


Getting Started with  
Backbone Marionette

Build large-scale JavaScript applications with  
Backbone Marionette quickly and efficiently

Raymundo Armendariz

Arturo Soto

BIRMINGHAM - MUMBAI



Getting Started with Backbone Marionette

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the authors, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1030114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-425-2

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)



Credits

Authors
Raymundo Armendariz

Arturo Soto

Reviewers
Andrea Puddu

Michel Richard

Sam Saccone

Acquisition Editors
Martin Bell

Meeta Rajani

Llewellyn Rozario

Lead Technical Editor
Vaibhav Pawar

Technical Editors
Pooja Nair

Humera Shaikh

Copy Editors
Alisha Aranha

Gladson Monteiro

Project Coordinator
Michelle Quadros

Proofreader
Lucy Rowland

Indexers
Monica Ajmera Mehta

Tejal Soni

Graphics
Abhinash Sahu

Production Coordinators
Adonia Jones

Komal Ramchandani

Cover Work
Adonia Jones



About the Authors

Raymundo Armendariz is a web developer with over nine years of experience 
in developing applications for the government and different industries such as 
automotive and manufacturing.

In the past two years, he has spent most of his time on frontend development with 
Backbone and Marionette, and building single-page applications.

Arturo Soto is a technical architect and developer. His work focuses on developing 
enterprise-level applications, especially web applications. His professional interests 
include software design patterns, agile practices, and multiple technologies, such as 
WCF, ASP.NET MVC, OData, Web API, HTML5, and JavaScript.

To our wives and families for their love and motivation and to our 
friends for their help and support.



About the Reviewers

Andrea Puddu (Twitter: @nuragic) is a web engineer from Sardinia, Italy.  
After a few years of working in his country, he moved to Madrid, Spain, where  
he worked in marketing and advertising companies, IT consulting firms, and tech 
startups. He has studied and worked with server languages and databases. He 
has now become a frontend expert because that’s what he loves to do. In his spare 
time, he likes to contribute to open source software; in fact, he is a committer of 
the MarionetteJS project. He is also a drummer in a rock band that he started: The 
Ancient Secrets of Levitation.

I’d like to wholeheartedly thank my parents who have supported me 
in my professional career. I also want to thank Carol, my girlfriend, 
who always helps me to make the best decisions. And last but not 
least, many thanks to my mate Tony, who always helps me out with 
English!

Michel Richard is a full-stack web developer born and raised in Kamloops, BC, 
Canada and is now residing in New York city. He earned his degree from McGill 
University and has a double major in Computer Science and Psychology. He is 
a huge fan of open source projects and contributes to them whenever possible. 
Michel has been working with Backbone and Marionette for the past two years 
and maintains a Yeoman Marionette generator project on GitHub. Michel currently 
works at Saks Inc., where he is the Director of Frontend Development. He can be 
found on GitHub as mrichard and on Twitter as MicheLeeRichard.

Sam Saccone is a creator and a problem solver. He spends his time working on 
open source projects and building applications at MojoTech. MojoTech builds web 
and mobile apps for big and soon to-be-big companies.



www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related 
to your book. 

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

http://PacktLib.PacktPub.com 

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital 
book library. Here, you can access, read and search across Packt’s entire library of 
books. 

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials 
for immediate access.



Table of Contents
Preface	 1
Chapter 1: Starting with Backbone Marionette	 5

Introducing Marionette.js	 5
Backbone needs Marionette.js	 6
Key benefits of Marionette.js	 6
Building large applications	 7
Incremental use	 7

Installing Marionette.js	 8
Text editor	 8
Web browser	 8
Prerequisites	 8
Getting Marionette.js	 9
Documentation	 9

Summary	 9
Chapter 2: Our First Application	 11

Introduction to what we are building	 11
Setting up our development environment	 13
The Backbone.Marionette.Application object	 16

Backbone already has a router!	 16
Summary	 19

Chapter 3: Marionette View Types and Their Use	 21
Marionette.View and Marionette.ItemView	 22

Handling events in the views	 26
UI and templates	 27
Marionette.CollectionView	 29
Marionette.CompositeView	 30



Table of Contents

[ ii ]

Building the layout of our application with Marionette.Layout	 32
Extending Marionette views	 33
Summary	 34

Chapter 4: Managing Views	 35
Understanding the Marionette.Region object	 36
Using the Marionette.RegionManager object	 40
Using the Backbone.BabySitter object	 42
Taking advantage of the Marionette.Renderer object	 43
Improving the performance of the application with TemplateCache	 44
Summary	 45

Chapter 5: Divide and Conquer – Modularizing Everything	 47
Applying the divide and conquer principle	 47
Modularizing single-page applications	 48
Getting started with modules	 49
Splitting modules into multiple files	 50
Implementing initializers and finalizers	 51
Working with subapplications	 51
Using the route filter	 53
Memory considerations	 55
Summary	 56

Chapter 6: Messaging	 57
Understanding the event aggregator	 57
Using the event aggregator of Marionette.js	 58

Making applications more extensive with an event aggregator	 59
Getting started with Commands	 61
Setting up the RequestResponse object	 63
Summary	 65

Chapter 7: Changing and Growing	 67
Using AMD	 67

Using the Require.js library	 68
Configuring Require.js	 68

Defining our application module	 70
Writing the subapplications using Require.js	 71
Modularizing all your components	 72
Adding the text plugin	 73
Structuring your files	 74
Using handlebars as a template engine in Marionette	 76

Summary	 77
Index	 79



Preface
Backbone Marionette is a composite application library for Backbone.js, which aims 
to simplify the construction of large-scale JavaScript applications. It is a collection of 
common design and implementation patterns found in the applications that we build 
with Backbone, and includes pieces inspired by composite application, event-driven, 
and messaging architectures.

What this book covers
Chapter 1, Starting with Backbone Marionette, is an introduction to what Marionette 
is and the problems it aims to solve. In this chapter, we also learn about its 
prerequisites, download sources, and documentation.

Chapter 2, Our First Application, introduces three main concepts of Marionette—the 
application, controller, and router objects— and details the process of building a 
small application.

Chapter 3, Marionette View Types and Their Use, digs deep into the view types that 
Marionette has and how to use them.

Chapter 4, Managing Views, reviews the view management that goes from firing a 
view, closing it, and re-opening it. We will also introduce some useful objects, such 
as the Renderer object and the TemplateCache object, that are very valuable in order 
to build an application.

Chapter 5, Divide and Conquer – Modularizing Everything, talks about how to 
modularize an application and break it into small subapplications. Being able 
to do this will increase its productivity as the modules allow the adding of new 
functionality without affecting the existing code.



Preface

[ 2 ]

Chapter 6, Messaging, explains that in order to build a loosely coupled application, the 
components need to know very little about each other; however, these components 
still need to work together. In this chapter, we also learn how to archive this through 
messages and events.

Chapter 7, Changing and Growing, helps us to learn how to manage a problem  
that comes with large-scale applications: the file explosions, and how to keep a  
clean structure.

What you need for this book
A modern browser and a text editor are all you need to follow the examples of 
this book. You will find detailed instructions of how to set up your development 
environment and also where to get the Marionette and its dependencies in the book.

Who this book is for
If you are a web application developer interested in using Backbone Marionette 
for a real-life project, this book is for you. Knowledge of JavaScript and working 
knowledge of Backbone.js are prerequisites.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "The Marionette.ItemView is "

A block of code is set as follows:

var CategoryView = Backbone.Marionette.ItemView.extend({
  tagName : 'li',
  template: "#categoryTemplate",
});

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.



Preface

[ 3 ]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.



Preface

[ 4 ]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



Starting with Backbone 
Marionette

This practical guide provides clear steps to the basics of writing scalable applications 
using Marionette.js. As you progress through the initial examples, you will 
develop an understanding of how the framework components work together to 
create a composite application. But before we go through in-depth examples, here 
are some things that you will find in this introductory chapter:

•	 Description and characteristics of Marionette.js 
•	 The role of Marionette.js in the Backbone applications
•	 Benefits of the framework 
•	 An overview of architecture and scalability 
•	 Instructions for installation and documentation

Introducing Marionette.js
A composite application library for Backbone.js is Backbone.marionette, also 
known as Marionette.js. It gives us the core constructs and simplifies many of the 
patterns and practices that your JavaScript applications need to be scalable.



Starting with Backbone Marionette

[ 6 ]

Backbone needs Marionette.js
An increasingly popular framework for building single-page and small- to mid-sized 
applications is Backbone.js. It provides a great set of building blocks to organize 
your frontend development and build applications that support mobile devices. 
However, it leaves much of the application design, architecture, and scalability to 
developers. Nevertheless, Marionette.js fills in some blanks that Backbone.js 
doesn't provide by itself and gives us conventions that you can take advantage of to 
build your own custom objects. Simply put, Marionette.js makes your life easier 
when you are developing the Backbone applications.

Key benefits of Marionette.js
Adding a lot of key patterns and tools used to create real-world applications, 
Marionette.js found its place in Backbone. The following are some of the  
benefits that you can find within this framework:

•	 Structure, organization, and patterns
•	 Composite application architecture
•	 Event-driven architecture with the event aggregator
•	 Boilerplate for views can be reduced
•	 Enterprise messaging pattern influence
•	 Modularization options
•	 Incremental use; because it's not an all or nothing framework, which  

means that you can use just the components you need
•	 Support for nested views and layouts within visual regions
•	 Built-in memory management and zombie killing in views, regions,  

and layouts

A lot of application infrastructural components needed to build an application of any 
module size is provided by Marionette.js.

A wide set of objects are provided by Marionette.js that facilitate the creation of 
well-structured applications of virtually any size and complexity. It achieves this 
goal by providing a collection of common design and implementation patterns  
found in the applications that the creator, Derick Bailey, used to develop the  
modular Backbone applications.



Chapter 1

[ 7 ]

Building large applications
When planning the architecture for your application, you normally try to think 
ahead as much as possible, attempting to achieve a decoupled architecture with 
functionality broken down into independent modules, and to avoid making direct 
calls between these modules. Therefore, you can add and remove modules without 
affecting its behavior.

"The secret to building large apps is never build large apps. Break your applications 
into small pieces. Then, assemble those testable, bite-sized pieces into your big 
application"

                                                            – Justin Meyer, author of JavaScriptMVC.

Consider that components tied to each other are difficult to change and scale without 
affecting each other. A very incremental and modular approach is provided by 
Marionette.js, using the module definition. It relies on the event aggregator to 
send messages between the modules to coordinate functionality from other parts of 
the system, without adding direct references to them among many more object types 
that facilitate the application's design.

Incremental use
This is one of the basic concepts that the creator of Marionette.js used to create the 
framework. An incremental and modular approach is facilitated by Marionette.
js, providing the application object and the module architecture to scale applications 
across subapplications, features, and files. All of them are built to stand alone and to 
work with the core pieces of Backbone to accomplish the application's specific needs.

"The key is to acknowledge from the start that you have no idea how this will grow. 
When you accept that you don't know everything, you begin to design the system 
defensively ... You should spend most of your time thinking about interfaces rather 
than implementations."

                   – Nicholas Zakas, author "High-performance JavaScript websites"

One of the main benefits of Marionette.js is that you don't need to use all of its 
components. A jQuery-jQuery UI comparison can also be applied here. The fact that 
you use the jQuery calendar by any means forces you to use the entire UI library. 
The same can be applied to Marionette because the fact that you use just one of its 
components that makes sense for your application does not obligate you to use the 
other components of Marionette.



Starting with Backbone Marionette

[ 8 ]

Installing Marionette.js
We will go over how to download and set up a development environment so that 
you can get started with Marionette.js in some easy steps. If you're already 
comfortable with installing Marionette.js, you may want to skip the remaining 
parts of this chapter. Feel free to jump to Chapter 2, Our First Application.

Text editor
While building large and scalable applications, you will spend most of your time on 
a code editor. We recommend that you use an editor that works for you. Notepad++ 
or Sublime Text are definitely good options. Sublime Text already has a lot of 
snippets and packages that will help you in your development.

Web browser
Working with complex client-side applications requires a good set of developer 
tools. For the purpose of this guide, we will use mostly Google Chrome and Mozilla 
Firefox, but all the code and examples should work in all modern browsers (IE9+, 
Opera, and Safari).

We will use jsfiddle.net in order to show you the running examples. The use of 
this site is pretty simple and most of the time, you will only need to run the code to 
see it in action.

Prerequisites
At the time of this writing, the current stable version of Marionette.js is v1.3.0 and 
it relies on the following libraries:

•	 JSON2.js

•	 jQuery (v1.7, v1.8, and v1.9)
•	 Underscore.js (v1.4.4)
•	 Backbone.js (v1.0.0)
•	 backbone.wreqr.js

•	 backbone.babysitter.js

We would like to point that having basic knowledge on Backbone and Underscore 
will help you to get the best out of this book and to understand the benefits of 
Marionette over plain Backbone development.



Chapter 1

[ 9 ]

Getting Marionette.js
The best way to get the latest build of Marionette.js is by going to the project 
website, http://marionettejs.com/.

They have a Pre-packaged option. The .zip contains all of the files that you 
need to get started with Marionette.js, including Backbone, jQuery, and other 
prerequisites. You can also download the Marionette.js file without all the 
dependencies and just use the CDN versions of these libraries if they are available.

Documentation
You can download the documentation for each piece of Marionette.js from 
https://github.com/Marionette.jsjs/Marionette.js/tree/master/docs. 
The documentation is split into multiple files. The annotated source code can be 
found at http://marionettejs.com/docs/backbone.marionette.html. You can 
find articles, blog posts, presentations, FAQs, and more on its wiki page, https://
github.com/marionettejs/backbone.marionette/wiki.

Derick Bailey, the creator of Marionette, has created a sample application that can  
be used as a reference for building the Backbone applications with Marionette.js. 
The name of the application is BBCloneMail and it is a great example to demonstrate 
a composite application. You can find BBCloneMail online at http://bbclonemail.
heroku.com and the source code at http://github.com/derickbailey/
bbclonemail.

Summary
In this chapter, we looked at some of the core concepts and benefits that 
Marionette.js offers for building scalable applications. We also provided links to 
find, download, and install the basic tools needed to perform your development. In 
the next chapter, you will be introduced to the components or building blocks that 
make up the Marionette.js applications.





Our First Application
In the previous chapter, we learned what Marionette is, where to find the source 
code and documentation, and other useful resources that will help us to learn more 
about Marionette. But we believe the best way to learn something is by putting it into 
practice. So in this book, we will build an application with moderate complexity, that 
is, it is complex enough to break the Hello World! barrier, allowing us to discover the 
benefits that Marionette has to offer, but simple enough to complete it with in this 
book. We will show some standalone code snippets to introduce you to each new 
concept; however most of the time we will stick to the application code.

In this chapter, we will review how to set up your development environment in order 
to build our first application. We will also learn three important parts of Marionette.
js: the marionette router, marionette controller, and marionette application.

Introduction to what we are building
The application that we will be building in this book is a website for a book store. We 
should be able to perform the following actions on the website:

•	 Display a list of book categories
•	 Select a category and display the related books
•	 Present a description, price, and other important details of the book
•	 Add books to the shopping cart
•	 Display the shopping cart items

The website that we are going to build is just an example application. It's mandatory 
to follow the structure proposed in this book, as every application has different needs. 
Nevertheless, it's a good starting point and our idea is to show how each component of 
Marionette solves a problem and how to make its components work together.



Our First Application

[ 12 ]

Also, keep in mind that we will give attention to the Marionette components of 
the code, explaining in detail their benefits, and to adding them to the application. 
However, we will not dive deep into Backbone details such as Backbone.Model and 
Backbone.Collection, which are the core components of Backbone, as knowledge 
of this is already assumed.

One of the concepts that Marionette adds to Backbone is that of an application 
object—Backbone.Marionette.Application. We will start this book with this topic 
because the object will be the container of all of your Backbone views and models. 
One of its responsibilities is, before the user starts interacting with the website, it 
must initialize some of the components, such as the Backbone.Router component, 
that will be listening to the route (URL) changes of our application. This object 
provides some handy methods to perform this initialization. But, before we dig 
deeper into details, let's first take a look at what we are building.

The following screenshot helps us to illustrate the structure of the book store 
application that we are going to build:

We have a navigation section that provides the categories of the books. Then in the 
middle, we have two sections. The one on top is the list of books by name, author, 
and price. This section also allows users to order books.

The second section, in the center of the screen, will show a description of each book 
as the user selects from the list on top. Finally, to the right of the screen, we have the 
Order section that will contain the details about our order.



Chapter 2

[ 13 ]

At the end of the book, the application should look like the following screenshot:

The goal of this chapter is to build the foundation of the book store website and 
a part of that foundation is to have the Backbone.Marionette.Application 
object working with enough functionality so that we can call it an application. Our 
philosophy is to take small steps at a time and then check where we stand. So let's 
get started!

Setting up our development environment
As we will be building an application together, we need to set up our development 
environment. The following are the steps to do it:

1.	 Create a folder and name it Bookstore.
2.	 Inside this folder, create two new folders—one named Source Code and the 

other Libraries.
3.	 In the Libraries folder, place the following four libraries:

°° Underscore.js

°° jQuery.js

°° Backbone.js

°° Backbone.Marionette.js

For styling purposes, we will use Twitter bootstrap v2. Download the default 
package, unzip it, and place the entire unzipped bootstrap folder beside the 
.js files inside the Libraries folder.

4.	 In the Source Code folder, create a new folder with the name js as it will be 
the location where we will save all our JavaScript files.



Our First Application

[ 14 ]

5.	 Under the Source Code folder, create an HTML file and name it Index.
html. It should be placed at the same level as the js folder.

6.	 Make sure that your folder structure looks like the following screenshot and 
that you have the right library files inside the Libraries folder.

Your Source Code folder should look like the following screenshot:

 

We are building a single-page application and in this section, we are about  
to build the initial HTML page structure for our application. It is the HTML 
file that will be rendered by the server the first time a user types the URL of 
the site.

7.	 Open the Index.html file in your preferred code editor.
8.	 To avoid the tedious task of writing the HTML file manually for this chapter, 

we have made it available for you at http://jsfiddle.net/. The code is 
available at http://jsfiddle.net/rayweb_on/hsrv7/11/.

jsfiddle.net—if you don't know it already, this is an excellent 
tool to test the small parts of your JavaScript code and share your 
snippets with ease.

I'm sure that if you are reading a Marionette book, it is because you have 
enough experience to put the CSS and JS tags in the right place. So feel free to 
skip the following steps.



Chapter 2

[ 15 ]

9.	 Copy the CSS section and paste it into the <head> section of the HTML file.
10.	 Copy the HTML section and paste it into the <body> section of the  

HTML file.
11.	 At http://jsfiddle.net/, the scripts are already included for you. But in 

our local environment, we have to add them. We will do it just at the bottom 
of the <html> tag, but still inside the <body> tag.

12.	 When you are done with copying the initial structure, your HTML file should 
look like the following screenshot (the style script and the template script are 
collapsed in the screenshot). In this chapter, we will be using the console of 
your browser and we won't be interacting with the HTML file for now, but 
it's important that your Index.html file follows the structure shown in the 
following screenshot:



Our First Application

[ 16 ]

Bootstrap and styling your page is outside the scope of this book. 
But it's a pretty convenient library that allows us to set up a 
decent looking HTML file for this demo application.

But wait a minute…what does the last script js/BookStore.js refer to? 
Well, that's the JavaScript code that we will be creating in the next step.

The Backbone.Marionette.Application 
object
Create a new file inside the js folder and name it BookStore.js. To create a new 
application, we just need to type the following line in Bookstore.js:

var bookStoreApp = new Backbone.Marionette.Application();

We will name the application BookStoreApp and will start attaching our Backbone 
pieces to this application. But, we already mentioned that Marionette brings the 
concept of an application object and, from the documentation, we also know that 
it is an object that will help us to coordinate the pieces of our application. You may 
ask, what pieces; for example, a Marionette.Router object and a Marionette.
Controller object.

Backbone already has a router!
Yes, Backbone already has a router object. Then what does the Marionette.Router 
object do differently? Well, the new router adds the ability of reducing your router 
to just a small file that will contain only the routes of your application and not the 
methods that will respond and take action once a route is matched. These methods 
belong to a controller—another new concept that Marionette adds to Backbone.

Let's build a Marionette.Router object and a Marionette.Controller object to get 
a better understanding of them:

var BookStoreController = Backbone.Marionette.Controller.extend({ 
  displayBooks : function (){
    console.log("I will display books...");
  }
});
var BookStoreRouter = Backbone.Marionette.AppRouter.extend({
  controller :  BookStoreController,
  appRoutes: {
    "": "displayBooks"
  }
});



Chapter 2

[ 17 ]

In the preceding code snippet, we created the BookStoreController object, 
which is just a JavaScript object containing the functions that will match the name 
of the methods defined in the router. In this case, the empty router will call the 
displayBooks method or the controller. This separation of concerns will allow us to 
have a cleaner code base as the router will only know about the routes. We declare 
which controller will handle the routes by setting the controller property of the 
router to BookStoreController. The rest of the code snippet is just the declaration 
of the routes.

It is not mandatory to have a router in order to use a controller. The Marionette 
controllers can be instantiated without the need of a router. You may not handle 
the interaction of your site by changes in the URL but by events. In this case, the 
controller still adds value as it can be the container of your views.

It's recommended to have small routers and controllers divided as per the purpose 
of your application instead of a giant single-router file that will contain all the routes 
and the functions.

While these two pieces are part of the application's foundation, we still need to 
make them work within it. But, we also need to do a little more in order to achieve a 
functional application. Let's take small steps for this. Let's first check out whether we 
can see a message log in the console of our browser.

To do that, we need to put all the code together and add the missing pieces in order 
to make it work.

So far, we have only defined the application, controller, and router. But where 
should we instantiate them? The Backbone.Marionette.Application object offers 
the possibility to add initializer methods that will run when we start our application.

Yes, you read correctly! You can add as many methods as you need in case you want 
to keep the logic of this initializers separated.

Inside this initializer method, we will instantiate the router and the controller, and 
just for fun, add another log message to see the order of execution.

Use the following code to do this:

BookStoreApp.addInitializer(function () {
  var bookStoreController = new BookStoreController({
    var bookStoreRouter = new  
      BookStoreRouter({controller:controller});
  console.log('Message from the addInitializer Method');
..});
})



Our First Application

[ 18 ]

Another useful function of the applications is the events that fire the 
initialize:before, initialize:after, and start functions. The names of these 
functions are quite descriptive. As the name suggests, the initialize:before 
function will be executed before the initializers, the initialize:after function will 
be executed after the initializers, and the start function is responsible for starting the 
application and thereafter starting the initializers.

In our application, we will use initialize:after. This function will be  
helpful for us, as the last thing we want to do once we instantiate the router is  
start Backbone.history.

BookStoreApp.on('initialize:after', function () {
  if (Backbone.history) {
    Backbone.history.start();
  }
  console.log('Mesagge from initialize:after method');
});

The last step to complete the infrastructure or foundation of our application is call 
the following function:

BookStoreApp.start();

Now, let's put all the code snippets together as follows:

var BookStoreApp = new Backbone.Marionette.Application();
var BookStoreController = Backbone.Marionette.Controller.extend({
  displayBooks : function (){
    console.log("I will display books...");
  }
});
var BookStoreRouter = Backbone.Marionette.AppRouter.extend({
  controller :  BookStoreController,
  appRoutes: {
    "": "displayBooks"
  }
});
BookStoreApp.addInitializer(function () {
  var controller = new BookStoreController();
  var router = new BookStoreRouter({controller:controller});
  console.log("hello from the addInitializer.");
});
BookStoreApp.on('initialize:after', function () {
  if (Backbone.history) {



Chapter 2

[ 19 ]

    Backbone.history.start();}
  console.log("hello from the initialize:after.");
});
BookStoreApp.start();

Downloading the example code

You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Now, you can go ahead and open the Index.html file in your browser and see the 
results on the console.

Summary
In this chapter, we learned about the application, controller, and router functionality, 
and how to get them working together to get a simple application skeleton which 
will be the base for our book store application.

In the next chapter, we will familiarize ourselves with the different views that 
Marionette adds to the Backbone development.





Marionette View Types and 
Their Use

In the previous chapter, we learned about components that help us provide a 
structure to our application; however, none of these components interacted with the 
DOM. This responsibility belongs to the views in Backbone development; however, 
the interaction and manipulation of the DOM can quickly become complicated 
inside our views. With the intention of having cleaner and meaningful objects to 
manipulate, the DOM Marionette introduces a powerful set of views. The following 
is a description of each one of those views provided in the official documentation at 
https://github.com/marionettejs/backbone.marionette:

•	 Marionette.ItemView: This is the view that renders a single model
•	 Marionette.CollectionView: This is the view that iterates over a collection 

and renders the individual ItemView instances for each model
•	 Marionette.CompositeView: This is the collection view and item view for 

rendering leaf-branch/composite model hierarchies
•	 Marionette.Layout: This is the view that renders a layout and creates 

region managers to manage areas within it
•	 Marionette.View: This is the base view type that other Marionette views 

extend from (not intended to be used directly)

In this chapter, we will learn the intention behind each one of them and how to start 
using them.


