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     Preface 

 The following collection of chapters is intended to provide guidance to investigators wishing 
to create enzyme variants with desired properties. Whether the pursuit is commercially 
motivated or purely academic, engineering a novel biological catalyst is an enticing chal-
lenge. High-resolution protein structure analysis allows for rational alteration of enzyme 
function, yet many useful enzyme variants are the product of well-designed selection 
schemes or screening strategies. Accordingly, this volume contains examples where bugs are 
employed as workhorses in order to evolve enzyme function or to isolate enzyme variants 
with improved solubility or stability. 

 One step away from cell-based selection and screening is the use of in vitro compart-
mentalization to isolate enzyme variants and their respective nucleotide codes, as the most 
powerful in vitro methods for enzyme evolution link gene sequence to gene product func-
tion. In Chapter 6  , Golynskiy et al. present a comprehensive review of the methods used for 
the in vitro evolution of protein enzymes. The general principles of ribosome display, 
mRNA display, and DNA display are outlined, and the advantages of each of these approaches 
are highlighted. For many years, in vitro translation systems have offered the opportunity 
to produce small quantities of protein containing unnatural amino acids. More recently this 
objective has been realized in genetically modi fi ed organisms so protein yield may no lon-
ger be a limiting factor. In   Chapter 7    , Singh-Blom et al. demonstrate that residue-speci fi c 
incorporation of tryptophan analogs is possible in a  Δ  trp C derivative of BL21(DE3). 
Additionally, the same researchers present a step-by-step guide to prepare an S30 lysate 
from a tryptophan auxotroph so that cell-free synthesis of tryptophan-substituted protein 
may also be accomplished. 

 The potential for any directed evolution project is dependent upon the type of gene 
library and the degree of library diversity. Therefore, multiple chapters outline methods for 
gene mutagenesis, gene and operon assembly, and ef fi cient do-it-yourself gene synthesis. 
Remarkably, today’s researcher also has the option of purchasing mutant gene libraries now 
that gene synthesis costs have declined signi fi cantly. Once the task of gene library construc-
tion is completed and after promising enzyme variants are isolated, a further challenge is 
thorough protein characterization. When a novel enzyme variant is isolated, many concerns 
must be addressed: For example, what is the true enzyme speci fi city and is the turnover rate 
acceptable for the desired application? In   Chapter 2    , Demarse et al. showcase an underuti-
lized, yet simple and effective technique for analyzing enzyme kinetics. Isothermal titration 
calorimetry (ITC) is a direct method for determining the basic parameters of an enzyme-
catalyzed reaction (i.e.  V  max ,  K  m  and  k  2 ). Since ITC is a non-destructive method, precious 
quantities of an enzyme variant are not consumed. But perhaps more importantly, ITC is 
suitable for many types of assays since substrate(s) do not require labeling and linkage to a 
secondary-detectable process is not necessary. 

 Today many engineering efforts are focused on creating protein-based therapeutics. 
For example, Chapter 3 presents two examples of a screen for evolving amino acid degradation 
enzymes. Such enzymes show promise in cancer therapy by limiting the nutrient supply for 
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tumor cells. Amino acid auxotrophic host cells were critical in this cell-based screen and a 
customized host strain is often the enabling element of a cell-based selection or screen. 
Therefore, this volume includes a simple method for generating site-speci fi c mutations 
within bacterial chromosomes. In the last few years, Bryan Swingle (  Chapter 9    ) and others 
have de fi ned the requirements of oligonucleotide recombination and have found that the 
process is RecA-independent. In short, a bacterial cell is transformed with a single-stranded 
DNA oligonucleotide containing the desired mutation and the oligonucleotide anneals and 
becomes incorporated during replication of the host chromosome. This method is certainly 
a breakthrough and has already yielded impressive biocatalysts. 

 This volume also highlights the engineering of two different types of rare-cutting endo-
nucleases that show great potential in gene therapy applications: The newest development 
is the emergence of TAL effector nucleases or TALENs. TALENS are derived from tran-
scription factors (TAL effectors) and the DNA cleavage domain from the FokI restriction 
endonuclease. In   Chapter 5    , Li and Yang describe a simple method for creating designer 
TALENs (dTALENs) from modular motifs with de fi ned DNA-binding speci fi cities. A 
related chapter describes a method for characterizing the DNA-binding and cleavage prop-
erties of LAGLIDADG homing endonucleases. This family of endonuclease is being 
recruited for gene targeting due to a natural af fi nity for rare DNA target sites approximately 
22 bp in length. Homing endonuclease speci fi city is especially dif fi cult to characterize and 
Baxter et al. have developed a high-throughput method where homing endonucleases are 
expressed on the surface of yeast and speci fi city is evaluated against synthetic DNA target 
sequences using  fl ow cytometry. 

 Finally, the vast amount of genome sequence data and protein structural data has 
allowed for the development of two new methods that incorporate rational design. First, 
the REAP method takes advantage of ancient sequences from a phylogenetic tree. Signatures 
of functional divergence are identi fi ed and used to design a library with a high density of 
viable protein variants. This focused library is then tested for desirable properties such as 
thermostability. In contrast, the DECAAF method takes advantage of existing protein 
structure data (PDB  fi les) to search for “promiscuous” active sites that have the potential 
to catalyze a desired reaction. The DECAAF analysis arrives at a protein scaffold that serves 
as the basis for rational engineering of residues within the putative active site. Many natural 
enzymes are thought to have “moonlighting” domains based on the number of encoded 
proteins versus veri fi ed chemical transformations in simple organisms. The DECAAF 
method may also be useful in identifying these bona  fi de secondary active sites. 

 The contents of this book should be valuable for scientists with a budding interest in 
protein engineering as well as veterans looking for new approaches to apply in established 
discovery programs. The following chapters describe newly developed technologies in 
suf fi cient detail so that each method can be practiced in a standard molecular biology labo-
ratory. Accordingly, I wish to thank each contributor for sharing his/her expertise with the 
research community. And  fi nally, I thank my colleagues at New England Biolabs for their 
support and their commitment to the advancement of basic science.

Ipswich, MA, USA James C. Samuelson 
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    Chapter 1   

 A Tripartite Fusion System for the Selection 
of Protein Variants with Increased Stability In Vivo       

     Linda   Foit    and    James   C.  A.   Bardwell         

  Abstract 

 We describe here a genetic selection system that directly links protein stability to antibiotic resistance, 
allowing one to directly select for mutations that stabilize proteins in vivo. Our technique is based on a 
tripartite fusion in which the protein to be stabilized is inserted into the middle of the reporter protein 
 b -lactamase via a  fl exible linker. The gene encoding the inserted protein is then mutagenized using error-
prone PCR and the resulting plasmid library plated on media supplemented with increasing concentrations 
of  b -lactam antibiotic. Mutations that stabilize the protein of interest can easily be identi fi ed on the basis 
of their increased antibiotic resistance compared to cells expressing the unmutated tripartite fusion.  

  Key words:   Genetic selection ,  Protein stability ,  Protein evolution ,  Mutagenesis ,  Reporter protein , 
 Tripartite fusion ,  Sandwich fusion    

 

 Most soluble, globular proteins exhibit only marginal thermody-
namic stabilities between approximately −5 and −10 kcal/mol 
 (  1,   2  ) . Such low protein stability imposes signi fi cant challenges on 
the use of these polypeptides in many biotechnological, biomedi-
cal, and practical applications, where large amounts of stable and 
soluble protein are needed. The identi fi cation of stabilizing muta-
tions, however, is dif fi cult, since most random amino acid substitu-
tions actually decrease stability  (  3–  5  ) . Computational methods 
that estimate the effect of mutations on protein stability are avail-
able but usually require detailed structural knowledge about the 
target protein, information that is often not available. Unfortunately, 
though computational methods are often good at predicting the 
destabilizing effect of mutations they are generally less accurate at 
predicting stabilizing mutations  (  6  ) . 

  1.  Introduction
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 Recently, a number of approaches have been developed that 
utilize reporter proteins to monitor or increase the stability of pro-
teins in the cellular environment  (  6–  12  ) . The genetic system we 
established  (  12  )  allows for monitoring and increasing protein sta-
bility and combines the following attractive features: (1) it directly 
links the in vivo stability of proteins to antibiotic resistance, a quan-
titative readout, (2) it is a  selection  rather than a  screen , omitting 
laborious testing of individual protein mutants, (3) it does not 
require prior knowledge about structure or function of the insert 
protein, and (4) it can be used with a variety of different proteins. 

 Our approach is based on the reporter protein TEM1- b -
lactamase. This enzyme is located in the periplasm of Gram-negative 
bacteria and confers resistance towards  b -lactam antibiotics like 
ampicillin or penicillin  (  13  ) . TEM1- b -lactamase is tolerant of inser-
tions or deletions that occur in a solvent-exposed loop around resi-
due 196  (  14,   15  ) . Based on this knowledge, we generated a tripartite 
fusion in which a test protein is inserted between residues 196 and 
197 of the enzyme via  fl exible glycine-serine linkers (Fig.  1a )  (  12  ) . 
Cleavage of the enzyme at this position results in two fragments that 
are catalytically inactive when expressed separately  (  16  ) . However, 
when these fragments are fused to interacting partner protein as part 
of a protein complementation assay, activity will be restored  (  16  ) .  

 The underlying principle for the use of this tripartite fusion as 
a readout for protein stability in our genetic selection system is the 
following: If the insert test protein is folded properly and is stable, 
the two fragments of  b -lactamase can interact with each other, pro-
viding enzymatic activity. Cells expressing such a fusion construct 

  Fig. 1.    Schematic representation of the tripartite fusion system. ( a ) The protein of interest 
is inserted into  b -lactamase via a linker. N-term bla = N-terminal part  b -lactamase, 
C-term bla = C-terminal part  b -lactamase, linker =  fl exible glycine-serine linker. ( b ) If the 
test protein is folded properly ( left ), the two parts of  b -lactamase can interact and provide 
 b -lactamase activity. This results in high levels of antibiotic resistance. Unfolded proteins 
on the other hand ( right ) are subject to degradation by cellular proteases, leading to a 
large reduction in antibiotic resistance.       
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exhibit high levels of resistance towards  b -lactam antibiotics 
(Fig.  1b , left). Unstable insert proteins on the other hand are sub-
ject to degradation by cellular proteases. Proteolysis of such unsta-
ble and unfolded insert protein leads to separation of the two 
 b -lactamase fragments. The result is a substantial decrease in anti-
biotic resistance levels (Fig.  1b , right). 

 To select for protein variants with increased in vivo stability, 
the gene encoding the target protein is randomly mutated and the 
resulting plasmid library transformed into  Escherichia coli  cells. 
The cells are then spread on plates containing increasing concen-
trations of a  b -lactam antibiotic. Colonies showing increased levels 
of antibiotic resistance compared to cells expressing a construct 
containing the wild-type protein are selected and the protein 
sequence is determined. 

 For the model protein immunity protein 7 (Im7), we found 
that the in vivo steady-state levels of tripartite fusions containing 
different Im7 variants correlated well with the resulting level of 
antibiotic resistance  (  12  ) . Moreover, the vast majority of constructs 
selected for their increased antibiotic resistance encoded protein 
variants that were both thermodynamically and kinetically more 
stable in vitro when expressed in absence of the fusion partner. 

 Our tripartite fusion system is not just useful for identifying 
stabilized protein variants. It can also be utilized to select for mutant 
proteins with other improved properties that lead to increased 
steady-state levels of the protein in the periplasm. Examples are 
increased solubility  (  12  ) , the elimination of disul fi de bonds or 
kinetic traps that are problematic for protein folding in vivo  (  17  ) , 
decreased proteolytic susceptibility, and possibly increased translo-
cation ef fi ciency or a combination of these factors. 

 In addition, alterations that improve the folding of proteins are 
in principle not limited to mutagenesis of the gene encoding the 
protein inserted into  b -lactamase. The system could possibly also be 
used to select for increased activity and speci fi city of chaperones or 
other folding factors that are co-expressed with a tripartite fusion 
containing a target protein. For instance, we have shown that it is 
possible to randomly mutate the host chromosome to generate bac-
terial strains that enhance expression of target proteins. In doing so 
we have identi fi ed a novel molecular chaperone called Spy  (  18  ) . 

 Our selection works in the bacterial periplasm, a very oxidizing 
environment  (  19  ) . To avoid nonnative and unwanted disul fi de 
bond formation within the protein of interest, we strongly recom-
mend the use of insert proteins that (1) do not contain unpaired 
cysteines that are normally part of a disul fi de and (2) If they possess 
disul fi des that the number of disul fi des present is small, zero is 
ideal, but up to a maximum of two disul fi de bonds can be toler-
ated, especially if they occur between consecutive cysteines. 

 In this chapter, we will focus on the selection of protein vari-
ants with increased in vivo stability.  
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  Prepare all stock solutions using double-distilled water or deion-
ized and then distilled water (ddH 2 O).

    1.    Plasmids.
   (a)    pBR322, e.g., from New England Biolabs (NEB)  (  20,   21  )  

(see Note 1).  
   (b)    pBAD33  (  22  )  (see Note 2).  
   (c)    Plasmid or chromosomal DNA encoding the insert pro-

tein (for ampli fi cation with PCR).      
    2.    Primer solutions, 10 or 100  m M, stored at −20°C.

   (a)    Primer 1 (polyacrylamide gel electrophoresis puri fi ed): 
5 ¢ -CCGCTCCCGGATCCTGAGCTCGAGCCACCA
CCACCAGAACCACCACCACCTAGTTCGCCA
GTTAATAGTTTGCGCAACGTTGTTGCC-3 ¢ .  

   (b)    Primer 2 (polyacrylamide gel electrophoresis puri fi ed): 
5  ¢  -TTCCGGAAGCGGAGGAGGTGGTTCAGG
CGGAGGTGGAAGCCTTACTCTAGCTTCCCGG
CAACAATTAATAGACTGGATGGAGGCG-3 ¢ .  

   (c)    Primer 3: 5 ¢ -ATAGGTACCAGGAGGAATTCATGAGTA
TTCAACATTTCCGTGTCGC-3 ¢ .  

   (d)    Primer 4: 5 ¢ -GGTGGCAGTCTAGATTACCAATGCTTA
ATCAGTGAGGCACC-3 ¢ .  

   (e)    Primer 5: 5 ¢ -TATCGTGCGGCCGCTCATGTTTGACA
GCTTATCATCG-3 ¢ .  

   (f)    Primer 6: 5 ¢ -AGCTAGTCTAGACCGCGGGAAGATCC
TTTTTGATAATCTC-3 ¢ .  

   (g)    Primer 7: 5 ¢ -GCTATACTAGTTCTTCCCCATCGGTGA
TGTCGGCG-3 ¢ .  

   (h)    Primer 8: 5 ¢ -ATCGATGCGGCCGCATGTATTTAGAA
AAATAAACAAAAGAG-3 ¢ .  

   (i)    Primers 9 + 10: Forward and reverse primers containing 
appropriate restriction sites for cloning of the gene encod-
ing the protein of interest into the tripartite fusion expres-
sion plasmid of choice (see Note 3).  

   (j)    Primers 11 + 12: Forward and reverse primers for the ran-
dom mutagenesis of the gene encoding for the protein of 
interest (see Note 4).      

    3.    Individual stock solutions of dNTPs (10 mM), stored at 
−20°C.  

  2.  Materials

  2.1.  Biological and 
Chemical Materials
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    4.    Highly competent  E. coli  cells, e.g., NEB10-beta electrocom-
petent  E. coli,  transformation ef fi ciency: 2–4 × 10 10  colony 
forming units (cfu)/ m g pUC19 (New England Biolabs, 
Ipswich, MA, USA).  

    5.    SOC outgrowth medium: 2% Vegetable Peptone, 0.5% Yeast 
Extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl 2 , 10 mM 
MgSO 4 , 20 mM Glucose.  

    6.    Culture tubes with 5 ml Luria Broth (LB) medium.  
    7.    LB medium: 1% Vegetable Peptone, 0.5% Yeast Extract, 1% 

NaCl.  
    8.    LB plates containing 34  m g/ml chloramphenicol or 15  m g/ml 

of tetracycline.  
    9.    Plates with medium of choice with appropriate concentrations of 

 b -lactam antibiotic, e.g., ampicillin, penicillin V (see Note 5).  
    10.    DNA polymerase with proofreading ability, 2 U/ m l, e.g., 

Phusion® High Fidelity DNA Polymerase (New England 
Biolabs, Ipswich, MA, USA).  

    11.    T4 Polynucleotide kinase, 10 U/ m l, e.g., from New England 
Biolabs (Ipswich, MA, USA).  

    12.    T4 DNA ligase, 400 cohesive end units/ m l, e.g., from New 
England Biolabs (Ipswich, MA, USA).  

    13.    GeneMorph II Random Mutagenesis Kit (Agilent Technologies, 
Santa Clara, CA, USA).  

    14.    Pfu Turbo, 2.5 U/ m l (Agilent Technologies, Santa Clara, CA, 
USA).  

    15.    Restriction enzymes, e.g., from New England Biolabs (Ipswich, 
MA, USA) stored at −20°C.
   (a)     Dpn I, 20 U/ m l.  
   (b)     Kpn I, 10 U/ m l.  
   (c)     Not I, 10 U/ m l.  
   (d)     Spe I, 10 U/ m l.  
   (e)     Xba I, 20 U/ m l.  
   (f)    Restriction enzymes needed for cloning the gene encod-

ing the insert protein into the tripartite fusion expression 
plasmid.      

    16.    DNA gel extraction kit, e.g., QIAquick Gel extraction kit 
(Qiagen, Valencia, CA, USA).  

    17.    PCR puri fi cation kit, e.g., QIAquick PCR puri fi cation kit 
(Qiagen, Valencia, CA, USA).  

    18.    Plasmid DNA extraction kit, e.g., QIAprep Spin Miniprep kit 
(Qiagen, Valencia, CA, USA).  
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    19.    70% ethanol.  
    20.    100% ethanol.  
    21.    Phosphate buffered saline (PBS): 1.35 mM NaCl, 2.7 mM 

KCl, 10 mM Na 2 HPO 4 , 2 mM KH 2 PO 4 , adjusted to pH 7.4 
with HCl.  

    22.     L -(+)-arabinose.  
    23.    Agarose gels: 1% electrophoresis grade agarose in TAE buffer: 

40 mM Tris–acetate, 1 mM ethylene diamine tetraacetic acid 
(EDTA), 0.5  m g/ml ethidium bromide.  

    24.    Pellet Paint® co-precipitant and supplied 3 M sodium acetate, 
pH 5.2 (Merck KGaA, Darmstadt, Germany).      

      1.    Agarose gel running system.  
    2.    Electroporator, e.g., Electroporator 2510 (Eppendorf, 

Hauppauge, NY, USA).  
    3.    Incubator, capable of shaking.  
    4.    Microcentrifuge, e.g., Centrifuge 5414 R (Eppendorf, 

Hauppauge, NY, USA).  
    5.    Thermocycler, e.g., Veriti® Thermal Cycler (Life Technologies 

Corporation, Carlsbad, CA, USA).  
    6.    Thermomixer, e.g., Thermomixer R (Eppendorf, Hauppauge, 

NY, USA).  
    7.    UV-Spectrometer, e.g., Genesys 10vis (Thermo Scienti fi c, 

Waltham, MA, USA).  
    8.    8- or 12-channel pipette, pipetting range 2–20  m l.  
    9.    8- or 12-channel pipette, pipetting range 20–200  m l.  
    10.    Sterile electroporation cuvettes, 1 mm gap.  
    11.    Sterile, thin-walled PCR tubes.  
    12.    Sterile 17 × 100 mm round-bottom tubes.  
    13.    Sterile 96-well plate (well volume >250  m l).       

 

 Perform all procedures at room temperature unless noted other-
wise. When using DNA gel extraction, PCR puri fi cation, or plas-
mid DNA extraction kits, elute DNA from spin column with 
ddH 2 O. 

  2.2.  Equipment 
and Consumables

  3.  Methods
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       1.    Mix 0.5  m M primer 1, 0.5  m M primer 2, 10 ng of  dam -methy-
lated pBR322 plasmid DNA, 200  m M of each dNTP, and 1 U 
Phusion® DNA polymerase in the supplied high  fi delity (HF) 
buffer in a total volume of 50  m l in a thin-walled PCR tube. 
Keep mixture on ice (see Note 7).  

    2.    Perform PCR in a thermocycler using the following program: 
98°C for 5 min (initial denaturation); 25 cycles of: 98°C for 
10 s (denaturation), 68°C for 30 s (annealing), 72°C for 3 min 
(elongation). Following these cycles perform a  fi nal elongation 
at 72°C for 10 min and then hold at 4°C (see Note 8).  

    3.    Run sample of PCR product on an analytical agarose gel to 
assess yield of the full-length PCR product (see Note 9).  

    4.    Remove the  dam -methylated template DNA by adding 20 U 
 Dpn I. Incubate at 37°C for 2 h. Heat inactivate the restriction 
enzyme by incubation at 80°C for 20 min.  

    5.    Purify the linear PCR product using a PCR puri fi cation kit.  
    6.    Phosphorylate the linear PCR product by combining 0.2–1  m g 

of the DNA and 10 U of T4 Polynucleotide Kinase in 1× T4 
DNA ligase buffer in a total volume of 50  m l. Incubate at 37°C 
for 30 min. Heat inactivate the enzyme by incubation at 65°C 
for 20 min.  

    7.    Add 400 cohesive end units T4 DNA ligase. Incubate at 16°C 
for 12 h. Heat inactivate the enzyme by incubation at 65°C for 
10 min.  

    8.    Transform 0.5  m l of ligation reaction into 25  m l of electrocom-
petent NEB10-beta cells in a chilled electroporation cuvette 
using the following conditions: 1.8 kV, 200 Omega, and 25  m F. 
Typical time constants are 4.8–5.1 ms. Immediately after elec-
troporation, add 975  m l of pre-warmed SOC medium to the 
cuvette and transfer cells into a 17 × 100 mm round-bottom 
culture tube. Shake at 250 rpm at 37°C for 1 h (see Note 10).  

    9.    Spread different cell dilutions on pre-warmed LB plates con-
taining the appropriate antibiotic. Incubate plates overnight at 
37°C.  

    10.    Select a single colony and isolate plasmid DNA using a plasmid 
DNA extraction kit.  

    11.    Verify accuracy of the nucleotide sequence by DNA sequenc-
ing. The resulting vector is called pBR322-bla-link (see Note 6 
for availability of plasmid pBR322-bla-link).      

      1.    For the ampli fi cation of the  bla-link  gene from pBR322-bla-
link, mix 0.5  m M primer 3, 0.5  m M primer 4, 10 ng pBR322-
bla-link plasmid DNA, 200  m M of each dNTP, and 1 U 
Phusion® DNA polymerase in the supplied high  fi delity (HF) 
buffer in a total volume of 50  m l in a thin-walled PCR tube. 
Keep mixture on ice (see Note 8).  

  3.1.  Construction of a 
Tripartite Fusion 
Expression Plasmid 
(see Note 6)

  3.1.1.  Construction of a 
Plasmid for the Expression 
of the Tripartite Fusion 
Under Its Native, 
Constitutive Promoter 
(pBR322-bla-link)

  3.1.2.  Construction of a 
Plasmid for the Expression 
of the Tripartite Under 
an Arabinose-Inducible 
Promoter (pMB1-ara-bla-
link)
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    2.    Perform PCR in a thermocycler using the following program: 
98°C for 30 s (initial denaturation); 30 cycles of: 98°C for 10 s 
(denaturation), 69°C for 30 s (annealing), 72°C for 20 s (elon-
gation). Following these cycles perform a  fi nal elongation at 
72°C for 5 min and then hold at 4°C.  

    3.    Run sample of PCR product on an analytical agarose gel to 
assess yield of the full-length PCR product (see Note 11).  

    4.    Purify the PCR product using a PCR puri fi cation kit.  
    5.    Digest 0.2–1  m g PCR product as well as 0.2–1  m g pBAD33 

plasmid with restriction enzymes  Kpn I and  Xba I according to 
the manufacturer’s instructions.  

    6.    Heat inactivate the restriction enzymes at 65°C for 20 min. 
Purify the PCR product and the vector using a PCR puri fi cation 
kit.  

    7.    Mix 50 ng of vector with a threefold molar excess of insert and 
400 cohesive end units T4 DNA ligase in T4 DNA ligase buf-
fer. Incubate at 16°C for 12 h. Heat inactivate the enzyme by 
incubation at 65°C for 10 min.  

    8.    Perform transformation and veri fi cation of the vector sequence 
as described in Subheading  3.1.1 , steps 8–11. The resulting 
vector is called pBAD33-bla-link.  

    9.    Mix 200  m M of each dNTP, 1 U Phusion® DNA polymerase in 
the supplied high  fi delity (HF) buffer in a total volume of 50  m l 
in a thin-walled PCR tube. Add either 0.5  m M primer 5, 
0.5  m M primer 6, and 10 ng of pBR322 (PCR 1) or 0.5  m M 
primer 7, 0.5  m M primer 8, and 10 ng of pBAD33-bla-link 
(PCR 2). Keep mixtures on ice.  

    10.    Perform the following PCR in a thermocycler using the fol-
lowing program: 98°C for 30 s (initial denaturation); 30 cycles 
of: 98°C for 10 s (denaturation), 67°C (PCR 1) or 65.3°C 
(PCR 2) for 30 s (annealing), 72°C for 1 min (elongation). 
Following these cycles perform a  fi nal elongation at 72°C for 
5 min and then hold at 4°C.  

    11.    Purify both full-length PCR products on a preparative agarose 
gel. Extract DNA from agarose gel using gel DNA gel extrac-
tion kit.  

    12.    Digest PCR product 1 with  Not I and  Xba I according to the 
manufacturer’s instructions (see Note 12).  

    13.    Digest PCR product 2 with  Spe I and  Not I according to the 
manufacturer’s instructions (see Note 12).  

    14.    Heat inactivate the restriction enzymes according to the man-
ufacturer’s instructions. Purify the PCR products using PCR 
puri fi cation kit.  
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    15.    Mix 100 ng of PCR product 1 and 400 cohesive end units T4 
DNA ligase with PCR product 2 in molar ratios of 1:3, 1:1, 
and 3:1 in supplemented T4 ligase buffer. Incubate at 16°C for 
12 h. Heat inactivate the enzyme by incubation at 65°C for 
10 min.  

    16.    Perform transformation and veri fi cation of the vector sequence 
as described in Subheading  3.1.1 , steps 8–11. The resulting 
vector is called pMB1-ara-bla-link (see Note 6 for availability 
of plasmid pMB1-ara-bla-link).      

      1.    Perform a PCR to amplify the gene of interest with primers 
carrying appropriate restriction sites using a proofreading poly-
merase (see Note 3).  

    2.    Clone the gene encoding the target protein into a tripartite 
fusion expression plasmid of choice, e.g., pMB1-ara-bla-link. 
Adapt steps 3–8, Subheading  3.1.2 , followed by steps 8–11, 
Subheading  3.1.1 . The resulting plasmid is called, e.g., pMB1-
ara-bla-link-insert.       

  The construction of a library of tripartite fusion plasmids in which 
only the target gene (but not the  bla  gene or the vector backbone) 
is mutated is based on the MEGAWHOP technique  (  23  ) . First, 
the target gene is ampli fi ed in an error-prone PCR, generating a 
pool of mutated target genes, also termed a megaprimer  (  23,   24  )  
(see Note 13). This megaprimer is then used to substitute the wild-
type version of the target gene in the tripartite fusion expression 
plasmid, involving a whole-plasmid PCR with a proofreading 
polymerase.

    1.    For the random mutagenesis of the gene encoding the target 
gene, combine 0.1–1,000 ng of target gene, 125 ng of each 
mutagenesis primer, 200  m M of each dNTP, and 2.5 U 
Mutazyme II DNA polymerase (from the GeneMorph® II 
Random Mutagenesis kit) in supplemented Mutazyme II reac-
tion buffer in a total volume of 50  m l in a thin-walled PCR 
tube. Keep mixture on ice (see Note 4).  

    2.    Perform PCR in a thermocycler using the following program: 
95°C for 2 min (initial denaturation); 25–35 cycles of: 95°C 
for 30 s (denaturation), melting temperature of primers −5°C 
for 30 s (annealing), 72°C for 1 min for target DNA  £ 1 kb or 
1 min/kb for target DNA >1 kb (elongation). Following these 
cycles perform a  fi nal elongation at 72°C for 10 min and then 
hold at 4°C.  

    3.    Purify pool of mutated PCR products on a preparative agarose 
gel. Extract amplicon band using a DNA gel extraction kit.  

    4.    Combine 200–500 ng of the megaprimer, 50 ng of  dam -
methylated expression plasmid, 200  m M of each dNTP, and 

  3.1.3.  Insertion of the 
Target Protein Gene into a 
Tripartite Fusion 
Expression Plasmid

  3.2.  Construction of 
Expression Libraries
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5 U of high- fi delity polymerase Pfu Turbo® in the supple-
mented buffer in a total volume of 50  m l in a thin-walled PCR 
tube (see Note 14).  

    5.    Perform PCR in a thermocycler using the following program: 
95°C for 3 min (initial denaturation); 25–30 cycles of: 95°C 
for 2 min 30 s (denaturation), 55°C for 1 min (annealing), 
72°C for 2 min/kb (elongation). Following these cycles per-
form a  fi nal elongation at 72°C for 20 min and then hold at 
4°C (see Note 15).  

    6.    Remove the  dam -methylated template DNA by adding 20 U 
 Dpn I. Incubate at 37°C for 2 h. Heat inactivate the restriction 
enzyme by incubation at 80°C for 20 min.  

    7.    To concentrate the undigested PCR product and remove salts, 
add 2–4  m l Pellet Paint® Co-Precipitant and 0.1 volume of 3 M 
sodium acetate buffer to the PCR. Mix brie fl y.  

    8.    Add one volume of isopropanol. Vortex brie fl y. Incubate at 
room temperature for 5 min.  

    9.    Spin at 16,000 ×  g  for 20 min in a microcentrifuge (see Note 16).  
    10.    Discard supernatant without disturbing the pellet. Add 500  m l 

of 70% ethanol. Spin at 16,000 ×  g  for 5 min in a 
microcentrifuge.  

    11.    Discard supernatant without disturbing the pellet. Add 500  m l 
of 100% ethanol. Spin at 16,000 ×  g  for 5 min in a 
microcentrifuge.  

    12.    Remove supernatant completely without disturbing pellet. Dry 
pellet in thermomixer at 55°C for 5–10 min, leaving the lid of 
the tube open.  

    13.    Resuspend DNA pellet in 3  m l ddH 2 O.  
    14.    Transform 0.5–2  m l of the library into 25–100  m l of highly 

electrocompetent cells as described in Subheading  3.1.1 , step 
8 (see Note 17).  

    15.    Spread different various cell dilutions (e.g., 1:1,000, 1:500, 
1:100) on pre-warmed LB plates containing an antibacterial 
agent selecting for the chosen expression plasmid, not the anti-
biotic degraded by the tripartite fusion (any  b -lactam antibi-
otic). Incubate plates at 37°C for 16 h.  

    16.    Count the number of colonies on each plate and calculate the 
total library size (see Note 18).  

    17.    Randomly select at least 20, better 40 single colonies, and iso-
late the plasmid DNA using a plasmid DNA extraction kit.  

    18.    Sequence the target protein encoding sequence and determine 
the mutagenesis rate per kilobase (see Note 19).      
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      1.    Transform the library generated above into an  E. coli  strain of 
choice, using optimized conditions (see Note 18). As a con-
trol, transform the expression plasmid that was used as a tem-
plate for the library construction (containing the wild-type 
version of the target protein gene).  

    2.    Spread cells on pre-warmed LB plates spanning a range of 
 different concentrations of  b -lactam antibiotic (e.g., 0, 500, 
1,000, … 3,000  m g/ml ampicillin). If expressing the tripartite 
fusion under an arabinose-inducible promoter, include arabi-
nose in selection plates. Incubate plates at 37°C for 16–20 h 
(see Note 20).  

    3.    Select single colonies from plates containing concentrations of 
the  b -lactam antibiotic that did not permit growth of cell con-
taining the control plasmid. Isolate plasmid DNA using a plas-
mid DNA extraction kit.  

    4.    Sequence the target protein encoding sequence (see Note 21).  
    5.    Optional: Repeat the mutagenesis, this time using a mixture of 

mutant plasmids (e.g., different plasmids encoding for various 
single point mutations in the protein of interest that have been 
selected for increased resistance) (see Note 22).      

       1.    Re-transform mutant DNA isolated in Subheading  3.3 , step 3, 
into fresh competent cells using the same bacterial strain (e.g., 
commercially available NEB10-beta) that was originally used 
for the selection (see Note 23).  

    2.    Inoculate 5 ml LB medium with a single colony expressing the 
mutated tripartite fusion. Cells expressing tripartite fusions 
containing the wild-type insert protein serve as a control (see 
Note 24).  

    3.    Grow cells at 37°C until they reach  A  600nm  of about 0.5–0.7.  
    4.    Harvest 1 ml culture by spinning at 16,000 ×  g  for 5 min in a 

microcentrifuge. Discard supernatant. Keep cells on ice.  
    5.    Adjust cells in 1× PBS to  A  600nm  = 1. Keep cells on ice.  
    6.    Prepare tenfold dilutions of the cell suspension with 1× PBS 

(up to 10 −6 ) in a 96-well plate using a multichannel pipette. 
Keep cells on ice (see Note 25).  

    7.    Using a multichannel pipette, spot 2  m l of each cell dilution onto 
pre-warmed LB plates containing increasing concentrations of 
 b -lactam antibiotic. If expressing the tripartite fusion under an 
arabinose-inducible promoter, include arabinose in plates (see 
Note 20). Wait until spots are dry. Incubate at 37°C for 16–20 h. 
An example plate is shown in Fig.  3a  (see Note 26).      

  3.3.  Selection for 
Increased Levels of 
Resistance

  3.4.  Determining the 
Level of Antibiotic 
Resistance Using Spot 
Titers

  3.4.1.  Spot Titer 
Experiment
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      1.    For each strain and each concentration of  b -lactam antibiotic, 
score cell growth at each cell dilution with “growth” or “no 
growth” (Fig.  3a ) (see Note 27).  

    2.    Plot the maximal cell dilution allowing cell growth versus the 
antibiotic concentration for each strain (Fig.  3b ).  

    3.    For each strain and each cell dilution, assess the smallest con-
centration of  b -lactam antibiotic that inhibits cell growth for 
this particular dilution, this is the minimal inhibitory concen-
tration or MIC (see Table  1 ) (see Note 28).    

    4.    For each cell dilution, normalize the MIC for each strain (e.g., 
expressing the tripartite fusion containing the mutant protein) 
to the MIC of the reference strain (e.g., expressing the tripar-
tite fusion containing the wild-type (WT) protein) by calculat-
ing the value for MIC (mutant)/MIC (WT) (see Table  1 ) (see 
Note 29).  

    5.    Average the MIC (mutant)/MIC (WT) ratios for at least three 
cell dilutions. Standard deviations should be calculated for 
independent experiments, not for different cell dilutions within 
one experiment (see Note 30).        

  3.4.2.  Calculation of the 
Average Minimal Inhibitory 
Concentration

   Table 1 
  Example MIC values for three    different strains   

 Cell dilution [10 − x  ] 

 MIC 

 6  5  4  3  2  1  0 

 Im7 WT  1,400  1,400  1,800  2,600  2,850  3,100  n.d. 

 Im7 L34A  700  900  1,000  1,400  1,900  3,100  n.d. 

 Im7 I54V  500  600  600  900  1,400  2,850  n.d. 

 Cell dilution [10 − x  ] 

 MIC mut /MIC WT  

 6  5  4  3  2  1  0 

 Im7 WT  1.00  1.00  1.00  1.00  1.00  1.00  n.d. 

 Im7 L34A  0.50  0.64  0.56  0.54  0.67  1.00  n.d. 

 Im7 I54V  0.36  0.43  0.33  0.35  0.49  0.92  n.d. 

   Upper part : Minimal inhibitory concentrations (MIC) for serial dilutions of NEB10 b  
cells expressing tripartite fusions containing Im7 WT, Im7 L34A, or L54A, respectively. 
 Lower part : MIC(mutant)/MIC(WT) ratios for serial dilutions of cells expressing tri-
partite fusions containing Im7 WT, Im7 L34A, or L54A, respectively  
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     1.    This plasmid is both ampicillin and tetracycline resistant.  
    2.    This plasmid is chloramphenicol resistant.  
    3.    The primers should be designed to have a similar melting tem-

perature. Appropriate restriction sites (1) are present in the 
linker-encoding region of the bla-link gene (Fig.  2 ), (2) are 
unique within the chosen tripartite fusion expression plasmid, 
and (3) are not present in the target gene.   

    4.    Mutagenesis primers should be designed to have a similar melt-
ing temperature (ranging from 55 to 72°C). The forward 
primer should cover the 5 ¢  end of the target gene, the reverse 
primer the 3 ¢  end of the target gene. Since the mutagenesis 
rate is decreased in the region covered by the primers, short 
primers are preferred. The amount of template DNA is deter-
mined by the amount of actual target DNA (length of the gene 
encoding for the protein of interest), not by the total amount 
of DNA added to the reaction in form of the tripartite fusion 
expression plasmid. The mutation frequency can be increased 
by lowering the amount of target DNA result and/or by 
increasing the number of cycles in the PCR program. Note 
that PCR yields might decrease at target DNA amounts below 
0.1 ng. The mutation frequency can further be increased by 
using a pool of already mutated sequences as a template for the 
error-prone PCR.  

    5.    Square plates are preferred over round plates, because they 
allow one to compare more strains on a single plate.  

    6.    The tripartite fusion can be expressed from a variety of differ-
ent plasmids. For smaller, nontoxic  E. coli  proteins (smaller 
than about 15 kDa), expression of the tripartite fusion can 
often be achieved simply by using the constitutive, native 
 b -lactamase promoter (e.g., expression plasmid pBR322-bla-
link, see Subheading  3.1.1 ). For heterologous, larger or more 
toxic  E. coli  proteins (larger than about 15 kDa), we found it 

  4.  Notes

  Fig. 2.    Glycine-serine linker. Shown is the nucleotide sequence encoding for residues 6–25 of the glycine-serine linker. 
Restriction sites are indicated. The amino acid sequence of the entire linker is (GGGGS) 2 SSGSGSGSG(GGGGS) 2 .       
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bene fi cial to be able to  fi ne-tune expression of the tripartite 
fusion and thus optimize the basal level of antibiotic resistance 
by using a regulatable promoter such as the arabinose pro-
moter (e.g., expression plasmid pMB1-ara-bla-link, see 
Subheading  3.1.2 ). Choosing a pMB1 origin of replication 
(about 15–20 plasmid copies per cell, e.g., on pBR322) over 
lower copy number origins like pSC101 (about 5 copies per 
cell, e.g., on pBAD43) or p15A (10–12 copies per cells, on, 
e.g., pBAD33) will increase the basal level of antibiotic resis-
tance conferred by the tripartite fusion and is preferred. 
Plasmids that already carry the intact  b -lactamase ( bla ) gene 
absolutely need to be avoided since the wild-type  bla  gene will 
overwhelm any antibiotic resistance encoded by the tripartite 
fusion. Additionally, plasmids that even contain fragments of 
the  bla  gene should also be avoided to prevent unwanted 
recombination with the  bla  portions of the tripartite fusion 
encoding sequence. The standard length of the linker in the 
tripartite fusion length is 30 amino acids (aa), but can be 
adjusted to accommodate the insertion of larger test proteins 
into  b -lactamase. We calculated that for a theoretical, perfectly 
spherical protein of 50 kDa with N- and C-termini at opposite 
sites, a 30 aa long linker should be more than long enough to 
allow interaction of the two  b -lactamase fragments and there-
fore activity. For non-spherical proteins that have their termini 
far apart, the use of a longer linker, e.g., with 60 residues, is 
suggested. This however may lead to lower levels of antibiotic 
resistance. 

 Both plasmids, pBR322-bla-link and pMB1-ara-bla-link, 
can be requested from the authors. The description of their 
derivation is included simply to facilitate the reader to prepare 
similar constructs that are customized for their own purposes.  

    7.    In this PCR, a linker-encoding sequence is inserted into the  bla  
gene present on pBR322. The 5 ¢  end of each primer encodes 
either for the  fi rst 17 residues (primer 1) or for the last 13 resi-
dues (primer 2) of the linker. The remaining nucleotide 
sequences of the two primers are complementary to the regions 
directly upstream (primer 1) or downstream (primer 2) of the 
insertion site for the linker-encoding sequence within the  bla  
gene. The linker-encoding region contains restriction sites, 
allowing the insertion of a guest protein into approximately 
the middle of the linker (Fig.  2 ).  

    8.    High  fi delity (proofreading) DNA polymerases other than 
Phusion® can be used in this step. In this case, follow the 
instructions of the manufacturer.  

    9.    If more than one PCR product is observed, gel-puri fi cation of 
the full-length PCR product after step 4 is recommended. In this 
case, omit step 5 and instead extract and purify the appropriately 
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sized DNA fragment from a preparative agarose gel using a 
DNA gel extraction kit.  

    10.    Electrocompetent or chemically competent strains other than 
NEB10-beta can alternatively be used in this step as long as 
they are not tetracycline resistant.  

    11.    If more than one PCR product is observed, gel-puri fi cation of 
the full-length PCR product after step 4 is recommended. In 
this case, omit step 4 and instead purify the appropriately sized 
DNA fragment from a preparative agarose gel using a DNA gel 
extraction kit.  

    12.    The restriction enzymes  Xba I and  Spe I produce compatible 
ends.  

    13.    In theory, the mutagenesis of the target gene can also be 
achieved by alternative mutagenesis techniques such as chemi-
cal mutagenesis, random insertion and deletion mutagenesis, 
random oligonucleotide mutagenesis, and so on. For reviews 
about mutagenesis methods see ref.  25–  28 .  

    14.    Estimate megaprimer concentration by measuring absorption 
at 260 nm or by comparing the intensity of the corresponding 
band on an ethidium bromide stained agarose gel to the inten-
sity of a band representing a DNA fragment of similar size and 
known concentration.  

    15.    At this time, a PCR product may or may not be visible on an 
analytical agarose gel. Proceed either way with step 6.  

    16.    At this point, a DNA pellet should have formed, easily visible 
due to co-precipitation of the dye. If no pellet can be observed, 
spin for additional 10 min at 16,000 ×  g  in a microcentrifuge 
and/or add more isopropanol.  

    17.    A variety of different strains can be used for the selection. To 
ensure large library sizes, however, highly competent cells 
should be used, e.g., commercially available NEB10-beta elec-
trocompetent cells with a transformation ef fi ciency of 
2–4 × 10 10  cfu/ m g pUC19.  

    18.    Typical library sizes are 10 5  colonies and more for about 100  m l 
competent cells. If the yield of the synthesized plasmid is unsat-
isfactory, increase the amount of megaprimer used in the PCR 
and/or optimize the reaction by trying different ratios of 
megaprimer: plasmid. The total number of transformed cells 
can further be optimized by using different DNA amounts for 
the transformation, more cells and/or simply by performing 
multiple transformations.  

    19.    It is crucial to determine the mutagenesis rate prior to any 
selection for increased levels of resistance to  b -lactam antibiot-
ics. The desired mutagenesis rate depends on the application. 
A rate that results in single point mutations can be useful for 
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initial experiments. Proceed with the selection described in 
Subheading  3.3  only when satis fi ed with the mutagenesis rate 
(see Note 4).  

    20.    We found this genetic selection system to work with a variety 
of different  b -lactam antibiotics (e.g., ampicillin, penicillin V), 
media (e.g., LB, minimal medium, MacConkey medium),  E. 
coli  strains (e.g., MG1655, NEB10-beta, BW25113), and 
incubation temperatures (30–42°C). Choose conditions suit-
able to address the scienti fi c question of interest. We found 
that including an additional antibiotic (e.g., for maintenance 
of the expression plasmid) in the selection medium causes 
additional stress to the cells and is neither recommended nor 
necessary. When expressing the tripartite fusion under an arab-
inose-inducible promoter, it is further advisable to optimize 
the arabinose concentration used for induction prior any selec-
tion experiment. For this, perform spot titer experiments (see 
Subheading  3.4 ) using plates supplemented with different 
concentrations of arabinose (e.g., 0, 0.1, 0.2, 0.5, 0.75, 1, 1.5, 
and 2%) and one to three  fi xed concentrations of  b -lactam anti-
biotic that prevent growth for some but not all cell dilutions. 
The arabinose concentration allowing the highest level of resis-
tance (without causing any cell sickness on plates containing 
no  b -lactam antibiotic) should be chosen for downstream 
experiments.  

    21.    Although less common, mutations within the reporter protein 
can occur and could theoretically be selected for if the speci fi c 
activity of  b -lactamase was increased as a result of the muta-
tion. To exclude this possibility, sequencing of the entire fusion 
protein gene and its promoter region, not only of the gene for 
the protein of interest, is recommended. We have not observed 
any mutations on the plasmid that should increase its copy 
number. However, if this is a concern, the rest of the plasmid 
can be sequenced as well.  

    22.    This additional PCR step can result in recombination of differ-
ent single point mutants in form of multiple mutations, as well 
as in the introduction of additional mutations. The conse-
quence can be even higher levels of antibiotic resistance.  

    23.    This step serves to exclude mutations in the host chromosome 
that could have occurred sporadically and caused an increased 
level of resistance.  

    24.    If the overall level of antibiotic resistance is extremely low, a 
plasmid-free strain should be used as an additional control to 
monitor the basal level of antibiotic resistance this strain 
exhibits.  

    25.    Depending on insert protein, strain, incubation temperature, 
and medium, cell dilutions of 10 −5  or 10 −6  might or might not 
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show cell growth. More important than absolute growth is 
relative growth compared to the control strain expressing a 
tripartite fusion containing the wild-type insert protein.  

    26.    Include the control strain (strain expressing tripartite fusion 
containing the wild-type version of the target protein gene) on 
every plate.  

    27.    For example, in Fig.  3a  depicting a LB plate containing 
0.9 mg/ml penicillin V, cells expressing a tripartite fusion con-
taining the insert protein Im7 L34A grow at dilutions of 10 0  
to 10 −4 , but not at dilutions of 10 −5  or 10 −6 . The maximal cell 
dilution allowing growth for this mutant at this concentration 
of  b -lactam antibiotic is therefore 10 −4 . The corresponding 
data point in Fig.  3b  is marked with an asterisk symbol.   

    28.    For example, in Fig.  3b , inspect the graph representing cells 
expressing a tripartite fusion containing the insert protein Im7 
L34A. Cell dilutions of 10 −3  show growth on plates containing 
0–1.3 mg/ml penicillin V, but not on plates containing 
 ³ 1.4 mg/ml penicillin V. The MIC is the smallest concentra-
tion of  b -lactam antibiotic tested that prevents cell growth (in 
this example, 1.4 mg/ml is the MIC for cell dilution of 10 −3 ). 
The smaller the concentration differences between plates, the 
more precise the calculated MIC will be. As an alternative to 
using the  fi rst concentration tested that prevents cell growth 
for a given dilution, extrapolation of the MIC value from the 
graphs in Fig.  3b  is generally acceptable, too. For example, we 
often extrapolated the MIC to be, e.g., 0.1 mg/ml higher than 
the last concentration that showed cell growth for a particular 
dilution. In the case of cells expressing a tripartite fusion con-
taining the insert protein Im7 L34A, for instance, cells show 
growth at dilutions of 10 −1  up to 2.75 mg/ml. We estimated 
the MIC to be 2.75 + 0.1 = 2.85 mg/ml (although the next 
tested concentration was 3 mg/ml). In our experience, extrap-
olation of MIC values does not signi fi cantly in fl uence the ratio 
of MIC (mutant)/MIC (WT).  

    29.    MIC (mutant)/MIC (WT) values smaller than one indicate 
decreased levels of antibiotic resistance compared to WT. MIC 
(mutant)/MIC (WT) values larger than one indicate increased 
levels of antibiotic resistance compared to WT.  

    30.    Which cell dilutions show the highest phenotypic reproduc-
ibility depends on insert protein, strain, incubation tempera-
ture, and medium. We frequently average MIC (mutant)/MIC 
(WT) ratios for cell dilutions of 10 −4  to 10 −2 , 10 −3  to 10 −1 , or 
10 −4  to 10 −1 . Phenotypes for cell dilutions of 10 0 , 10 −5 , and 
10 −6  are in general less reproducible and their MIC values 
should be excluded from the MIC average if possible.  
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    31.    At constant temperature in vitro, the free energy of unfolding 
 D  G  unfolding  is directly correlated to the equilibrium constant  K  of 
the unfolding reaction through the following equation: 
 D  G  unfolding ( T  ) = – R  In  K .  K  is de fi ned as the number of mole-
cules occupying the unfolded state divided by the number of 

  Fig. 3.    Spot titer experiments and their analysis. ( a ) Mid-log phase cells of  E. coli  NEB10 b  
expressing tripartite fusions with Im7 WT, Im7 L34A, or Im7 I54V, respectively, were 
adjusted to  A  600nm  = 1 with PBS. Serial cell dilutions of 10 0  to 10 −6  were spotted on a LB 
plate containing 0.9 mg/ml penicillin V. ( b ) The maximal cell dilution allowing growth is 
plotted against the concentration of penicillin V used in LB plates. The  arrow  indicates the 
penicillin V concentration used in ( a ) (for *, see Note 27). ( c ) The free energy of unfolding 
( D  G  unfolding ) is plotted against the natural logarithm of the average ratio MIC (Im7 mutant)/
MIC (Im7 WT)  (  28  )  (see Note 31).       
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molecules occupying the folded state. In vivo, this ratio is 
re fl ected by the steady-state expression level of the tripartite 
fusion in the periplasm: the more insert proteins occupy the 
folded state, the higher is the level of the tripartite fusion. Since 
we found the steady-state expression level to be directly pro-
portional to the level of antibiotic resistance, we plot the natu-
ral logarithm of MIC here, analogous to ln  K .          
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    Chapter 2   

 Determining Enzyme Kinetics via Isothermal Titration 
Calorimetry       

     Neil   A.   Demarse      ,    Marie   C.   Killian   ,    Lee   D.   Hansen   , and    Colette   F.   Quinn      

  Abstract 

 Isothermal titration calorimetry (ITC) has emerged as a powerful tool for determining the thermodynamic 
properties of chemical or physical equilibria such as protein–protein, ligand–receptor, and protein–DNA 
binding interactions. The utility of ITC for determining kinetic information, however, has not been fully 
recognized. Methods for collecting and analyzing data on enzyme kinetics are discussed here. The step-by-
step process of converting the raw heat output rate into the kinetic parameters of the Michaelis–Menten 
equation is explicitly stated. The hydrolysis of sucrose by invertase is used to demonstrate the capability of 
the instrument and method.  

  Key words:   Isothermal titration calorimetry ,  ITC ,  Enzyme kinetics ,  Michaelis–Menten kinetics    

 

 Enzymes are biological macromolecules that catalyze the conver-
sion of chemical precursor molecules (substrate) to essential chem-
ical products. When linked in series, enzyme pathways perform 
numerous critical functions to maintain organismal life (i.e., cell 
growth, cell differentiation, breakdown of nutrients for energy, 
energy storage, etc.). When enzyme function is perturbed, serious 
disease can result. Thus, studying enzyme kinetics and determining 
the details of an enzyme’s activity is a necessary prerequisite for 
developing novel therapeutics to treat and understand disease. 
Isothermal titration calorimetry (ITC) is a straightforward and 
direct method for determining the basic chemical details of an 
enzyme catalyzed reaction (i.e.,  V  max ,  K  m , and  k  2 ). The advantages 
of ITC over other analytical methods are: (1) Substrate(s) do 
not require labeling or linkage to a secondary-detectable process. 

  1.  Introduction
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(2) ITC is nondestructive to the enzyme. And (3) ITC is compatible 
with both physiological and synthetic substrates  (  1,   2  ) . This study 
uses a standard experimental system (hydrolysis of sucrose by 
invertase) to illustrate measurement of the kinetics of a reaction 
by ITC  (  3  ) . Because processing of enzyme kinetic data collected by 
ITC is over-simpli fi ed in the literature, details of the calculations to 
convert the heat generated into the kinetic parameters are given 
 (  2  ) . Some of the instructions given here are speci fi c to invertase 
catalyzed hydrolysis of sucrose, our test system, but these can easily 
be adapted for other enzymes.  

 

      1.    Lint-free laboratory wipes (e.g., KimWipes ® ).  
    2.    Analytical balance to weigh samples.  
    3.    12″ stainless steel tweezers.  
    4.    10 mL graduated cylinder or 10 mL volumetric  fl ask.  
    5.    100 mL graduated cylinder or 100 mL volumetric  fl ask.  
    6.    500 mL graduated cylinder or 500 mL volumetric  fl ask.  
    7.    1 L graduated cylinder or 1 L volumetric  fl ask.  
    8.    10  m L pipette.  
    9.    10  m L pipette tips.  
    10.    Waste beaker.      

      1.    Nano ITC Low Volume (part number 601000.901) (TA 
Instruments) (see Notes 1 and 2).  

    2.    Degassing station (part number 6326) (TA Instruments).  
    3.    500  m L Hamilton  fi lling syringe.  
    4.    Computer running Windows XP or Windows 7.  
    5.    Nano ITCRun data acquisition software (available at 

TAInstrument.com).  
    6.    Data analysis software (e.g., MATHCAD).      

      1.    Nano ITC cleaning tool (part number 601028.901) (TA 
Instruments).  

    2.    Silicone rubber tubing (1/16 inside diameter).  
    3.    1 L side-arm vacuum  fl ask with a #8 rubber stopper and tubing 

to connect to a vacuum source.  
    4.    Cleaning solution: 100 mL 5% w/v SDS solution. Weigh 5 g 

of sodium dodecylsulfate and transfer to 100 mL graduated 

  2.  Materials

  2.1.  Laboratory 
Supplies

  2.2.  Instrument Setup 
Components

  2.3.  Instrument 
Cleaning Components




