extremely
important.		Software	maintenance	is	verification	of	proper	operation,	updates,	fixing	bugs,
adding	features,	and	extending	to	new	applications	and	end	user	configurations.
Embedded	systems	have	these	four	characteristics.

First,	embedded	systems	typically	perform	a	single	function.	Consequently,	they	solve	a
limited	range	of	problems.	For	example,	the	embedded	system	in	a	microwave	oven	may
be	reconfigured	to	control	different	versions	of	the	oven	within	a	similar	product	line.	But,
a	microwave	oven	will	always	be	a	microwave	oven,	and	you	can’t	reprogram	it	to	be	a
dishwasher.	Embedded	systems	are	unique	because	of	the	microcontroller’s	I/O	ports	to
which	the	external	devices	are	interfaced.	This	allows	the	system	to	interact	with	the	real
world.

Second,	embedded	systems	are	tightly	constrained.	Typically,	system	must	operate	within
very	specific	performance	parameters.	If	an	embedded	system	cannot	operate	with
specifications,	it	is	considered	a	failure	and	will	not	be	sold.	For	example,	a	cell-phone
carrier	typically	gets	832	radio	frequencies	to	use	in	a	city,	a	hand-held	video	game	must
cost	less	than	$50,	an	automotive	cruise	control	system	must	operate	the	vehicle	within	3
mph	of	the	set-point	speed,	and	a	portable	MP3	player	must	operate	for	12	hours	on	one
battery	charge.

Third,	many	embedded	systems	must	operate	in	real-time.		In	a	real-time	system,	we	can
put	an	upper	bound	on	the	time	required	to	perform	the	input-calculation-output	sequence.
A	real-time	system	can	guarantee	a	worst	case	upper	bound	on	the	response	time	between
when	the	new	input	information	becomes	available	and	when	that	information	is
processed.	Another	real-time	requirement	that	exists	in	many	embedded	systems	is	the
execution	of	periodic	tasks.	A	periodic	task	is	one	that	must	be	performed	at	equal	time
intervals.	A	real-time	system	can	put	a	small	and	bounded	limit	on	the	time	error	between
when	a	task	should	be	run	and	when	it	is	actually	run.	Because	of	the	real-time	nature	of
these	systems,	microcontrollers	in	the	TM4C	family	have	a	rich	set	of	features	to	handle
all	aspects	of	time.



The	fourth	characteristic	of	embedded	systems	is	their	small	memory	requirements	as
compared	to	general	purpose	computers.	There	are	exceptions	to	this	rule,	such	as	those
which	process	video	or	audio,	but	most	have	memory	requirements	measured	in	thousands
of	bytes.	Over	the	years,	the	memory	in	embedded	systems	as	increased,	but	the	gap
memory	size	between	embedded	systems	and	general	purpose	computers	remains.	The
original	microcontrollers	had	thousands	of	bytes	of	memory	and	the	PC	had	millions.
Now,	microcontrollers	can	have	millions	of	bytes,	but	the	PC	has	billions.

There	have	been	two	trends	in	the	microcontroller	field.	The	first	trend	is	to	make
microcontrollers	smaller,	cheaper,	and	lower	power.	The	Atmel	ATtiny,	Microchip	PIC,
and	Texas	Instruments	MSP430	families	are	good	examples	of	this	trend.	Size,	cost,	and
power	are	critical	factors	for	high-volume	products,	where	the	products	are	often
disposable.	On	the	other	end	of	the	spectrum	is	the	trend	of	larger	RAM	and	ROM,	faster
processing,	and	increasing	integration	of	complex	I/O	devices,	such	as	Ethernet,	radio,
graphics,	and	audio.	It	is	common	for	one	device	to	have	multiple	microcontrollers,	where
the	operational	tasks	are	distributed	and	the	microcontrollers	are	connected	in	a	local	area
network	(LAN).	These	high-end	features	are	critical	for	consumer	electronics,	medical
devices,	automotive	controllers,	and	military	hardware,	where	performance	and	reliability
are	more	important	than	cost.	However,	small	size	and	low	power	continue	as	important
features	for	all	embedded	systems.

The	RAM	is	volatile	memory,	meaning	its	information	is	lost	when	power	is	removed.	On
some	embedded	systems	a	battery	powers	the	microcontroller.	When	in	the	off	mode,	the
microcontroller	goes	into	low-power	sleep	mode,	which	means	the	information	in	RAM	is
maintained,	but	the	processor	is	not	executing.	The	MSP430	and	ATtiny	require	less	than
a � A	of	current	in	sleep	mode.

Checkpoint	1.7:	What	is	an	embedded	system?													

Checkpoint	1.8:	What	goes	in	the	RAM	on	a	smartphone?													

Checkpoint	1.9:	Why	does	your	smartphone	need	so	much	flash	ROM?													

The	computer	engineer	has	many	design	choices	to	make	when	building	a	real-time
embedded	system.	Often,	defining	the	problem,	specifying	the	objectives,	and	identifying
the	constraints	are	harder	than	actual	implementations.	In	this	book,	we	will	develop
computer	engineering	design	processes	by	introducing	fundamental	methodologies	for
problem	specification,	prototyping,	testing,	and	performance	evaluation.

A	typical	automobile	now	contains	an	average	of	ten	microcontrollers.	In	fact,	upscale
homes	may	contain	as	many	as	150	microcontrollers	and	the	average	consumer	now
interacts	with	microcontrollers	up	to	300	times	a	day.	The	general	areas	that	employ
embedded	systems	encompass	every	field	of	engineering:

•	Consumer	Electronics																																										•	Home

•	Communications																																										•	Automotive

•	Military																																																								•	Industrial

•	Business																																																								•	Shipping



•	Medical																																																								•	Computer	components

	
In	general,	embedded	systems	have	inputs,	perform	calculations,	make	decisions,	and	then
produce	outputs.	The	microcontrollers	often	must	communicate	with	each	other.	How	the
system	interacts	with	humans	is	often	called	the	human-computer	interface	(HCI)	or
man-machine	interface	(MMI).	To	get	a	sense	of	what	“embedded	system”	means	we
will	present	brief	descriptions	of	four	example	systems.

	
Example	1.1:	The	goal	of	a	pacemaker	is	to	regulate	and	improve	heart	function.	To	be
successful	the	engineer	must	understand	how	the	heart	works	and	how	disease	states	cause
the	heart	to	fail.	Its	inputs	are	sensors	on	the	heart	to	detect	electrical	activity,	and	its
outputs	can	deliver	electrical	pulses	to	stimulate	the	heart.	Consider	a	simple	pacemaker
with	two	sensors,	one	in	the	right	atrium	and	the	other	in	the	right	ventricle.	The	sensor
allows	the	pacemaker	to	know	if	the	normal	heart	contraction	is	occurring.	This
pacemaker	has	one	right	ventricular	stimulation	output.	The	embedded	system	analyzes
the	status	of	the	heart	deciding	where	and	when	to	send	simulation	pulses.	If	the
pacemaker	recognizes	the	normal	behavior	of	atrial	contraction	followed	shortly	by
ventricular	contraction,	then	it	will	not	stimulate.	If	the	pacemaker	recognizes	atrial
contraction	without	a	following	ventricular	contraction,	then	is	will	pace	the	ventricle
shortly	after	each	atrial	contraction.	If	the	pacemaker	senses	no	contractions	or	if	the
contractions	are	too	slow,	then	it	can	pace	the	ventricle	at	a	regular	rate.	A	pacemaker	can
also	communicate	via	radio	with	the	doctor	to	download	past	performance	and	optimize
parameters	for	future	operation.	Some	pacemakers	can	call	the	doctor	on	the	phone	when
it	senses	a	critical	problem.	Pacemakers	are	real-time	systems	because	the	time	delay
between	atrial	sensing	and	ventricular	triggering	is	critical.	Low	power	and	reliability	are
important.

	

	
Example	1.2:	The	goal	of	a	smoke	detector	is	to	warn	people	in	the	event	of	a	fire.	It	has
two	inputs.	One	is	a	chemical	sensor	that	detects	the	presence	of	smoke,	and	the	other	is	a
button	that	the	operator	can	push	to	test	the	battery.	There	are	also	two	outputs:	an	LED
and	the	alarm.	Most	of	the	time,	the	detector	is	in	a	low-power	sleep	mode.	If	the	test
button	is	pushed,	the	detector	performs	a	self-diagnostic	and	issues	a	short	sound	if	the
sensor	and	battery	are	ok.	Once	every	30	seconds,	it	wakes	up	and	checks	to	see	if	it
senses	smoke.	If	it	senses	smoke,	it	will	alarm.	Otherwise	it	goes	back	to	sleep.

Advanced	smoke	detectors	should	be	able	to	communicate	with	other	devices	in	the	home.
If	one	sensor	detects	smoke,	all	alarms	should	sound.	If	multiple	detectors	in	the	house
collectively	agree	there	is	really	a	fire,	they	could	communicate	with	the	fire	department
and	with	the	neighboring	houses.	To	design	and	deploy	a	collection	of	detectors,	the
engineer	must	understand	how	fires	start	and	how	they	spread.	Smoke	detectors	are	not
real-time	systems.	However,	reliability	and	low	power	are	important.



	

	
Example	1.3:	The	goal	of	a	motor	controller	is	to	cause	a	motor	to	spin	in	a	desired
manner.	Sometimes	we	control	speed,	as	in	the	cruise	control	on	an	automobile.
Sometimes	we	control	position	as	in	moving	paper	through	a	printer.	In	a	complex
robotics	system,	we	may	need	to	simultaneously	control	multiple	motors	and	multiple
parameters	such	as	position,	speed,	and	torque.	Torque	control	is	important	for	building	a
robot	that	walks.	The	engineer	must	understand	the	mechanics	of	how	the	motor	interacts
with	its	world	and	the	behavior	of	the	interface	electronics.	The	motor	controller	uses
sensors	to	measure	the	current	state	of	the	motor,	such	as	position,	speed,	and	torque.	The
controller	accepts	input	commands	defining	the	desired	operation.	The	system	uses
actuators,	which	are	outputs	that	affect	the	motor.	A	typical	actuator	allows	the	system	to
set	the	electrical	power	delivered	to	the	motor.		Periodically,	the	microcontroller	senses	the
inputs	and	calculates	the	power	needed	to	minimize	the	difference	between	measured	and
desired	parameters.	This	needed	power	is	output	to	the	actuator.	Motor	controllers	are	real-
time	systems,	because	performance	depends	greatly	on	when	and	how	fast	the	controller
software	runs.	Accuracy,	stability,	and	time	are	important.

	

	
Example	1.4:	The	goal	of	a	traffic	controller	is	to	minimize	waiting	time	and	to	save
energy.	The	engineer	must	understand	the	civil	engineering	of	how	city	streets	are	laid	out
and	the	behavior	of	human	drivers	as	they	interact	with	traffic	lights	and	other	drivers.	The
controller	uses	sensors	to	know	the	number	of	cars	traveling	on	each	segment	of	road.
Pedestrians	can	also	push	walk	buttons.	The	controller	will	accept	input	commands	from
the	fire	or	police	department	to	handle	emergencies.	The	outputs	are	the	traffic	lights	at
each	intersection.		The	controller	collects	sensor	inputs	and	calculates	the	traffic	pattern
needed	to	minimize	waiting	time,	while	maintaining	safety.	Traffic	controllers	are	not	real-
time	systems,	because	human	safety	is	not	sacrificed	if	a	request	is	delayed.	In	contrast,	an
air	traffic	controller	must	run	in	real	time,	because	safety	is	compromised	if	a	response	to
a	request	is	delayed.	The	system	must	be	able	to	operate	under	extreme	conditions	such	as
rain,	snow,	freezing	temperature,	and	power	outages.	Computational	speed	and
sensor/light	reliability	are	important.

	
Checkpoint	1.10:	There	is	a	microcontroller	embedded	in	an	alarm	clock.	List	three
operations	the	software	must	perform.

When	designing	embedded	systems	we	need	to	know	how	to	interface	a	wide	range	of
signals	that	can	exist	in	digital,	analog,	or	time	formats.

Table	1.3	lists	example	products	and	the	functions	performed	by	their	embedded	systems.
The	microcontroller	accepts	inputs,	performs	calculations,	and	generates	outputs.

	



														Functions	performed	by	the	microcontroller

Consumer/Home:																												
		Washing	machine														Controls	the	water	and	spin	cycles,	saving	water
and	energy

		Exercise	equipment														Measures	speed,	distance,	calories,	heart	rate

		Remote	controls														Accepts	key	touches,	sends	infrared	pulses,	learns
how	to	interact	with	user

		Clocks	and	watches														Maintains	the	time,	alarm,	and	display

		Games	and	toys														Entertains	the	user,	joystick	input,	video	output

		Audio/video																												Interacts	with	the	operator,	enhances
performance	with	sounds	and	pictures

		Set-back	thermostats														Adjusts	day/night	thresholds	saving	energy

Communication:														
		Answering	machines														Plays	outgoing	messages	and	saves	incoming
messages

		Telephone	system														Switches	signals	and	retrieves	information

		Cellular	phones																												Interacts	with	key	pad,	microphone,	and
speaker

		Satellites																												Sends	and	receives	messages

Automotive:														
		Automatic	braking														Optimizes	stopping	on	slippery	surfaces

		Noise	cancellation														Improves	sound	quality,	removing	noise

		Theft	deterrent	devices														Allows	keyless	entry,	controls	alarm

		Electronic	ignition														Controls	sparks	and	fuel	injectors

		Windows	and	seats														Remembers	preferred	settings	for	each	driver

		Instrumentation														Collects	and	provides	necessary	information

Military:														
		Smart	weapons																												Recognizes	friendly	targets

		Missile	guidance														Directs	ordnance	at	the	desired	target

		Global	positioning														Determines	where	you	are	on	the	planet,	suggests


