

FIFTH EDITION

Learning Python

Mark Lutz

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Learning Python, Fifth Edition
by Mark Lutz

Copyright © 2013 Mark Lutz. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Christopher Hearse
Copyeditor: Rachel Monaghan
Proofreader: Julie Van Keuren

Indexer: Lucie Haskins
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

June 2013: Fifth Edition.

Revision History for the Fifth Edition:
2013-06-07 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449355739 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning Python, 5th Edition, the image of a wood rat, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-35573-9

[QG]

1370970520

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449355739

To Vera.

You are my life.

Table of Contents

Preface . xxxiii

Part I. Getting Started

1. A Python Q&A Session . 3
Why Do People Use Python? 3

Software Quality 4
Developer Productivity 5

Is Python a “Scripting Language”? 5
OK, but What’s the Downside? 7
Who Uses Python Today? 9
What Can I Do with Python? 10

Systems Programming 11
GUIs 11
Internet Scripting 11
Component Integration 12
Database Programming 12
Rapid Prototyping 13
Numeric and Scientific Programming 13
And More: Gaming, Images, Data Mining, Robots, Excel... 14

How Is Python Developed and Supported? 15
Open Source Tradeoffs 15

What Are Python’s Technical Strengths? 16
It’s Object-Oriented and Functional 16
It’s Free 17
It’s Portable 17
It’s Powerful 18
It’s Mixable 19
It’s Relatively Easy to Use 19
It’s Relatively Easy to Learn 20
It’s Named After Monty Python 20

v

How Does Python Stack Up to Language X? 21
Chapter Summary 22
Test Your Knowledge: Quiz 23
Test Your Knowledge: Answers 23

2. How Python Runs Programs . 27
Introducing the Python Interpreter 27
Program Execution 28

The Programmer’s View 28
Python’s View 30

Execution Model Variations 33
Python Implementation Alternatives 33
Execution Optimization Tools 37
Frozen Binaries 39
Future Possibilities? 40

Chapter Summary 40
Test Your Knowledge: Quiz 41
Test Your Knowledge: Answers 41

3. How You Run Programs . 43
The Interactive Prompt 43

Starting an Interactive Session 44
The System Path 45
New Windows Options in 3.3: PATH, Launcher 46
Where to Run: Code Directories 47
What Not to Type: Prompts and Comments 48
Running Code Interactively 49
Why the Interactive Prompt? 50
Usage Notes: The Interactive Prompt 52

System Command Lines and Files 54
A First Script 55
Running Files with Command Lines 56
Command-Line Usage Variations 57
Usage Notes: Command Lines and Files 58

Unix-Style Executable Scripts: #! 59
Unix Script Basics 59
The Unix env Lookup Trick 60
The Python 3.3 Windows Launcher: #! Comes to Windows 60

Clicking File Icons 62
Icon-Click Basics 62
Clicking Icons on Windows 63
The input Trick on Windows 63
Other Icon-Click Limitations 66

vi | Table of Contents

Module Imports and Reloads 66
Import and Reload Basics 66
The Grander Module Story: Attributes 68
Usage Notes: import and reload 71

Using exec to Run Module Files 72
The IDLE User Interface 73

IDLE Startup Details 74
IDLE Basic Usage 75
IDLE Usability Features 76
Advanced IDLE Tools 77
Usage Notes: IDLE 78

Other IDEs 79
Other Launch Options 81

Embedding Calls 81
Frozen Binary Executables 82
Text Editor Launch Options 82
Still Other Launch Options 82
Future Possibilities? 83

Which Option Should I Use? 83
Chapter Summary 85
Test Your Knowledge: Quiz 85
Test Your Knowledge: Answers 86
Test Your Knowledge: Part I Exercises 87

Part II. Types and Operations

4. Introducing Python Object Types . 93
The Python Conceptual Hierarchy 93
Why Use Built-in Types? 94
Python’s Core Data Types 95
Numbers 97
Strings 99

Sequence Operations 99
Immutability 101
Type-Specific Methods 102
Getting Help 104
Other Ways to Code Strings 105
Unicode Strings 106
Pattern Matching 108

Lists 109
Sequence Operations 109
Type-Specific Operations 109

Table of Contents | vii

Bounds Checking 110
Nesting 110
Comprehensions 111

Dictionaries 113
Mapping Operations 114
Nesting Revisited 115
Missing Keys: if Tests 116
Sorting Keys: for Loops 118
Iteration and Optimization 120

Tuples 121
Why Tuples? 122

Files 122
Binary Bytes Files 123
Unicode Text Files 124
Other File-Like Tools 126

Other Core Types 126
How to Break Your Code’s Flexibility 128
User-Defined Classes 129
And Everything Else 130

Chapter Summary 130
Test Your Knowledge: Quiz 131
Test Your Knowledge: Answers 131

5. Numeric Types . 133
Numeric Type Basics 133

Numeric Literals 134
Built-in Numeric Tools 136
Python Expression Operators 136

Numbers in Action 141
Variables and Basic Expressions 141
Numeric Display Formats 143
Comparisons: Normal and Chained 144
Division: Classic, Floor, and True 146
Integer Precision 150
Complex Numbers 151
Hex, Octal, Binary: Literals and Conversions 151
Bitwise Operations 153
Other Built-in Numeric Tools 155

Other Numeric Types 157
Decimal Type 157
Fraction Type 160
Sets 163
Booleans 171

viii | Table of Contents

Numeric Extensions 172
Chapter Summary 172
Test Your Knowledge: Quiz 173
Test Your Knowledge: Answers 173

6. The Dynamic Typing Interlude . 175
The Case of the Missing Declaration Statements 175

Variables, Objects, and References 176
Types Live with Objects, Not Variables 177
Objects Are Garbage-Collected 178

Shared References 180
Shared References and In-Place Changes 181
Shared References and Equality 183

Dynamic Typing Is Everywhere 185
Chapter Summary 186
Test Your Knowledge: Quiz 186
Test Your Knowledge: Answers 186

7. String Fundamentals . 189
This Chapter’s Scope 189

Unicode: The Short Story 189
String Basics 190
String Literals 192

Single- and Double-Quoted Strings Are the Same 193
Escape Sequences Represent Special Characters 193
Raw Strings Suppress Escapes 196
Triple Quotes Code Multiline Block Strings 198

Strings in Action 200
Basic Operations 200
Indexing and Slicing 201
String Conversion Tools 205
Changing Strings I 208

String Methods 209
Method Call Syntax 209
Methods of Strings 210
String Method Examples: Changing Strings II 211
String Method Examples: Parsing Text 213
Other Common String Methods in Action 214
The Original string Module’s Functions (Gone in 3.X) 215

String Formatting Expressions 216
Formatting Expression Basics 217
Advanced Formatting Expression Syntax 218
Advanced Formatting Expression Examples 220

Table of Contents | ix

Dictionary-Based Formatting Expressions 221
String Formatting Method Calls 222

Formatting Method Basics 222
Adding Keys, Attributes, and Offsets 223
Advanced Formatting Method Syntax 224
Advanced Formatting Method Examples 225
Comparison to the % Formatting Expression 227
Why the Format Method? 230

General Type Categories 235
Types Share Operation Sets by Categories 235
Mutable Types Can Be Changed in Place 236

Chapter Summary 237
Test Your Knowledge: Quiz 237
Test Your Knowledge: Answers 237

8. Lists and Dictionaries . 239
Lists 239
Lists in Action 242

Basic List Operations 242
List Iteration and Comprehensions 242
Indexing, Slicing, and Matrixes 243
Changing Lists in Place 244

Dictionaries 250
Dictionaries in Action 252

Basic Dictionary Operations 253
Changing Dictionaries in Place 254
More Dictionary Methods 254
Example: Movie Database 256
Dictionary Usage Notes 258
Other Ways to Make Dictionaries 262
Dictionary Changes in Python 3.X and 2.7 264

Chapter Summary 271
Test Your Knowledge: Quiz 272
Test Your Knowledge: Answers 272

9. Tuples, Files, and Everything Else . 275
Tuples 276

Tuples in Action 277
Why Lists and Tuples? 279
Records Revisited: Named Tuples 280

Files 282
Opening Files 283
Using Files 284

x | Table of Contents

Files in Action 285
Text and Binary Files: The Short Story 287
Storing Python Objects in Files: Conversions 288
Storing Native Python Objects: pickle 290
Storing Python Objects in JSON Format 291
Storing Packed Binary Data: struct 293
File Context Managers 294
Other File Tools 294

Core Types Review and Summary 295
Object Flexibility 297
References Versus Copies 297
Comparisons, Equality, and Truth 300
The Meaning of True and False in Python 304
Python’s Type Hierarchies 306
Type Objects 306
Other Types in Python 308

Built-in Type Gotchas 308
Assignment Creates References, Not Copies 308
Repetition Adds One Level Deep 309
Beware of Cyclic Data Structures 310
Immutable Types Can’t Be Changed in Place 311

Chapter Summary 311
Test Your Knowledge: Quiz 311
Test Your Knowledge: Answers 312
Test Your Knowledge: Part II Exercises 313

Part III. Statements and Syntax

10. Introducing Python Statements . 319
The Python Conceptual Hierarchy Revisited 319
Python’s Statements 320
A Tale of Two ifs 322

What Python Adds 322
What Python Removes 323
Why Indentation Syntax? 324
A Few Special Cases 327

A Quick Example: Interactive Loops 329
A Simple Interactive Loop 329
Doing Math on User Inputs 331
Handling Errors by Testing Inputs 332
Handling Errors with try Statements 333
Nesting Code Three Levels Deep 335

Table of Contents | xi

Chapter Summary 336
Test Your Knowledge: Quiz 336
Test Your Knowledge: Answers 336

11. Assignments, Expressions, and Prints . 339
Assignment Statements 339

Assignment Statement Forms 340
Sequence Assignments 341
Extended Sequence Unpacking in Python 3.X 344
Multiple-Target Assignments 348
Augmented Assignments 350
Variable Name Rules 352

Expression Statements 356
Expression Statements and In-Place Changes 357

Print Operations 358
The Python 3.X print Function 359
The Python 2.X print Statement 361
Print Stream Redirection 363
Version-Neutral Printing 366

Chapter Summary 369
Test Your Knowledge: Quiz 370
Test Your Knowledge: Answers 370

12. if Tests and Syntax Rules . 371
if Statements 371

General Format 371
Basic Examples 372
Multiway Branching 372

Python Syntax Revisited 375
Block Delimiters: Indentation Rules 376
Statement Delimiters: Lines and Continuations 378
A Few Special Cases 379

Truth Values and Boolean Tests 380
The if/else Ternary Expression 382
Chapter Summary 385
Test Your Knowledge: Quiz 385
Test Your Knowledge: Answers 386

13. while and for Loops . 387
while Loops 387

General Format 388
Examples 388

break, continue, pass, and the Loop else 389

xii | Table of Contents

General Loop Format 389
pass 390
continue 391
break 391
Loop else 392

for Loops 395
General Format 395
Examples 395

Loop Coding Techniques 402
Counter Loops: range 402
Sequence Scans: while and range Versus for 403
Sequence Shufflers: range and len 404
Nonexhaustive Traversals: range Versus Slices 405
Changing Lists: range Versus Comprehensions 406
Parallel Traversals: zip and map 407
Generating Both Offsets and Items: enumerate 410

Chapter Summary 413
Test Your Knowledge: Quiz 414
Test Your Knowledge: Answers 414

14. Iterations and Comprehensions . 415
Iterations: A First Look 416

The Iteration Protocol: File Iterators 416
Manual Iteration: iter and next 419
Other Built-in Type Iterables 422

List Comprehensions: A First Detailed Look 424
List Comprehension Basics 425
Using List Comprehensions on Files 426
Extended List Comprehension Syntax 427

Other Iteration Contexts 429
New Iterables in Python 3.X 434

Impacts on 2.X Code: Pros and Cons 434
The range Iterable 435
The map, zip, and filter Iterables 436
Multiple Versus Single Pass Iterators 438
Dictionary View Iterables 439

Other Iteration Topics 440
Chapter Summary 441
Test Your Knowledge: Quiz 441
Test Your Knowledge: Answers 441

15. The Documentation Interlude . 443
Python Documentation Sources 443

Table of Contents | xiii

Comments 444
The dir Function 444
Docstrings: __doc__ 446
PyDoc: The help Function 449
PyDoc: HTML Reports 452
Beyond docstrings: Sphinx 461
The Standard Manual Set 461
Web Resources 462
Published Books 463

Common Coding Gotchas 463
Chapter Summary 465
Test Your Knowledge: Quiz 466
Test Your Knowledge: Answers 466
Test Your Knowledge: Part III Exercises 467

Part IV. Functions and Generators

16. Function Basics . 473
Why Use Functions? 474
Coding Functions 475

def Statements 476
def Executes at Runtime 477

A First Example: Definitions and Calls 478
Definition 478
Calls 478
Polymorphism in Python 479

A Second Example: Intersecting Sequences 480
Definition 481
Calls 481
Polymorphism Revisited 482
Local Variables 483

Chapter Summary 483
Test Your Knowledge: Quiz 483
Test Your Knowledge: Answers 484

17. Scopes . 485
Python Scope Basics 485

Scope Details 486
Name Resolution: The LEGB Rule 488
Scope Example 490
The Built-in Scope 491

The global Statement 494

xiv | Table of Contents

Program Design: Minimize Global Variables 495
Program Design: Minimize Cross-File Changes 497
Other Ways to Access Globals 498

Scopes and Nested Functions 499
Nested Scope Details 500
Nested Scope Examples 500
Factory Functions: Closures 501
Retaining Enclosing Scope State with Defaults 504

The nonlocal Statement in 3.X 508
nonlocal Basics 508
nonlocal in Action 509

Why nonlocal? State Retention Options 512
State with nonlocal: 3.X only 512
State with Globals: A Single Copy Only 513
State with Classes: Explicit Attributes (Preview) 513
State with Function Attributes: 3.X and 2.X 515

Chapter Summary 519
Test Your Knowledge: Quiz 519
Test Your Knowledge: Answers 520

18. Arguments . 523
Argument-Passing Basics 523

Arguments and Shared References 524
Avoiding Mutable Argument Changes 526
Simulating Output Parameters and Multiple Results 527

Special Argument-Matching Modes 528
Argument Matching Basics 529
Argument Matching Syntax 530
The Gritty Details 531
Keyword and Default Examples 532
Arbitrary Arguments Examples 534
Python 3.X Keyword-Only Arguments 539

The min Wakeup Call! 542
Full Credit 542
Bonus Points 544
The Punch Line... 544

Generalized Set Functions 545
Emulating the Python 3.X print Function 547

Using Keyword-Only Arguments 548
Chapter Summary 550
Test Your Knowledge: Quiz 551
Test Your Knowledge: Answers 552

Table of Contents | xv

19. Advanced Function Topics . 553
Function Design Concepts 553
Recursive Functions 555

Summation with Recursion 555
Coding Alternatives 556
Loop Statements Versus Recursion 557
Handling Arbitrary Structures 558

Function Objects: Attributes and Annotations 562
Indirect Function Calls: “First Class” Objects 562
Function Introspection 563
Function Attributes 564
Function Annotations in 3.X 565

Anonymous Functions: lambda 567
lambda Basics 568
Why Use lambda? 569
How (Not) to Obfuscate Your Python Code 571
Scopes: lambdas Can Be Nested Too 572

Functional Programming Tools 574
Mapping Functions over Iterables: map 574
Selecting Items in Iterables: filter 576
Combining Items in Iterables: reduce 576

Chapter Summary 578
Test Your Knowledge: Quiz 578
Test Your Knowledge: Answers 578

20. Comprehensions and Generations . 581
List Comprehensions and Functional Tools 581

List Comprehensions Versus map 582
Adding Tests and Nested Loops: filter 583
Example: List Comprehensions and Matrixes 586
Don’t Abuse List Comprehensions: KISS 588

Generator Functions and Expressions 591
Generator Functions: yield Versus return 592
Generator Expressions: Iterables Meet Comprehensions 597
Generator Functions Versus Generator Expressions 602
Generators Are Single-Iteration Objects 604
Generation in Built-in Types, Tools, and Classes 606
Example: Generating Scrambled Sequences 609
Don’t Abuse Generators: EIBTI 614
Example: Emulating zip and map with Iteration Tools 617

Comprehension Syntax Summary 622
Scopes and Comprehension Variables 623
Comprehending Set and Dictionary Comprehensions 624

xvi | Table of Contents

Extended Comprehension Syntax for Sets and Dictionaries 625
Chapter Summary 626
Test Your Knowledge: Quiz 626
Test Your Knowledge: Answers 626

21. The Benchmarking Interlude . 629
Timing Iteration Alternatives 629

Timing Module: Homegrown 630
Timing Script 634
Timing Results 635
Timing Module Alternatives 638
Other Suggestions 642

Timing Iterations and Pythons with timeit 642
Basic timeit Usage 643
Benchmark Module and Script: timeit 647
Benchmark Script Results 649
More Fun with Benchmarks 651

Other Benchmarking Topics: pystones 656
Function Gotchas 656

Local Names Are Detected Statically 657
Defaults and Mutable Objects 658
Functions Without returns 660
Miscellaneous Function Gotchas 661

Chapter Summary 661
Test Your Knowledge: Quiz 662
Test Your Knowledge: Answers 662
Test Your Knowledge: Part IV Exercises 663

Part V. Modules and Packages

22. Modules: The Big Picture . 669
Why Use Modules? 669
Python Program Architecture 670

How to Structure a Program 671
Imports and Attributes 671
Standard Library Modules 673

How Imports Work 674
1. Find It 674
2. Compile It (Maybe) 675
3. Run It 675

Byte Code Files: __pycache__ in Python 3.2+ 676
Byte Code File Models in Action 677

Table of Contents | xvii

The Module Search Path 678
Configuring the Search Path 681
Search Path Variations 681
The sys.path List 681
Module File Selection 682

Chapter Summary 685
Test Your Knowledge: Quiz 685
Test Your Knowledge: Answers 685

23. Module Coding Basics . 687
Module Creation 687

Module Filenames 687
Other Kinds of Modules 688

Module Usage 688
The import Statement 689
The from Statement 689
The from * Statement 689
Imports Happen Only Once 690
import and from Are Assignments 691
import and from Equivalence 692
Potential Pitfalls of the from Statement 693

Module Namespaces 694
Files Generate Namespaces 695
Namespace Dictionaries: __dict__ 696
Attribute Name Qualification 697
Imports Versus Scopes 698
Namespace Nesting 699

Reloading Modules 700
reload Basics 701
reload Example 702

Chapter Summary 703
Test Your Knowledge: Quiz 704
Test Your Knowledge: Answers 704

24. Module Packages . 707
Package Import Basics 708

Packages and Search Path Settings 708
Package __init__.py Files 709

Package Import Example 711
from Versus import with Packages 713

Why Use Package Imports? 713
A Tale of Three Systems 714

Package Relative Imports 717

xviii | Table of Contents

Changes in Python 3.X 718
Relative Import Basics 718
Why Relative Imports? 720
The Scope of Relative Imports 722
Module Lookup Rules Summary 723
Relative Imports in Action 723
Pitfalls of Package-Relative Imports: Mixed Use 729

Python 3.3 Namespace Packages 734
Namespace Package Semantics 735
Impacts on Regular Packages: Optional __init__.py 736
Namespace Packages in Action 737
Namespace Package Nesting 738
Files Still Have Precedence over Directories 740

Chapter Summary 742
Test Your Knowledge: Quiz 742
Test Your Knowledge: Answers 742

25. Advanced Module Topics . 745
Module Design Concepts 745
Data Hiding in Modules 747

Minimizing from * Damage: _X and __all__ 747
Enabling Future Language Features: __future__ 748
Mixed Usage Modes: __name__ and __main__ 749

Unit Tests with __name__ 750
Example: Dual Mode Code 751

Currency Symbols: Unicode in Action 754
Docstrings: Module Documentation at Work 756

Changing the Module Search Path 756
The as Extension for import and from 758
Example: Modules Are Objects 759
Importing Modules by Name String 761

Running Code Strings 762
Direct Calls: Two Options 762

Example: Transitive Module Reloads 763
A Recursive Reloader 764
Alternative Codings 767

Module Gotchas 770
Module Name Clashes: Package and Package-Relative Imports 771
Statement Order Matters in Top-Level Code 771
from Copies Names but Doesn’t Link 772
from * Can Obscure the Meaning of Variables 773
reload May Not Impact from Imports 773
reload, from, and Interactive Testing 774

Table of Contents | xix

Recursive from Imports May Not Work 775
Chapter Summary 776
Test Your Knowledge: Quiz 777
Test Your Knowledge: Answers 777
Test Your Knowledge: Part V Exercises 778

Part VI. Classes and OOP

26. OOP: The Big Picture . 783
Why Use Classes? 784
OOP from 30,000 Feet 785

Attribute Inheritance Search 785
Classes and Instances 788
Method Calls 788
Coding Class Trees 789
Operator Overloading 791
OOP Is About Code Reuse 792

Chapter Summary 795
Test Your Knowledge: Quiz 795
Test Your Knowledge: Answers 795

27. Class Coding Basics . 797
Classes Generate Multiple Instance Objects 797

Class Objects Provide Default Behavior 798
Instance Objects Are Concrete Items 798
A First Example 799

Classes Are Customized by Inheritance 801
A Second Example 802
Classes Are Attributes in Modules 804

Classes Can Intercept Python Operators 805
A Third Example 806
Why Use Operator Overloading? 808

The World’s Simplest Python Class 809
Records Revisited: Classes Versus Dictionaries 812

Chapter Summary 814
Test Your Knowledge: Quiz 815
Test Your Knowledge: Answers 815

28. A More Realistic Example . 817
Step 1: Making Instances 818

Coding Constructors 818
Testing As You Go 819

xx | Table of Contents

Using Code Two Ways 820
Step 2: Adding Behavior Methods 822

Coding Methods 824
Step 3: Operator Overloading 826

Providing Print Displays 826
Step 4: Customizing Behavior by Subclassing 828

Coding Subclasses 828
Augmenting Methods: The Bad Way 829
Augmenting Methods: The Good Way 829
Polymorphism in Action 832
Inherit, Customize, and Extend 833
OOP: The Big Idea 833

Step 5: Customizing Constructors, Too 834
OOP Is Simpler Than You May Think 836
Other Ways to Combine Classes 836

Step 6: Using Introspection Tools 840
Special Class Attributes 840
A Generic Display Tool 842
Instance Versus Class Attributes 843
Name Considerations in Tool Classes 844
Our Classes’ Final Form 845

Step 7 (Final): Storing Objects in a Database 847
Pickles and Shelves 847
Storing Objects on a Shelve Database 848
Exploring Shelves Interactively 849
Updating Objects on a Shelve 851

Future Directions 853
Chapter Summary 855
Test Your Knowledge: Quiz 855
Test Your Knowledge: Answers 856

29. Class Coding Details . 859
The class Statement 859

General Form 860
Example 860

Methods 862
Method Example 863
Calling Superclass Constructors 864
Other Method Call Possibilities 864

Inheritance 865
Attribute Tree Construction 865
Specializing Inherited Methods 866
Class Interface Techniques 867

Table of Contents | xxi

Abstract Superclasses 869
Namespaces: The Conclusion 872

Simple Names: Global Unless Assigned 872
Attribute Names: Object Namespaces 872
The “Zen” of Namespaces: Assignments Classify Names 873
Nested Classes: The LEGB Scopes Rule Revisited 875
Namespace Dictionaries: Review 878
Namespace Links: A Tree Climber 880

Documentation Strings Revisited 882
Classes Versus Modules 884
Chapter Summary 884
Test Your Knowledge: Quiz 884
Test Your Knowledge: Answers 885

30. Operator Overloading . 887
The Basics 887

Constructors and Expressions: __init__ and __sub__ 888
Common Operator Overloading Methods 888

Indexing and Slicing: __getitem__ and __setitem__ 890
Intercepting Slices 891
Slicing and Indexing in Python 2.X 893
But 3.X’s __index__ Is Not Indexing! 894

Index Iteration: __getitem__ 894
Iterable Objects: __iter__ and __next__ 895

User-Defined Iterables 896
Multiple Iterators on One Object 899
Coding Alternative: __iter__ plus yield 902

Membership: __contains__, __iter__, and __getitem__ 906
Attribute Access: __getattr__ and __setattr__ 909

Attribute Reference 909
Attribute Assignment and Deletion 910
Other Attribute Management Tools 912
Emulating Privacy for Instance Attributes: Part 1 912

String Representation: __repr__ and __str__ 913
Why Two Display Methods? 914
Display Usage Notes 916

Right-Side and In-Place Uses: __radd__ and __iadd__ 917
Right-Side Addition 917
In-Place Addition 920

Call Expressions: __call__ 921
Function Interfaces and Callback-Based Code 923

Comparisons: __lt__, __gt__, and Others 925
The __cmp__ Method in Python 2.X 926

xxii | Table of Contents

Boolean Tests: __bool__ and __len__ 927
Boolean Methods in Python 2.X 928

Object Destruction: __del__ 929
Destructor Usage Notes 930

Chapter Summary 931
Test Your Knowledge: Quiz 931
Test Your Knowledge: Answers 931

31. Designing with Classes . 933
Python and OOP 933

Polymorphism Means Interfaces, Not Call Signatures 934
OOP and Inheritance: “Is-a” Relationships 935
OOP and Composition: “Has-a” Relationships 937

Stream Processors Revisited 938
OOP and Delegation: “Wrapper” Proxy Objects 942
Pseudoprivate Class Attributes 944

Name Mangling Overview 945
Why Use Pseudoprivate Attributes? 945

Methods Are Objects: Bound or Unbound 948
Unbound Methods Are Functions in 3.X 950
Bound Methods and Other Callable Objects 951

Classes Are Objects: Generic Object Factories 954
Why Factories? 955

Multiple Inheritance: “Mix-in” Classes 956
Coding Mix-in Display Classes 957

Other Design-Related Topics 977
Chapter Summary 977
Test Your Knowledge: Quiz 978
Test Your Knowledge: Answers 978

32. Advanced Class Topics . 979
Extending Built-in Types 980

Extending Types by Embedding 980
Extending Types by Subclassing 981

The “New Style” Class Model 983
Just How New Is New-Style? 984

New-Style Class Changes 985
Attribute Fetch for Built-ins Skips Instances 987
Type Model Changes 992
All Classes Derive from “object” 995
Diamond Inheritance Change 997
More on the MRO: Method Resolution Order 1001
Example: Mapping Attributes to Inheritance Sources 1004

Table of Contents | xxiii

New-Style Class Extensions 1010
Slots: Attribute Declarations 1010
Properties: Attribute Accessors 1020
__getattribute__ and Descriptors: Attribute Tools 1023
Other Class Changes and Extensions 1023

Static and Class Methods 1024
Why the Special Methods? 1024
Static Methods in 2.X and 3.X 1025
Static Method Alternatives 1027
Using Static and Class Methods 1028
Counting Instances with Static Methods 1030
Counting Instances with Class Methods 1031

Decorators and Metaclasses: Part 1 1034
Function Decorator Basics 1035
A First Look at User-Defined Function Decorators 1037
A First Look at Class Decorators and Metaclasses 1038
For More Details 1040

The super Built-in Function: For Better or Worse? 1041
The Great super Debate 1041
Traditional Superclass Call Form: Portable, General 1042
Basic super Usage and Its Tradeoffs 1043
The super Upsides: Tree Changes and Dispatch 1049
Runtime Class Changes and super 1049
Cooperative Multiple Inheritance Method Dispatch 1050
The super Summary 1062

Class Gotchas 1064
Changing Class Attributes Can Have Side Effects 1064
Changing Mutable Class Attributes Can Have Side Effects, Too 1065
Multiple Inheritance: Order Matters 1066
Scopes in Methods and Classes 1068
Miscellaneous Class Gotchas 1069
KISS Revisited: “Overwrapping-itis” 1070

Chapter Summary 1070
Test Your Knowledge: Quiz 1071
Test Your Knowledge: Answers 1071
Test Your Knowledge: Part VI Exercises 1072

Part VII. Exceptions and Tools

33. Exception Basics . 1081
Why Use Exceptions? 1081

Exception Roles 1082

xxiv | Table of Contents

Exceptions: The Short Story 1083
Default Exception Handler 1083
Catching Exceptions 1084
Raising Exceptions 1085
User-Defined Exceptions 1086
Termination Actions 1087

Chapter Summary 1089
Test Your Knowledge: Quiz 1090
Test Your Knowledge: Answers 1090

34. Exception Coding Details . 1093
The try/except/else Statement 1093

How try Statements Work 1094
try Statement Clauses 1095
The try else Clause 1098
Example: Default Behavior 1098
Example: Catching Built-in Exceptions 1100

The try/finally Statement 1100
Example: Coding Termination Actions with try/finally 1101

Unified try/except/finally 1102
Unified try Statement Syntax 1104
Combining finally and except by Nesting 1104
Unified try Example 1105

The raise Statement 1106
Raising Exceptions 1107
Scopes and try except Variables 1108
Propagating Exceptions with raise 1110
Python 3.X Exception Chaining: raise from 1110

The assert Statement 1112
Example: Trapping Constraints (but Not Errors!) 1113

with/as Context Managers 1114
Basic Usage 1114
The Context Management Protocol 1116
Multiple Context Managers in 3.1, 2.7, and Later 1118

Chapter Summary 1119
Test Your Knowledge: Quiz 1120
Test Your Knowledge: Answers 1120

35. Exception Objects . 1123
Exceptions: Back to the Future 1124

String Exceptions Are Right Out! 1124
Class-Based Exceptions 1125
Coding Exceptions Classes 1126

Table of Contents | xxv

Why Exception Hierarchies? 1128
Built-in Exception Classes 1131

Built-in Exception Categories 1132
Default Printing and State 1133

Custom Print Displays 1135
Custom Data and Behavior 1136

Providing Exception Details 1136
Providing Exception Methods 1137

Chapter Summary 1139
Test Your Knowledge: Quiz 1139
Test Your Knowledge: Answers 1139

36. Designing with Exceptions . 1141
Nesting Exception Handlers 1141

Example: Control-Flow Nesting 1143
Example: Syntactic Nesting 1143

Exception Idioms 1145
Breaking Out of Multiple Nested Loops: “go to” 1145
Exceptions Aren’t Always Errors 1146
Functions Can Signal Conditions with raise 1147
Closing Files and Server Connections 1148
Debugging with Outer try Statements 1149
Running In-Process Tests 1149
More on sys.exc_info 1150
Displaying Errors and Tracebacks 1151

Exception Design Tips and Gotchas 1152
What Should Be Wrapped 1152
Catching Too Much: Avoid Empty except and Exception 1153
Catching Too Little: Use Class-Based Categories 1155

Core Language Summary 1155
The Python Toolset 1156
Development Tools for Larger Projects 1157

Chapter Summary 1160
Test Your Knowledge: Quiz 1161
Test Your Knowledge: Answers 1161
Test Your Knowledge: Part VII Exercises 1161

Part VIII. Advanced Topics

37. Unicode and Byte Strings . 1165
String Changes in 3.X 1166
String Basics 1167

xxvi | Table of Contents

Character Encoding Schemes 1167
How Python Stores Strings in Memory 1170
Python’s String Types 1171
Text and Binary Files 1173

Coding Basic Strings 1174
Python 3.X String Literals 1175
Python 2.X String Literals 1176
String Type Conversions 1177

Coding Unicode Strings 1178
Coding ASCII Text 1178
Coding Non-ASCII Text 1179
Encoding and Decoding Non-ASCII text 1180
Other Encoding Schemes 1181
Byte String Literals: Encoded Text 1183
Converting Encodings 1184
Coding Unicode Strings in Python 2.X 1185
Source File Character Set Encoding Declarations 1187

Using 3.X bytes Objects 1189
Method Calls 1189
Sequence Operations 1190
Other Ways to Make bytes Objects 1191
Mixing String Types 1192

Using 3.X/2.6+ bytearray Objects 1192
bytearrays in Action 1193
Python 3.X String Types Summary 1195

Using Text and Binary Files 1195
Text File Basics 1196
Text and Binary Modes in 2.X and 3.X 1197
Type and Content Mismatches in 3.X 1198

Using Unicode Files 1199
Reading and Writing Unicode in 3.X 1199
Handling the BOM in 3.X 1201
Unicode Files in 2.X 1204
Unicode Filenames and Streams 1205

Other String Tool Changes in 3.X 1206
The re Pattern-Matching Module 1206
The struct Binary Data Module 1207
The pickle Object Serialization Module 1209
XML Parsing Tools 1211

Chapter Summary 1215
Test Your Knowledge: Quiz 1215
Test Your Knowledge: Answers 1216

Table of Contents | xxvii

38. Managed Attributes . 1219
Why Manage Attributes? 1219

Inserting Code to Run on Attribute Access 1220
Properties 1221

The Basics 1222
A First Example 1222
Computed Attributes 1224
Coding Properties with Decorators 1224

Descriptors 1226
The Basics 1227
A First Example 1229
Computed Attributes 1231
Using State Information in Descriptors 1232
How Properties and Descriptors Relate 1236

__getattr__ and __getattribute__ 1237
The Basics 1238
A First Example 1241
Computed Attributes 1243
__getattr__ and __getattribute__ Compared 1245
Management Techniques Compared 1246
Intercepting Built-in Operation Attributes 1249

Example: Attribute Validations 1256
Using Properties to Validate 1256
Using Descriptors to Validate 1259
Using __getattr__ to Validate 1263
Using __getattribute__ to Validate 1265

Chapter Summary 1266
Test Your Knowledge: Quiz 1266

Test Your Knowledge: Answers 1267

39. Decorators . 1269
What’s a Decorator? 1269

Managing Calls and Instances 1270
Managing Functions and Classes 1270
Using and Defining Decorators 1271
Why Decorators? 1271

The Basics 1273
Function Decorators 1273
Class Decorators 1277
Decorator Nesting 1279
Decorator Arguments 1281
Decorators Manage Functions and Classes, Too 1282

Coding Function Decorators 1283

xxviii | Table of Contents

Tracing Calls 1283
Decorator State Retention Options 1285
Class Blunders I: Decorating Methods 1289
Timing Calls 1295
Adding Decorator Arguments 1298

Coding Class Decorators 1301
Singleton Classes 1301
Tracing Object Interfaces 1303
Class Blunders II: Retaining Multiple Instances 1308
Decorators Versus Manager Functions 1309
Why Decorators? (Revisited) 1310

Managing Functions and Classes Directly 1312
Example: “Private” and “Public” Attributes 1314

Implementing Private Attributes 1314
Implementation Details I 1317
Generalizing for Public Declarations, Too 1318
Implementation Details II 1320
Open Issues 1321
Python Isn’t About Control 1329

Example: Validating Function Arguments 1330
The Goal 1330
A Basic Range-Testing Decorator for Positional Arguments 1331
Generalizing for Keywords and Defaults, Too 1333
Implementation Details 1336
Open Issues 1338
Decorator Arguments Versus Function Annotations 1340
Other Applications: Type Testing (If You Insist!) 1342

Chapter Summary 1343
Test Your Knowledge: Quiz 1344
Test Your Knowledge: Answers 1345

40. Metaclasses . 1355
To Metaclass or Not to Metaclass 1356

Increasing Levels of “Magic” 1357
A Language of Hooks 1358
The Downside of “Helper” Functions 1359
Metaclasses Versus Class Decorators: Round 1 1361

The Metaclass Model 1364
Classes Are Instances of type 1364
Metaclasses Are Subclasses of Type 1366
Class Statement Protocol 1367

Declaring Metaclasses 1368
Declaration in 3.X 1369

Table of Contents | xxix

Declaration in 2.X 1369
Metaclass Dispatch in Both 3.X and 2.X 1370

Coding Metaclasses 1370
A Basic Metaclass 1371
Customizing Construction and Initialization 1372
Other Metaclass Coding Techniques 1373

Inheritance and Instance 1378
Metaclass Versus Superclass 1381
Inheritance: The Full Story 1382

Metaclass Methods 1388
Metaclass Methods Versus Class Methods 1389
Operator Overloading in Metaclass Methods 1390

Example: Adding Methods to Classes 1391
Manual Augmentation 1391
Metaclass-Based Augmentation 1393
Metaclasses Versus Class Decorators: Round 2 1394

Example: Applying Decorators to Methods 1400
Tracing with Decoration Manually 1400
Tracing with Metaclasses and Decorators 1401
Applying Any Decorator to Methods 1403
Metaclasses Versus Class Decorators: Round 3 (and Last) 1404

Chapter Summary 1407
Test Your Knowledge: Quiz 1407
Test Your Knowledge: Answers 1408

41. All Good Things . 1409
The Python Paradox 1409

On “Optional” Language Features 1410
Against Disquieting Improvements 1411
Complexity Versus Power 1412
Simplicity Versus Elitism 1412
Closing Thoughts 1413

Where to Go From Here 1414
Encore: Print Your Own Completion Certificate! 1414

Part IX. Appendixes

A. Installation and Configuration . 1421
Installing the Python Interpreter 1421

Is Python Already Present? 1421
Where to Get Python 1422
Installation Steps 1423

xxx | Table of Contents

Configuring Python 1427
Python Environment Variables 1427
How to Set Configuration Options 1429
Python Command-Line Arguments 1432
Python 3.3 Windows Launcher Command Lines 1435

For More Help 1436

B. The Python 3.3 Windows Launcher . 1437
The Unix Legacy 1437
The Windows Legacy 1438
Introducing the New Windows Launcher 1439
A Windows Launcher Tutorial 1441

Step 1: Using Version Directives in Files 1441
Step 2: Using Command-Line Version Switches 1444
Step 3: Using and Changing Defaults 1445

Pitfalls of the New Windows Launcher 1447
Pitfall 1: Unrecognized Unix !# Lines Fail 1447
Pitfall 2: The Launcher Defaults to 2.X 1448
Pitfall 3: The New PATH Extension Option 1449

Conclusions: A Net Win for Windows 1450

C. Python Changes and This Book . 1451
Major 2.X/3.X Differences 1451

3.X Differences 1452
3.X-Only Extensions 1453

General Remarks: 3.X Changes 1454
Changes in Libraries and Tools 1454
Migrating to 3.X 1455

Fifth Edition Python Changes: 2.7, 3.2, 3.3 1456
Changes in Python 2.7 1456
Changes in Python 3.3 1457
Changes in Python 3.2 1458

Fourth Edition Python Changes: 2.6, 3.0, 3.1 1458
Changes in Python 3.1 1458
Changes in Python 3.0 and 2.6 1459
Specific Language Removals in 3.0 1460

Third Edition Python Changes: 2.3, 2.4, 2.5 1462
Earlier and Later Python Changes 1463

D. Solutions to End-of-Part Exercises . 1465
Part I, Getting Started 1465
Part II, Types and Operations 1467
Part III, Statements and Syntax 1473

Table of Contents | xxxi

Part IV, Functions and Generators 1475
Part V, Modules and Packages 1485
Part VI, Classes and OOP 1489
Part VII, Exceptions and Tools 1497

Index . 1507

xxxii | Table of Contents

Preface

If you’re standing in a bookstore looking for the short story on this book, try this:

• Python is a powerful multiparadigm computer programming language, optimized
for programmer productivity, code readability, and software quality.

• This book provides a comprehensive and in-depth introduction to the Python lan-
guage itself. Its goal is to help you master Python fundamentals before moving on
to apply them in your work. Like all its prior editions, this book is designed to serve
as a single, all-inclusive learning resource for all Python newcomers, whether they
will be using Python 2.X, Python 3.X, or both.

• This edition has been brought up to date with Python releases 3.3 and 2.7, and has
been expanded substantially to reflect current practice in the Python world.

This preface describes this book’s goals, scope, and structure in more detail. It’s optional
reading, but is designed to provide some orientation before you get started with the
book at large.

This Book’s “Ecosystem”
Python is a popular open source programming language used for both standalone pro-
grams and scripting applications in a wide variety of domains. It is free, portable, pow-
erful, and is both relatively easy and remarkably fun to use. Programmers from every
corner of the software industry have found Python’s focus on developer productivity
and software quality to be a strategic advantage in projects both large and small.

Whether you are new to programming or are a professional developer, this book is
designed to bring you up to speed on the Python language in ways that more limited
approaches cannot. After reading this book, you should know enough about Python
to apply it in whatever application domains you choose to explore.

By design, this book is a tutorial that emphasizes the core Python language itself, rather
than specific applications of it. As such, this book is intended to serve as the first in a
two-volume set:

xxxiii

• Learning Python, this book, teaches Python itself, focusing on language funda-
mentals that span domains.

• Programming Python, among others, moves on to show what you can do with
Python after you’ve learned it.

This division of labor is deliberate. While application goals can vary per reader, the
need for useful language fundamentals coverage does not. Applications-focused books
such as Programming Python pick up where this book leaves off, using realistically
scaled examples to explore Python’s role in common domains such as the Web, GUIs,
systems, databases, and text. In addition, the book Python Pocket Reference provides
reference materials not included here, and it is designed to supplement this book.

Because of this book’s focus on foundations, though, it is able to present Python lan-
guage fundamentals with more depth than many programmers see when first learning
the language. Its bottom-up approach and self-contained didactic examples are de-
signed to teach readers the entire language one step at a time.

The core language skills you’ll gain in the process will apply to every Python software
system you’ll encounter—be it today’s popular tools such as Django, NumPy, and App
Engine, or others that may be a part of both Python’s future and your programming
career.

Because it’s based upon a three-day Python training class with quizzes and exercises
throughout, this book also serves as a self-paced introduction to the language. Although
its format lacks the live interaction of a class, it compensates in the extra depth and
flexibility that only a book can provide. Though there are many ways to use this book,
linear readers will find it roughly equivalent to a semester-long Python class.

About This Fifth Edition
The prior fourth edition of this book published in 2009 covered Python versions 2.6
and 3.0.1 It addressed the many and sometimes incompatible changes introduced in
the Python 3.X line in general. It also introduced a new OOP tutorial, and new chapters
on advanced topics such as Unicode text, decorators, and metaclasses, derived from
both the live classes I teach and evolution in Python “best practice.”

This fifth edition completed in 2013 is a revision of the prior, updated to cover both
Python 3.3 and 2.7, the current latest releases in the 3.X and 2.X lines. It incorporates

1. And 2007’s short-lived third edition covered Python 2.5, and its simpler—and shorter—single-line Python
world. See http://www.rmi.net/~lutz for more on this book’s history. Over the years, this book has grown
in size and complexity in direct proportion to Python’s own growth. Per Appendix C, Python 3.0 alone
introduced 27 additions and 57 changes in the language that found their way into this book, and Python
3.3 continues this trend. Today’s Python programmer faces two incompatible lines, three major
paradigms, a plethora of advanced tools, and a blizzard of feature redundancy—most of which do not
divide neatly between the 2.X and 3.X lines. That’s not as daunting as it may sound (many tools are
variations on a theme), but all are fair game in an inclusive, comprehensive Python text.

xxxiv | Preface

http://www.oreilly.com/catalog/9781449355739
http://www.oreilly.com/catalog/9780596158101
http://www.oreilly.com/catalog/9780596158101
http://www.oreilly.com/catalog/9780596009403/
http://www.rmi.net/~lutz

all language changes introduced in each line since the prior edition was published, and
has been polished throughout to update and sharpen its presentation. Specifically:

• Python 2.X coverage here has been updated to include features such as dictionary
and set comprehensions that were formerly for 3.X only, but have been back-ported
for use in 2.7.

• Python 3.X coverage has been augmented for new yield and raise syntax; the
__pycache__ bytecode model; 3.3 namespace packages; PyDoc’s all-browser
mode; Unicode literal and storage changes; and the new Windows launcher
shipped with 3.3.

• Assorted new or expanded coverage for JSON, timeit, PyPy, os.popen, generators,
recursion, weak references, __mro__, __iter__, super, __slots__, metaclasses, de-
scriptors, random, Sphinx, and more has been added, along with a general increase
in 2.X compatibility in both examples and narrative.

This edition also adds a new conclusion as Chapter 41 (on Python’s evolution), two
new appendixes (on recent Python changes and the new Windows launcher), and one
new chapter (on benchmarking: an expanded version of the former code timing exam-
ple). See Appendix C for a concise summary of Python changes between the prior edition
and this one, as well as links to their coverage in the book. This appendix also sum-
marizes initial differences between 2.X and 3.X in general that were first addressed in
the prior edition, though some, such as new-style classes, span versions and simply
become mandated in 3.X (more on what the X’s mean in a moment).

Per the last bullet in the preceding list, this edition has also experienced some growth
because it gives fuller coverage to more advanced language features—which many of us
have tried very hard to ignore as optional for the last decade, but which have now grown
more common in Python code. As we’ll see, these tools make Python more powerful,
but also raise the bar for newcomers, and may shift Python’s scope and definition.
Because you might encounter any of these, this book covers them head-on, instead of
pretending they do not exist.

Despite the updates, this edition retains most of the structure and content of the prior
edition, and is still designed to be a comprehensive learning resource for both the 2.X
and 3.X Python lines. While it is primarily focused on users of Python 3.3 and 2.7—
the latest in the 3.X line and the likely last in the 2.X line—its historical perspective
also makes it relevant to older Pythons that still see regular use today.

Though it’s impossible to predict the future, this book stresses fundamentals that have
been valid for nearly two decades, and will likely apply to future Pythons too. As usual,
I’ll be posting Python updates that impact this book at the book’s website described
ahead. The “What’s New” documents in Python’s manuals set can also serve to fill in
the gaps as Python surely evolves after this book is published.

Preface | xxxv

The Python 2.X and 3.X Lines
Because it bears heavily on this book’s content, I need to say a few more words about
the Python 2.X/3.X story up front. When the fourth edition of this book was written in
2009, Python had just become available in two flavors:

• Version 3.0 was the first in the line of an emerging and incompatible mutation of
the language known generically as 3.X.

• Version 2.6 retained backward compatibility with the vast body of existing Python
code, and was the latest in the line known collectively as 2.X.

While 3.X was largely the same language, it ran almost no code written for prior re-
leases. It:

• Imposed a Unicode model with broad consequences for strings, files, and libraries

• Elevated iterators and generators to a more pervasive role, as part of fuller func-
tional paradigm

• Mandated new-style classes, which merge with types, but grow more powerful and
complex

• Changed many fundamental tools and libraries, and replaced or removed others
entirely

The mutation of print from statement to function alone, aesthetically sound as it may
be, broke nearly every Python program ever written. And strategic potential aside, 3.X’s
mandatory Unicode and class models and ubiquitous generators made for a different
programming experience.

Although many viewed Python 3.X as both an improvement and the future of Python,
Python 2.X was still very widely used and was to be supported in parallel with Python
3.X for years to come. The majority of Python code in use was 2.X, and migration to
3.X seemed to be shaping up to be a slow process.

The 2.X/3.X Story Today
As this fifth edition is being written in 2013, Python has moved on to versions 3.3 and
2.7, but this 2.X/3.X story is still largely unchanged. In fact, Python is now a dual-version
world, with many users running both 2.X and 3.X according to their software goals and
dependencies. And for many newcomers, the choice between 2.X and 3.X remains one
of existing software versus the language’s cutting edge. Although many major Python
packages have been ported to 3.X, many others are still 2.X-only today.

To some observers, Python 3.X is now seen as a sandbox for exploring new ideas, while
2.X is viewed as the tried-and-true Python, which doesn’t have all of 3.X’s features but
is still more pervasive. Others still see Python 3.X as the future, a view that seems
supported by current core developer plans: Python 2.7 will continue to be supported
but is to be the last 2.X, while 3.3 is the latest in the 3.X line’s continuing evolution.

xxxvi | Preface

On the other hand, initiatives such as PyPy—today a still 2.X-only implementation of
Python that offers stunning performance improvements—represent a 2.X future, if not
an outright faction.

All opinions aside, almost five years after its release, 3.X has yet to supersede 2.X, or
even match its user base. As one metric, 2.X is still downloaded more often than 3.X
for Windows at python.org today, despite the fact that this measure would be naturally
skewed to new users and the most recent release. Such statistics are prone to change,
of course, but after five years are indicative of 3.X uptake nonetheless. The existing 2.X
software base still trumps 3.X’s language extensions for many. Moreover, being last in
the 2.X line makes 2.7 a sort of de facto standard, immune to the constant pace of change
in the 3.X line—a positive to those who seek a stable base, and a negative to those who
seek growth and ongoing relevance.

Personally, I think today’s Python world is large enough to accommodate both 3.X and
2.X; they seem to satisfy different goals and appeal to different camps, and there is
precedence for this in other language families (C and C++, for example, have a long-
standing coexistence, though they may differ more than Python 2.X and 3.X). More-
over, because they are so similar, the skills gained by learning either Python line transfer
almost entirely to the other, especially if you’re aided by dual-version resources like
this book. In fact, as long as you understand how they diverge, it’s often possible to
write code that runs on both.

At the same time, this split presents a substantial dilemma for both programmers and
book authors, which shows no signs of abating. While it would be easier for a book to
pretend that Python 2.X never existed and cover 3.X only, this would not address the
needs of the large Python user base that exists today. A vast amount of existing code
was written for Python 2.X, and it won’t be going away anytime soon. And while some
newcomers to the language can and should focus on Python 3.X, anyone who must use
code written in the past needs to keep one foot in the Python 2.X world today. Since it
may still be years before many third-party libraries and extensions are ported to Python
3.X, this fork might not be entirely temporary.

Coverage for Both 3.X and 2.X
To address this dichotomy and to meet the needs of all potential readers, this book has
been updated to cover both Python 3.3 and Python 2.7, and should apply to later re-
leases in both the 3.X and 2.X lines. It’s intended for programmers using Python 2.X,
programmers using Python 3.X, and programmers stuck somewhere between the two.

That is, you can use this book to learn either Python line. Although 3.X is often em-
phasized, 2.X differences and tools are also noted along the way for programmers using
older code. While the two versions are largely similar, they diverge in some important
ways, and I’ll point these out as they crop up.

Preface | xxxvii

For instance, I’ll use 3.X print calls in most examples, but will also describe the 2.X
print statement so you can make sense of earlier code, and will often use portable
printing techniques that run on both lines. I’ll also freely introduce new features, such
as the nonlocal statement in 3.X and the string format method available as of 2.6 and
3.0, and will point out when such extensions are not present in older Pythons.

By proxy, this edition addresses other Python version 2.X and 3.X releases as well,
though some older version 2.X code may not be able to run all the examples here.
Although class decorators are available as of both Python 2.6 and 3.0, for example, you
cannot use them in an older Python 2.X that did not yet have this feature. Again, see
the change tables in Appendix C for summaries of recent 2.X and 3.X changes.

Which Python Should I Use?
Version choice may be mandated by your organization, but if you’re new to Python
and learning on your own, you may be wondering which version to install. The answer
here depends on your goals. Here are a few suggestions on the choice.

When to choose 3.X: new features, evolution
If you are learning Python for the first time and don’t need to use any existing 2.X
code, I encourage you to begin with Python 3.X. It cleans up some longstanding
warts in the language and trims some dated cruft, while retaining all the original
core ideas and adding some nice new tools. For example, 3.X’s seamless Unicode
model and broader use of generators and functional techniques are seen by many
users as assets. Many popular Python libraries and tools are already available for
Python 3.X, or will be by the time you read these words, especially given the con-
tinual improvements in the 3.X line. All new language evolution occurs in 3.X only,
which adds features and keeps Python relevant, but also makes language definition
a constantly moving target—a tradeoff inherent on the leading edge.

When to choose 2.X: existing code, stability
If you’ll be using a system based on Python 2.X, the 3.X line may not be an option
for you today. However, you’ll find that this book addresses your concerns, too,
and will help if you migrate to 3.X in the future. You’ll also find that you’re in large
company. Every group I taught in 2012 was using 2.X only, and I still regularly see
useful Python software in 2.X-only form. Moreover, unlike 3.X, 2.X is no longer
being changed—which is either an asset or liability, depending on whom you ask.
There’s nothing wrong with using and writing 2.X code, but you may wish to keep
tabs on 3.X and its ongoing evolution as you do. Python’s future remains to be
written, and is largely up to its users, including you.

When to choose both: version-neutral code
Probably the best news here is that Python’s fundamentals are the same in both its
lines—2.X and 3.X differ in ways that many users will find minor, and this book
is designed to help you learn both. In fact, as long as you understand their differ-
ences, it’s often straightforward to write version-neutral code that runs on both

xxxviii | Preface

Pythons, as we regularly will in this book. See Appendix C for pointers on 2.X/3.X
migration and tips on writing code for both Python lines and audiences.

Regardless of which version or versions you choose to focus on first, your skills will
transfer directly to wherever your Python work leads you.

About the Xs: Throughout this book, “3.X” and “2.X” are used to refer
collectively to all releases in these two lines. For instance, 3.X includes
3.0 through 3.3, and future 3.X releases; 2.X means all from 2.0 through
2.7 (and presumably no others). More specific releases are mentioned
when a topic applies to it only (e.g., 2.7’s set literals and 3.3’s launcher
and namespace packages). This notation may occasionally be too broad
—some features labeled 2.X here may not be present in early 2.X releases
rarely used today—but it accommodates a 2.X line that has already
spanned 13 years. The 3.X label is more easily and accurately applied
to this younger five-year-old line.

This Book’s Prerequisites and Effort
It’s impossible to give absolute prerequisites for this book, because its utility and value
can depend as much on reader motivation as on reader background. Both true beginners
and crusty programming veterans have used this book successfully in the past. If you
are motivated to learn Python, and willing to invest the time and focus it requires, this
text will probably work for you.

Just how much time is required to learn Python? Although this will vary per learner,
this book tends to work best when read. Some readers may use this book as an on-
demand reference resource, but most people seeking Python mastery should expect to
spend at least weeks and probably months going through the material here, depending
on how closely they follow along with its examples. As mentioned, it’s roughly equiv-
alent to a full-semester course on the Python language itself.

That’s the estimate for learning just Python itself and the software skills required to use
it well. Though this book may suffice for basic scripting goals, readers hoping to pursue
software development at large as a career should expect to devote additional time after
this book to large-scale project experience, and possibly to follow-up texts such as
Programming Python.2

2. The standard disclaimer: I wrote this and another book mentioned earlier, which work together as a set:
Learning Python for language fundamentals, Programming Python for applications basics, and Python
Pocket Reference as a companion to the other two. All three derive from 1995’s original and broad
Programming Python. I encourage you to explore the many Python books available today (I stopped
counting at 200 at Amazon.com just now because there was no end in sight, and this didn’t include related
subjects like Django). My own publisher has recently produced Python-focused books on
instrumentation, data mining, App Engine, numeric analysis, natural language processing, MongoDB,
AWS, and more—specific domains you may wish to explore once you’ve mastered Python language
fundamentals here. The Python story today is far too rich for any one book to address alone.

Preface | xxxix

http://www.oreilly.com/catalog/9780596158101
http://www.oreilly.com/catalog/9781449355739
http://www.oreilly.com/catalog/9780596158101
http://www.oreilly.com/catalog/9780596009403/
http://www.oreilly.com/catalog/9780596009403/
http://www.oreilly.com/catalog/9780596158101

That may not be welcome news to people looking for instant proficiency, but pro-
gramming is not a trivial skill (despite what you may have heard!). Today’s Python,
and software in general, are both challenging and rewarding enough to merit the effort
implied by comprehensive books such as this. Here are a few pointers on using this
book for readers on both sides of the experience spectrum:

To experienced programmers
You have an initial advantage and can move quickly through some earlier chapters;
but you shouldn’t skip the core ideas, and may need to work at letting go of some
baggage. In general terms, exposure to any programming or scripting before this
book might be helpful because of the analogies it may provide. On the other hand,
I’ve also found that prior programming experience can be a handicap due to ex-
pectations rooted in other languages (it’s far too easy to spot the Java or C++
programmers in classes by the first Python code they write!). Using Python well
requires adopting its mindset. By focusing on key core concepts, this book is de-
signed to help you learn to code Python in Python.

To true beginners
You can learn Python here too, as well as programming itself; but you may need
to work a bit harder, and may wish to supplement this text with gentler introduc-
tions. If you don’t consider yourself a programmer already, you will probably find
this book useful too, but you’ll want to be sure to proceed slowly and work through
the examples and exercises along the way. Also keep in mind that this book will
spend more time teaching Python itself than programming basics. If you find your-
self lost here, I encourage you to explore an introduction to programming in general
before tackling this book. Python’s website has links to many helpful resources for
beginners.

Formally, this book is designed to serve as a first Python text for newcomers of all
kinds. It may not be an ideal resource for someone who has never touched a computer
before (for instance, we’re not going to spend any time exploring what a computer is),
but I haven’t made many assumptions about your programming background or edu-
cation.

On the other hand, I won’t insult readers by assuming they are “dummies,” either,
whatever that means—it’s easy to do useful things in Python, and this book will show
you how. The text occasionally contrasts Python with languages such as C, C++, Java,
and others, but you can safely ignore these comparisons if you haven’t used such lan-
guages in the past.

This Book’s Structure
To help orient you, this section provides a quick rundown of the content and goals of
the major parts of this book. If you’re anxious to get to it, you should feel free to skip

xl | Preface

this section (or browse the table of contents instead). To some readers, though, a book
this large probably merits a brief roadmap up front.

By design, each part covers a major functional area of the language, and each part is
composed of chapters focusing on a specific topic or aspect of the part’s area. In addi-
tion, each chapter ends with quizzes and their answers, and each part ends with larger
exercises, whose solutions show up in Appendix D.

Practice matters: I strongly recommend that readers work through the
quizzes and exercises in this book, and work along with its examples in
general if you can. In programming, there’s no substitute for practicing
what you’ve read. Whether you do it with this book or a project of your
own, actual coding is crucial if you want the ideas presented here to
stick.

Overall, this book’s presentation is bottom-up because Python is too. The examples
and topics grow more challenging as we move along. For instance, Python’s classes are
largely just packages of functions that process built-in types. Once you’ve mastered
built-in types and functions, classes become a relatively minor intellectual leap. Because
each part builds on those preceding it this way, most readers will find a linear reading
makes the most sense. Here’s a preview of the book’s main parts you’ll find along the
way:

Part I
We begin with a general overview of Python that answers commonly asked initial
questions—why people use the language, what it’s useful for, and so on. The first
chapter introduces the major ideas underlying the technology to give you some
background context. The rest of this part moves on to explore the ways that both
Python and programmers run programs. The main goal here is to give you just
enough information to be able to follow along with later examples and exercises.

Part II
Next, we begin our tour of the Python language, studying Python’s major built-in
object types and what you can do with them in depth: numbers, lists, dictionaries,
and so on. You can get a lot done with these tools alone, and they are at the heart
of every Python script. This is the most substantial part of the book because we lay
groundwork here for later chapters. We’ll also explore dynamic typing and its
references—keys to using Python well—in this part.

Part III
The next part moves on to introduce Python’s statements—the code you type to
create and process objects in Python. It also presents Python’s general syntax
model. Although this part focuses on syntax, it also introduces some related tools
(such as the PyDoc system), takes a first look at iteration concepts, and explores
coding alternatives.

Preface | xli

Part IV
This part begins our look at Python’s higher-level program structure tools. Func-
tions turn out to be a simple way to package code for reuse and avoid code redun-
dancy. In this part, we will explore Python’s scoping rules, argument-passing tech-
niques, the sometimes-notorious lambda, and more. We’ll also revisit iterators
from a functional programming perspective, introduce user-defined generators,
and learn how to time Python code to measure performance here.

Part V
Python modules let you organize statements and functions into larger components,
and this part illustrates how to create, use, and reload modules. We’ll also look at
some more advanced topics here, such as module packages, module reloading,
package-relative imports, 3.3’s new namespace packages, and the __name__ vari-
able.

Part VI
Here, we explore Python’s object-oriented programming tool, the class—an op-
tional but powerful way to structure code for customization and reuse, which al-
most naturally minimizes redundancy. As you’ll see, classes mostly reuse ideas we
will have covered by this point in the book, and OOP in Python is mostly about
looking up names in linked objects with a special first argument in functions. As
you’ll also see, OOP is optional in Python, but most find Python’s OOP to be much
simpler than others, and it can shave development time substantially, especially
for long-term strategic project development.

Part VII
We conclude the language fundamentals coverage in this text with a look at
Python’s exception handling model and statements, plus a brief overview of de-
velopment tools that will become more useful when you start writing larger pro-
grams (debugging and testing tools, for instance). Although exceptions are a fairly
lightweight tool, this part appears after the discussion of classes because user-de-
fined exceptions should now all be classes. We also cover some more advanced
topics, such as context managers, here.

Part VIII
In the final part, we explore some advanced topics: Unicode and byte strings,
managed attribute tools like properties and descriptors, function and class deco-
rators, and metaclasses. These chapters are all optional reading, because not all
programmers need to understand the subjects they address. On the other hand,
readers who must process internationalized text or binary data, or are responsible
for developing APIs for other programmers to use, should find something of in-
terest in this part. The examples here are also larger than most of those in this book,
and can serve as self-study material.

Part IX
The book wraps up with a set of four appendixes that give platform-specific tips
for installing and using Python on various computers; present the new Windows

xlii | Preface

launcher that ships with Python 3.3; summarize changes in Python addressed by
recent editions and give links to their coverage here; and provide solutions to the
end-of-part exercises. Solutions to end-of-chapter quizzes appear in the chapters
themselves.

See the table of contents for a finer-grained look at this book’s components.

What This Book Is Not
Given its relatively large audience over the years, some have inevitably expected this
book to serve a role outside its scope. So now that I’ve told you what this book is, I also
want to be clear on what it isn’t:

• This book is a tutorial, not a reference.

• This book covers the language itself, not applications, standard libraries, or third-
party tools.

• This book is a comprehensive look at a substantial topic, not a watered-down
overview.

Because these points are key to this book’s content, I want to say a few more words
about them up front.

It’s Not a Reference or a Guide to Specific Applications
This book is a language tutorial, not a reference, and not an applications book. This is
by design: today’s Python—with its built-in types, generators, closures, comprehen-
sions, Unicode, decorators, and blend of procedural, object-oriented, and functional
programming paradigms—makes the core language a substantial topic all by itself, and
a prerequisite to all your future Python work, in whatever domains you pursue. When
you are ready for other resources, though, here are a few suggestions and reminders:

Reference resources
As implied by the preceding structural description, you can use the index and table
of contents to hunt for details, but there are no reference appendixes in this book.
If you are looking for Python reference resources (and most readers probably will
be very soon in their Python careers), I suggest the previously mentioned book that
I also wrote as a companion to this one—Python Pocket Reference—as well as other
reference books you’ll find with a quick search, and the standard Python reference
manuals maintained at http://www.python.org. The latter of these are free, always
up to date, and available both on the Web and on your computer after a Windows
install.

Applications and libraries
As also discussed earlier, this book is not a guide to specific applications such as
the Web, GUIs, or systems programming. By proxy, this includes the libraries and

Preface | xliii

http://www.oreilly.com/catalog/9780596009403/
http://www.python.org

tools used in applications work; although some standard libraries and tools are
introduced here—including timeit, shelve, pickle, struct, json, pdb, os, urllib,
re, xml, random, PyDoc and IDLE—they are not officially in this book’s primary
scope. If you’re looking for more coverage on such topics and are already proficient
with Python, I recommend the follow-up book Programming Python, among oth-
ers. That book assumes this one as its prerequisite, though, so be sure you have a
firm grasp of the core language first. Especially in an engineering domain like soft-
ware, one must walk before one runs.

It’s Not the Short Story for People in a Hurry
As you can tell from its size, this book also doesn’t skimp on the details: it presents the
full Python language, not a brief look at a simplified subset. Along the way it also covers
software principles that are essential to writing good Python code. As mentioned, this
is a multiple-week or -month book, designed to impart the skill level you’d acquire
from a full-term class on Python.

This is also deliberate. Many of this book’s readers don’t need to acquire full-scale
software development skills, of course, and some can absorb Python in a piecemeal
fashion. At the same time, because any part of the language may be used in code you
will encounter, no part is truly optional for most programmers. Moreover, even casual
scripters and hobbyists need to know basic principles of software development in order
to code well, and even to use precoded tools properly.

This book aims to address both of these needs—language and principles—in enough
depth to be useful. In the end, though, you’ll find that Python’s more advanced tools,
such as its object-oriented and functional programming support, are relatively easy to
learn once you’ve mastered their prerequisites—and you will, if you work through this
book one chapter at a time.

It’s as Linear as Python Allows
Speaking of reading order, this edition also tries hard to minimize forward references,
but Python 3.X’s changes make this impossible in some cases (in fact, 3.X sometimes
seems to assume you already know Python while you’re learning it!). As a handful of
representative examples:

• Printing, sorts, the string format method, and some dict calls rely on function
keyword arguments.

• Dictionary key lists and tests, and the list calls used around many tools, imply
iteration concepts.

• Using exec to run code now assumes knowledge of file objects and interfaces.

• Coding new exceptions requires classes and OOP fundamentals.

xliv | Preface

http://www.oreilly.com/catalog/9780596158101

• And so on—even basic inheritance broaches advanced topics such as metaclasses
and descriptors.

Python is still best learned as a progression from simple to advanced, and a linear
reading here still makes the most sense. Still, some topics may require nonlinear jumps
and random lookups. To minimize these, this book will point out forward dependencies
when they occur, and will ease their impacts as much as possible.

But if your time is tight: Though depth is crucial to mastering Python,
some readers may have limited time. If you are interested in starting out
with a quick Python tour, I suggest Chapter 1, Chapter 4, Chapter 10,
and Chapter 28 (and perhaps 26)—a short survey that will hopefully
pique your interest in the more complete story told in the rest of the
book, and which most readers will need in today’s Python software
world. In general, this book is intentionally layered this way to make its
material easier to absorb—with introductions followed by details, so
you can start with overviews, and dig deeper over time. You don’t need
to read this book all at once, but its gradual approach is designed to help
you tackle its material eventually.

This Book’s Programs
In general, this book has always strived to be agnostic about both Python versions and
platforms. It’s designed to be useful to all Python users. Nevertheless, because Python
changes over time and platforms tend to differ in pragmatic ways, I need to describe
the specific systems you’ll see in action in most examples here.

Python Versions
This fifth edition of this book, and all the program examples in it, are based on Python
versions 3.3 and 2.7. In addition, many of its examples run under prior 3.X and 2.X
releases, and notes about the history of language changes in earlier versions are mixed
in along the way for users of older Pythons.

Because this text focuses on the core language, however, you can be fairly sure that
most of what it has to say won’t change very much in future releases of Python, as noted
earlier. Most of this book applies to earlier Python versions, too, except when it does
not; naturally, if you try using extensions added after a release you’re using, all bets are
off. As a rule of thumb, the latest Python is the best Python if you are able to upgrade.

Because this book focuses on the core language, most of it also applies to both Jython
and IronPython, the Java- and .NET-based Python language implementations, as well
as other Python implementations such as Stackless and PyPy (described in Chapter 2).
Such alternatives differ mostly in usage details, not language.

Preface | xlv

Platforms
The examples in this book were run on a Windows 7 and 8 ultrabook,3 though Python’s
portability makes this mostly a moot point, especially in this fundamentals-focused
book. You’ll notice a few Windows-isms—including command-line prompts, a hand-
ful of screenshots, install pointers, and an appendix on the new Windows launcher in
3.3—but this reflects the fact that most Python newcomers will probably get started
on this platform, and these can be safely ignored by users of other operating systems.

I also give a few launching details for other platforms like Linux, such as “#!” line use,
but as we’ll see in Chapter 3 and Appendix B, the 3.3 Windows launcher makes even
this a more portable technique.

Fetching This Book’s Code
Source code for the book’s examples, as well as exercise solutions, can be fetched as a
zip file from the book’s website at the following address:

http://oreil.ly/LearningPython-5E

This site includes both all the code in this book as well as package usage instructions,
so I’ll defer to it for more details. Of course, the examples work best in the context of
their appearance in this book, and you’ll need some background knowledge on running
Python programs in general to make use of them. We’ll study startup details in Chap-
ter 3, so please stay tuned for information on this front.

Using This Book’s Code
The code in my Python books is designed to teach, and I’m glad when it assists readers
in that capacity. O’Reilly itself has an official policy regarding reusing the book’s ex-
amples in general, which I’ve pasted into the rest of this section for reference:

This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For example, writing a pro-
gram that uses several chunks of code from this book does not require permission. Selling
or distributing a CD-ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this book into your
product’s documentation does require permission.

3. Mostly under Windows 7, but it’s irrelevant to this book. At this writing, Python installs on Windows 8
and runs in its desktop mode, which is essentially the same as Windows 7 without a Start button as I
write this (you may need to create shortcuts for former Start button menu items). Support for WinRT/
Metro “apps” is still pending. See Appendix A for more details. Frankly, the future of Windows 8 is
unclear as I type these words, so this book will be as version-neutral as possible.

xlvi | Preface

http://oreil.ly/LearningPython-5E

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning Python, Fifth Edition, by Mark
Lutz. Copyright 2013 Mark Lutz, 978-1-4493-5573-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Font Conventions
This book’s mechanics will make more sense once you start reading it, of course, but
as a reference, this book uses the following typographical conventions:

Italic
Used for email addresses, URLs, filenames, pathnames, and emphasizing new
terms when they are first introduced

Constant width
Used for program code, the contents of files and the output from commands, and
to designate modules, methods, statements, and system commands

Constant width bold
Used in code sections to show commands or text that would be typed by the user,
and, occasionally, to highlight portions of code

Constant width italic
Used for replaceables and some comments in code sections

Indicates a tip, suggestion, or general note relating to the nearby text.

Indicates a warning or caution relating to the nearby text.

You’ll also find occasional sidebars (delimited by boxes) and footnotes (at page end)
throughout, which are often optional reading, but provide additional context on the
topics being presented. The sidebars in “Why You Will Care: Slices” on page 204,
for example, often give example use cases for the subjects being explored.

Book Updates and Resources
Improvements happen (and so do mis^H^H^H typos). Updates, supplements, and cor-
rections (a.k.a. errata) for this book will be maintained on the Web, and may be sug-
gested at either the publisher’s website or by email. Here are the main coordinates:

Preface | xlvii

mailto:permissions@oreilly.com

Publisher’s site: http://oreil.ly/LearningPython-5E
This site will maintain this edition’s official list of book errata, and chronicle spe-
cific patches applied to the text in reprints. It’s also the official site for the book’s
examples as described earlier.

Author’s site: http://www.rmi.net/~lutz/about-lp5e.html
This site will be used to post more general updates related to this text or Python
itself—a hedge against future changes, which should be considered a sort of virtual
appendix to this book.

My publisher also has an email address for comments and technical questions about
this book:

bookquestions@oreilly.com

For more information about my publisher’s books, conferences, Resource Centers, and
the O’Reilly Network, see its general website:

http://www.oreilly.com

For more on my books, see my own book support site:

http://rmi.net/~lutz

Also be sure to search the Web if any of the preceding links become invalid over time;
if I could become more clairvoyant, I would, but the Web changes faster than published
books.

Acknowledgments
As I write this fifth edition of this book in 2013, it’s difficult to not be somewhat ret-
rospective. I have now been using and promoting Python for 21 years, writing books
about it for 18, and teaching live classes on it for 16. Despite the passage of time, I’m
still regularly amazed at how successful Python has been—in ways that most of us could
not possibly have imagined in the early 1990s. So at the risk of sounding like a hopelessly
self-absorbed author, I hope you’ll pardon a few closing words of history and gratitude
here.

The Backstory
My own Python history predates both Python 1.0 and the Web (and goes back to a
time when an install meant fetching email messages, concatenating, decoding, and
hoping it all somehow worked). When I first discovered Python as a frustrated C++
software developer in 1992, I had no idea what an impact it would have on the next
two decades of my life. Two years after writing the first edition of Programming
Python in 1995 for Python 1.3, I began traveling around the country and world teaching
Python to beginners and experts. Since finishing the first edition of Learning Python in

xlviii | Preface

http://oreil.ly/LearningPython-5E
http://www.rmi.net/~lutz/about-lp5e.html
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://rmi.net/~lutz

1999, I’ve been an independent Python trainer and writer, thanks in part to Python’s
phenomenal growth in popularity.

Here’s the damage so far. I’ve now written 13 Python books (5 of this, and 4 of two
others), which have together sold some 400,000 units by my data. I’ve also been teach-
ing Python for over a decade and a half; have taught some 260 Python training sessions
in the U.S., Europe, Canada, and Mexico; and have met roughly 4,000 students along
the way. Besides propelling me toward frequent flyer utopia, these classes helped me
refine this text and my other Python books. Teaching honed the books, and vice versa,
with the net result that my books closely parallel what happens in my classes, and can
serve as a viable alternative to them.

As for Python itself, in recent years it has grown to become one of the top 5 to 10 most
widely used programming languages in the world (depending on which source you cite
and when you cite it). Because we’ll be exploring Python’s status in the first chapter of
this book, I’ll defer the rest of this story until then.

Python Thanks
Because teaching teaches teachers to teach, this book owes much to my live classes. I’d
like to thank all the students who have participated in my courses during the last 16
years. Along with changes in Python itself, your feedback played a major role in shaping
this text; there’s nothing quite as instructive as watching 4,000 people repeat the same
beginner mistakes live and in person! This book’s recent editions owe their training-
based changes primarily to recent classes, though every class held since 1997 has in
some way helped refine this book. I’d like to thank clients who hosted classes in Dublin,
Mexico City, Barcelona, London, Edmonton, and Puerto Rico; such experiences have
been one of my career’s most lasting rewards.

Because writing teaches writers to write, this book also owes much to its audience. I
want to thank the countless readers who took time to offer suggestions over the last 18
years, both online and in person. Your feedback has also been vital to this book’s evo-
lution and a substantial factor in its success, a benefit that seems inherent in the open
source world. Reader comments have run the gamut from “You should be banned from
writing books” to “God bless you for writing this book”; if consensus is possible in
such matters it probably lies somewhere between these two, though to borrow a line
from Tolkien: the book is still too short.

I’d also like to express my gratitude to everyone who played a part in this book’s
production. To all those who have helped make this book a solid product over the years
—including its editors, formatters, marketers, technical reviewers, and more. And to
O’Reilly for giving me a chance to work on 13 book projects; it’s been net fun (and only
feels a little like the movie Groundhog Day).

Additional thanks is due to the entire Python community; like most open source sys-
tems, Python is the product of many unsung efforts. It’s been my privilege to watch

Preface | xlix

Python grow from a new kid on the scripting languages block to a widely used tool,
deployed in some fashion by almost every organization writing software. Technical
disagreements aside, that’s been an exciting endeavor to be a part of.

I also want to thank my original editor at O’Reilly, the late Frank Willison. This book
was largely Frank’s idea. He had a profound impact on both my career and the success
of Python when it was new, a legacy that I remember each time I’m tempted to misuse
the word “only.”

Personal Thanks
Finally, a few more personal notes of thanks. To the late Carl Sagan, for inspiring an
18-year-old kid from Wisconsin. To my Mother, for courage. To my siblings, for the
truths to be found in museum peanuts. To the book The Shallows, for a much-needed
wakeup call.

To my son Michael and daughters Samantha and Roxanne, for who you are. I’m not
quite sure when you grew up, but I’m proud of how you did, and look forward to seeing
where life takes you next.

And to my wife Vera, for patience, proofing, Diet Cokes, and pretzels. I’m glad I finally
found you. I don’t know what the next 50 years hold, but I do know that I hope to
spend all of them holding you.

—Mark Lutz, Amongst the Larch, Spring 2013

l | Preface

PART I

Getting Started

CHAPTER 1

A Python Q&A Session

If you’ve bought this book, you may already know what Python is and why it’s an
important tool to learn. If you don’t, you probably won’t be sold on Python until you’ve
learned the language by reading the rest of this book and have done a project or two.
But before we jump into details, this first chapter of this book will briefly introduce
some of the main reasons behind Python’s popularity. To begin sculpting a definition
of Python, this chapter takes the form of a question-and-answer session, which poses
some of the most common questions asked by beginners.

Why Do People Use Python?
Because there are many programming languages available today, this is the usual first
question of newcomers. Given that there are roughly 1 million Python users out there
at the moment, there really is no way to answer this question with complete accuracy;
the choice of development tools is sometimes based on unique constraints or personal
preference.

But after teaching Python to roughly 260 groups and over 4,000 students during the
last 16 years, I have seen some common themes emerge. The primary factors cited by
Python users seem to be these:

Software quality
For many, Python’s focus on readability, coherence, and software quality in general
sets it apart from other tools in the scripting world. Python code is designed to be
readable, and hence reusable and maintainable—much more so than traditional
scripting languages. The uniformity of Python code makes it easy to understand,
even if you did not write it. In addition, Python has deep support for more advanced
software reuse mechanisms, such as object-oriented (OO) and function program-
ming.

Developer productivity
Python boosts developer productivity many times beyond compiled or statically
typed languages such as C, C++, and Java. Python code is typically one-third to

3

one-fifth the size of equivalent C++ or Java code. That means there is less to type,
less to debug, and less to maintain after the fact. Python programs also run imme-
diately, without the lengthy compile and link steps required by some other tools,
further boosting programmer speed.

Program portability
Most Python programs run unchanged on all major computer platforms. Porting
Python code between Linux and Windows, for example, is usually just a matter of
copying a script’s code between machines. Moreover, Python offers multiple op-
tions for coding portable graphical user interfaces, database access programs, web-
based systems, and more. Even operating system interfaces, including program
launches and directory processing, are as portable in Python as they can possibly
be.

Support libraries
Python comes with a large collection of prebuilt and portable functionality, known
as the standard library. This library supports an array of application-level pro-
gramming tasks, from text pattern matching to network scripting. In addition,
Python can be extended with both homegrown libraries and a vast collection of
third-party application support software. Python’s third-party domain offers tools
for website construction, numeric programming, serial port access, game devel-
opment, and much more (see ahead for a sampling). The NumPy extension, for
instance, has been described as a free and more powerful equivalent to the Matlab
numeric programming system.

Component integration
Python scripts can easily communicate with other parts of an application, using a
variety of integration mechanisms. Such integrations allow Python to be used as a
product customization and extension tool. Today, Python code can invoke C and
C++ libraries, can be called from C and C++ programs, can integrate with Java
and .NET components, can communicate over frameworks such as COM and Sil-
verlight, can interface with devices over serial ports, and can interact over networks
with interfaces like SOAP, XML-RPC, and CORBA. It is not a standalone tool.

Enjoyment
Because of Python’s ease of use and built-in toolset, it can make the act of pro-
gramming more pleasure than chore. Although this may be an intangible benefit,
its effect on productivity is an important asset.

Of these factors, the first two (quality and productivity) are probably the most com-
pelling benefits to most Python users, and merit a fuller description.

Software Quality
By design, Python implements a deliberately simple and readable syntax and a highly
coherent programming model. As a slogan at a past Python conference attests, the net
result is that Python seems to “fit your brain”—that is, features of the language interact

4 | Chapter 1: A Python Q&A Session

in consistent and limited ways and follow naturally from a small set of core concepts.
This makes the language easier to learn, understand, and remember. In practice, Python
programmers do not need to constantly refer to manuals when reading or writing code;
it’s a consistently designed system that many find yields surprisingly uniform code.

By philosophy, Python adopts a somewhat minimalist approach. This means that al-
though there are usually multiple ways to accomplish a coding task, there is usually
just one obvious way, a few less obvious alternatives, and a small set of coherent in-
teractions everywhere in the language. Moreover, Python doesn’t make arbitrary deci-
sions for you; when interactions are ambiguous, explicit intervention is preferred over
“magic.” In the Python way of thinking, explicit is better than implicit, and simple is
better than complex.1

Beyond such design themes, Python includes tools such as modules and OOP that
naturally promote code reusability. And because Python is focused on quality, so too,
naturally, are Python programmers.

Developer Productivity
During the great Internet boom of the mid-to-late 1990s, it was difficult to find enough
programmers to implement software projects; developers were asked to implement
systems as fast as the Internet evolved. In later eras of layoffs and economic recession,
the picture shifted. Programming staffs were often asked to accomplish the same tasks
with even fewer people.

In both of these scenarios, Python has shined as a tool that allows programmers to get
more done with less effort. It is deliberately optimized for speed of development—its
simple syntax, dynamic typing, lack of compile steps, and built-in toolset allow pro-
grammers to develop programs in a fraction of the time needed when using some other
tools. The net effect is that Python typically boosts developer productivity many times
beyond the levels supported by traditional languages. That’s good news in both boom
and bust times, and everywhere the software industry goes in between.

Is Python a “Scripting Language”?
Python is a general-purpose programming language that is often applied in scripting
roles. It is commonly defined as an object-oriented scripting language—a definition that
blends support for OOP with an overall orientation toward scripting roles. If pressed
for a one-liner, I’d say that Python is probably better known as a general-purpose pro-

1. For a more complete look at the Python philosophy, type the command import this at any Python
interactive prompt (you’ll see how in Chapter 3). This invokes an “Easter egg” hidden in Python—a
collection of design principles underlying Python that permeate both the language and its user
community. Among them, the acronym EIBTI is now fashionable jargon for the “explicit is better than
implicit” rule. These principles are not religion, but are close enough to qualify as a Python motto and
creed, which we’ll be quoting from often in this book.

Is Python a “Scripting Language”? | 5

gramming language that blends procedural, functional, and object-oriented paradigms—
a statement that captures the richness and scope of today’s Python.

Still, the term “scripting” seems to have stuck to Python like glue, perhaps as a contrast
with larger programming effort required by some other tools. For example, people often
use the word “script” instead of “program” to describe a Python code file. In keeping
with this tradition, this book uses the terms “script” and “program” interchangeably,
with a slight preference for “script” to describe a simpler top-level file and “program”
to refer to a more sophisticated multifile application.

Because the term “scripting language” has so many different meanings to different
observers, though, some would prefer that it not be applied to Python at all. In fact,
people tend to make three very different associations, some of which are more useful
than others, when they hear Python labeled as such:

Shell tools
Sometimes when people hear Python described as a scripting language, they think
it means that Python is a tool for coding operating-system-oriented scripts. Such
programs are often launched from console command lines and perform tasks such
as processing text files and launching other programs.

Python programs can and do serve such roles, but this is just one of dozens of
common Python application domains. It is not just a better shell-script language.

Control language
To others, scripting refers to a “glue” layer used to control and direct (i.e., script)
other application components. Python programs are indeed often deployed in the
context of larger applications. For instance, to test hardware devices, Python pro-
grams may call out to components that give low-level access to a device. Similarly,
programs may run bits of Python code at strategic points to support end-user
product customization without the need to ship and recompile the entire system’s
source code.

Python’s simplicity makes it a naturally flexible control tool. Technically, though,
this is also just a common Python role; many (perhaps most) Python programmers
code standalone scripts without ever using or knowing about any integrated com-
ponents. It is not just a control language.

Ease of use
Probably the best way to think of the term “scripting language” is that it refers to
a simple language used for quickly coding tasks. This is especially true when the
term is applied to Python, which allows much faster program development than
compiled languages like C++. Its rapid development cycle fosters an exploratory,
incremental mode of programming that has to be experienced to be appreciated.

Don’t be fooled, though—Python is not just for simple tasks. Rather, it makes tasks
simple by its ease of use and flexibility. Python has a simple feature set, but it allows
programs to scale up in sophistication as needed. Because of that, it is commonly
used for quick tactical tasks and longer-term strategic development.

6 | Chapter 1: A Python Q&A Session

So, is Python a scripting language or not? It depends on whom you ask. In general, the
term “scripting” is probably best used to describe the rapid and flexible mode of de-
velopment that Python supports, rather than a particular application domain.

OK, but What’s the Downside?
After using it for 21 years, writing about it for 18, and teaching it for 16, I’ve found that
the only significant universal downside to Python is that, as currently implemented, its
execution speed may not always be as fast as that of fully compiled and lower-level
languages such as C and C++. Though relatively rare today, for some tasks you may
still occasionally need to get “closer to the iron” by using lower-level languages such
as these that are more directly mapped to the underlying hardware architecture.

We’ll talk about implementation concepts in detail later in this book. In short, the
standard implementations of Python today compile (i.e., translate) source code state-
ments to an intermediate format known as byte code and then interpret the byte code.
Byte code provides portability, as it is a platform-independent format. However, be-
cause Python is not normally compiled all the way down to binary machine code (e.g.,
instructions for an Intel chip), some programs will run more slowly in Python than in
a fully compiled language like C. The PyPy system discussed in the next chapter can
achieve a 10X to 100X speedup on some code by compiling further as your program
runs, but it’s a separate, alternative implementation.

Whether you will ever care about the execution speed difference depends on what kinds
of programs you write. Python has been optimized numerous times, and Python code
runs fast enough by itself in most application domains. Furthermore, whenever you do
something “real” in a Python script, like processing a file or constructing a graphical
user interface (GUI), your program will actually run at C speed, since such tasks are
immediately dispatched to compiled C code inside the Python interpreter. More fun-
damentally, Python’s speed-of-development gain is often far more important than any
speed-of-execution loss, especially given modern computer speeds.

Even at today’s CPU speeds, though, there still are some domains that do require op-
timal execution speeds. Numeric programming and animation, for example, often need
at least their core number-crunching components to run at C speed (or better). If you
work in such a domain, you can still use Python—simply split off the parts of the
application that require optimal speed into compiled extensions, and link those into
your system for use in Python scripts.

We won’t talk about extensions much in this text, but this is really just an instance of
the Python-as-control-language role we discussed earlier. A prime example of this dual
language strategy is the NumPy numeric programming extension for Python; by com-
bining compiled and optimized numeric extension libraries with the Python language,
NumPy turns Python into a numeric programming tool that is simultaneously efficient
and easy to use. When needed, such extensions provide a powerful optimization tool.

OK, but What’s the Downside? | 7

Other Python Tradeoffs: The Intangible Bits
I mentioned that execution speed is the only major downside to Python. That’s indeed
the case for most Python users, and especially for newcomers. Most people find Python
to be easy to learn and fun to use, especially when compared with its contemporaries
like Java, C#, and C++. In the interest of full disclosure, though, I should also note up
front some more abstract tradeoffs I’ve observed in my two decades in the Python world
—both as an educator and developer.

As an educator, I’ve sometimes found the rate of change in Python and its libraries to
be a negative, and have on occasion lamented its growth over the years. This is partly
because trainers and book authors live on the front lines of such things—it’s been my
job to teach the language despite its constant change, a task at times akin to chronicling
the herding of cats! Still, it’s a broadly shared concern. As we’ll see in this book, Python’s
original “keep it simple” motif is today often subsumed by a trend toward more so-
phisticated solutions at the expense of the learning curve of newcomers. This book’s
size is indirect evidence of this trend.

On the other hand, by most measures Python is still much simpler than its alternatives,
and perhaps only as complex as it needs to be given the many roles it serves today. Its
overall coherence and open nature remain compelling features to most. Moreover, not
everyone needs to stay up to date with the cutting edge—as Python 2.X’s ongoing
popularity clearly shows.

As a developer, I also at times question the tradeoffs inherent in Python’s “batteries
included” approach to development. Its emphasis on prebuilt tools can add dependen-
cies (what if a battery you use is changed, broken, or deprecated?), and encourage
special-case solutions over general principles that may serve users better in the long run
(how can you evaluate or use a tool well if you don’t understand its purpose?). We’ll
see examples of both of these concerns in this book.

For typical users, and especially for hobbyists and beginners, Python’s toolset approach
is a major asset. But you shouldn’t be surprised when you outgrow precoded tools, and
can benefit from the sorts of skills this book aims to impart. Or, to paraphrase a proverb:
give people a tool, and they’ll code for a day; teach them how to build tools, and they’ll
code for a lifetime. This book’s job is more the latter than the former.

As mentioned elsewhere in this chapter, both Python and its toolbox model are also
susceptible to downsides common to open source projects in general—the potential
triumph of the personal preference of the few over common usage of the many, and the
occasional appearance of anarchy and even elitism—though these tend to be most
grievous on the leading edge of new releases.

We’ll return to some of these tradeoffs at the end of the book, after you’ve learned
Python well enough to draw your own conclusions. As an open source system, what
Python “is” is up to its users to define. In the end, Python is more popular today than
ever, and its growth shows no signs of abating. To some, that may be a more telling
metric than individual opinions, both pro and con.

8 | Chapter 1: A Python Q&A Session

Who Uses Python Today?
At this writing, the best estimate anyone can seem to make of the size of the Python
user base is that there are roughly 1 million Python users around the world today (plus
or minus a few). This estimate is based on various statistics, like download rates, web
statistics, and developer surveys. Because Python is open source, a more exact count is
difficult—there are no license registrations to tally. Moreover, Python is automatically
included with Linux distributions, Macintosh computers, and a wide range of products
and hardware, further clouding the user-base picture.

In general, though, Python enjoys a large user base and a very active developer com-
munity. It is generally considered to be in the top 5 or top 10 most widely used pro-
gramming languages in the world today (its exact ranking varies per source and date).
Because Python has been around for over two decades and has been widely used, it is
also very stable and robust.

Besides being leveraged by individual users, Python is also being applied in real revenue-
generating products by real companies. For instance, among the generally known
Python user base:

• Google makes extensive use of Python in its web search systems.

• The popular YouTube video sharing service is largely written in Python.

• The Dropbox storage service codes both its server and desktop client software pri-
marily in Python.

• The Raspberry Pi single-board computer promotes Python as its educational lan-
guage.

• EVE Online, a massively multiplayer online game (MMOG) by CCP Games, uses
Python broadly.

• The widespread BitTorrent peer-to-peer file sharing system began its life as a
Python program.

• Industrial Light & Magic, Pixar, and others use Python in the production of ani-
mated movies.

• ESRI uses Python as an end-user customization tool for its popular GIS mapping
products.

• Google’s App Engine web development framework uses Python as an application
language.

• The IronPort email server product uses more than 1 million lines of Python code
to do its job.

• Maya, a powerful integrated 3D modeling and animation system, provides a
Python scripting API.

• The NSA uses Python for cryptography and intelligence analysis.

• iRobot uses Python to develop commercial and military robotic devices.

Who Uses Python Today? | 9

• The Civilization IV game’s customizable scripted events are written entirely in
Python.

• The One Laptop Per Child (OLPC) project built its user interface and activity model
in Python.

• Netflix and Yelp have both documented the role of Python in their software infra-
structures.

• Intel, Cisco, Hewlett-Packard, Seagate, Qualcomm, and IBM use Python for hard-
ware testing.

• JPMorgan Chase, UBS, Getco, and Citadel apply Python to financial market fore-
casting.

• NASA, Los Alamos, Fermilab, JPL, and others use Python for scientific program-
ming tasks.

And so on—though this list is representative, a full accounting is beyond this book’s
scope, and is almost guaranteed to change over time. For an up-to-date sampling of
additional Python users, applications, and software, try the following pages currently
at Python’s site and Wikipedia, as well as a search in your favorite web browser:

• Success stories: http://www.python.org/about/success

• Application domains: http://www.python.org/about/apps

• User quotes: http://www.python.org/about/quotes

• Wikipedia page: http://en.wikipedia.org/wiki/List_of_Python_software

Probably the only common thread among the companies using Python today is that
Python is used all over the map, in terms of application domains. Its general-purpose
nature makes it applicable to almost all fields, not just one. In fact, it’s safe to say that
virtually every substantial organization writing software is using Python, whether for
short-term tactical tasks, such as testing and administration, or for long-term strategic
product development. Python has proven to work well in both modes.

What Can I Do with Python?
In addition to being a well-designed programming language, Python is useful for ac-
complishing real-world tasks—the sorts of things developers do day in and day out.
It’s commonly used in a variety of domains, as a tool for scripting other components
and implementing standalone programs. In fact, as a general-purpose language,
Python’s roles are virtually unlimited: you can use it for everything from website de-
velopment and gaming to robotics and spacecraft control.

However, the most common Python roles currently seem to fall into a few broad cat-
egories. The next few sections describe some of Python’s most common applications
today, as well as tools used in each domain. We won’t be able to explore the tools

10 | Chapter 1: A Python Q&A Session

http://www.python.org/about/success
http://www.python.org/about/apps
http://www.python.org/about/quotes
http://en.wikipedia.org/wiki/List_of_Python_software

mentioned here in any depth—if you are interested in any of these topics, see the Python
website or other resources for more details.

Systems Programming
Python’s built-in interfaces to operating-system services make it ideal for writing
portable, maintainable system-administration tools and utilities (sometimes called shell
tools). Python programs can search files and directory trees, launch other programs, do
parallel processing with processes and threads, and so on.

Python’s standard library comes with POSIX bindings and support for all the usual OS
tools: environment variables, files, sockets, pipes, processes, multiple threads, regular
expression pattern matching, command-line arguments, standard stream interfaces,
shell-command launchers, filename expansion, zip file utilities, XML and JSON pars-
ers, CSV file handlers, and more. In addition, the bulk of Python’s system interfaces
are designed to be portable; for example, a script that copies directory trees typically
runs unchanged on all major Python platforms. The Stackless Python implementation,
described in Chapter 2 and used by EVE Online, also offers advanced solutions to
multiprocessing requirements.

GUIs
Python’s simplicity and rapid turnaround also make it a good match for graphical user
interface programming on the desktop. Python comes with a standard object-oriented
interface to the Tk GUI API called tkinter (Tkinter in 2.X) that allows Python programs
to implement portable GUIs with a native look and feel. Python/tkinter GUIs run un-
changed on Microsoft Windows, X Windows (on Unix and Linux), and the Mac OS
(both Classic and OS X). A free extension package, PMW, adds advanced widgets to
the tkinter toolkit. In addition, the wxPython GUI API, based on a C++ library, offers
an alternative toolkit for constructing portable GUIs in Python.

Higher-level toolkits such as Dabo are built on top of base APIs such as wxPython and
tkinter. With the proper library, you can also use GUI support in other toolkits in
Python, such as Qt with PyQt, GTK with PyGTK, MFC with PyWin32, .NET with
IronPython, and Swing with Jython (the Java version of Python, described in Chap-
ter 2) or JPype. For applications that run in web browsers or have simple interface
requirements, both Jython and Python web frameworks and server-side CGI scripts,
described in the next section, provide additional user interface options.

Internet Scripting
Python comes with standard Internet modules that allow Python programs to perform
a wide variety of networking tasks, in client and server modes. Scripts can communicate
over sockets; extract form information sent to server-side CGI scripts; transfer files by
FTP; parse and generate XML and JSON documents; send, receive, compose, and parse

What Can I Do with Python? | 11

email; fetch web pages by URLs; parse the HTML of fetched web pages; communicate
over XML-RPC, SOAP, and Telnet; and more. Python’s libraries make these tasks re-
markably simple.

In addition, a large collection of third-party tools are available on the Web for doing
Internet programming in Python. For instance, the HTMLGen system generates HTML
files from Python class-based descriptions, the mod_python package runs Python effi-
ciently within the Apache web server and supports server-side templating with its
Python Server Pages, and the Jython system provides for seamless Python/Java inte-
gration and supports coding of server-side applets that run on clients.

In addition, full-blown web development framework packages for Python, such as
Django, TurboGears, web2py, Pylons, Zope, and WebWare, support quick construction
of full-featured and production-quality websites with Python. Many of these include
features such as object-relational mappers, a Model/View/Controller architecture,
server-side scripting and templating, and AJAX support, to provide complete and en-
terprise-level web development solutions.

More recently, Python has expanded into rich Internet applications (RIAs), with tools
such as Silverlight in IronPython, and pyjs (a.k.a. pyjamas) and its Python-to-JavaScript
compiler, AJAX framework, and widget set. Python also has moved into cloud com-
puting, with App Engine, and others described in the database section ahead. Where
the Web leads, Python quickly follows.

Component Integration
We discussed the component integration role earlier when describing Python as a con-
trol language. Python’s ability to be extended by and embedded in C and C++ systems
makes it useful as a flexible glue language for scripting the behavior of other systems
and components. For instance, integrating a C library into Python enables Python to
test and launch the library’s components, and embedding Python in a product enables
onsite customizations to be coded without having to recompile the entire product (or
ship its source code at all).

Tools such as the SWIG and SIP code generators can automate much of the work
needed to link compiled components into Python for use in scripts, and the Cython
system allows coders to mix Python and C-like code. Larger frameworks, such as
Python’s COM support on Windows, the Jython Java-based implementation, and the
IronPython .NET-based implementation provide alternative ways to script compo-
nents. On Windows, for example, Python scripts can use frameworks to script Word
and Excel, access Silverlight, and much more.

Database Programming
For traditional database demands, there are Python interfaces to all commonly used
relational database systems—Sybase, Oracle, Informix, ODBC, MySQL, PostgreSQL,

12 | Chapter 1: A Python Q&A Session

SQLite, and more. The Python world has also defined a portable database API for ac-
cessing SQL database systems from Python scripts, which looks the same on a variety
of underlying database systems. For instance, because the vendor interfaces implement
the portable API, a script written to work with the free MySQL system will work largely
unchanged on other systems (such as Oracle); all you generally have to do is replace
the underlying vendor interface. The in-process SQLite embedded SQL database engine
is a standard part of Python itself since 2.5, supporting both prototyping and basic
program storage needs.

In the non-SQL department, Python’s standard pickle module provides a simple object
persistence system—it allows programs to easily save and restore entire Python objects
to files and file-like objects. On the Web, you’ll also find third-party open source sys-
tems named ZODB and Durus that provide complete object-oriented database systems
for Python scripts; others, such as SQLObject and SQLAlchemy, that implement object
relational mappers (ORMs), which graft Python’s class model onto relational tables;
and PyMongo, an interface to MongoDB, a high-performance, non-SQL, open source
JSON-style document database, which stores data in structures very similar to Python’s
own lists and dictionaries, and whose text may be parsed and created with Python’s
own standard library json module.

Still other systems offer more specialized ways to store data, including the datastore in
Google’s App Engine, which models data with Python classes and provides extensive
scalability, as well as additional emerging cloud storage options such as Azure, Pi-
Cloud, OpenStack, and Stackato.

Rapid Prototyping
To Python programs, components written in Python and C look the same. Because of
this, it’s possible to prototype systems in Python initially, and then move selected com-
ponents to a compiled language such as C or C++ for delivery. Unlike some prototyping
tools, Python doesn’t require a complete rewrite once the prototype has solidified. Parts
of the system that don’t require the efficiency of a language such as C++ can remain
coded in Python for ease of maintenance and use.

Numeric and Scientific Programming
Python is also heavily used in numeric programming—a domain that would not tra-
ditionally have been considered to be in the scope of scripting languages, but has grown
to become one of Python’s most compelling use cases. Prominent here, the NumPy
high-performance numeric programming extension for Python mentioned earlier in-
cludes such advanced tools as an array object, interfaces to standard mathematical
libraries, and much more. By integrating Python with numeric routines coded in a
compiled language for speed, NumPy turns Python into a sophisticated yet easy-to-use
numeric programming tool that can often replace existing code written in traditional
compiled languages such as FORTRAN or C++.

What Can I Do with Python? | 13

Additional numeric tools for Python support animation, 3D visualization, parallel pro-
cessing, and so on. The popular SciPy and ScientificPython extensions, for example,
provide additional libraries of scientific programming tools and use NumPy as a core
component. The PyPy implementation of Python (discussed in Chapter 2) has also
gained traction in the numeric domain, in part because heavily algorithmic code of the
sort that’s common in this domain can run dramatically faster in PyPy—often 10X to
100X quicker.

And More: Gaming, Images, Data Mining, Robots, Excel...
Python is commonly applied in more domains than can be covered here. For example,
you’ll find tools that allow you to use Python to do:

• Game programming and multimedia with pygame, cgkit, pyglet, PySoy,
Panda3D, and others

• Serial port communication on Windows, Linux, and more with the PySerial ex-
tension

• Image processing with PIL and its newer Pillow fork, PyOpenGL, Blender, Maya,
and more

• Robot control programming with the PyRo toolkit

• Natural language analysis with the NLTK package

• Instrumentation on the Raspberry Pi and Arduino boards

• Mobile computing with ports of Python to the Google Android and Apple iOS
platforms

• Excel spreadsheet function and macro programming with the PyXLL or DataNi-
tro add-ins

• Media file content and metadata tag processing with PyMedia, ID3, PIL/Pillow,
and more

• Artificial intelligence with the PyBrain neural net library and the Milk machine
learning toolkit

• Expert system programming with PyCLIPS, Pyke, Pyrolog, and pyDatalog

• Network monitoring with zenoss, written in and customized with Python

• Python-scripted design and modeling with PythonCAD, PythonOCC, FreeCAD,
and others

• Document processing and generation with ReportLab, Sphinx, Cheetah, PyPDF,
and so on

• Data visualization with Mayavi, matplotlib, VTK, VPython, and more

• XML parsing with the xml library package, the xmlrpclib module, and third-party
extensions

• JSON and CSV file processing with the json and csv modules

14 | Chapter 1: A Python Q&A Session

• Data mining with the Orange framework, the Pattern bundle, Scrapy, and custom
code

You can even play solitaire with the PySolFC program. And of course, you can always
code custom Python scripts in less buzzword-laden domains to perform day-to-day
system administration, process your email, manage your document and media libraries,
and so on. You’ll find links to the support in many fields at the PyPI website, and via
web searches (search Google or http://www.python.org for links).

Though of broad practical use, many of these specific domains are largely just instances
of Python’s component integration role in action again. Adding it as a frontend to
libraries of components written in a compiled language such as C makes Python useful
for scripting in a wide variety of domains. As a general-purpose language that supports
integration, Python is widely applicable.

How Is Python Developed and Supported?
As a popular open source system, Python enjoys a large and active development com-
munity that responds to issues and develops enhancements with a speed that many
commercial software developers might find remarkable. Python developers coordinate
work online with a source-control system. Changes are developed per a formal proto-
col, which includes writing a PEP (Python Enhancement Proposal) or other document,
and extensions to Python’s regression testing system. In fact, modifying Python today
is roughly as involved as changing commercial software—a far cry from Python’s early
days, when an email to its creator would suffice, but a good thing given its large user
base today.

The PSF (Python Software Foundation), a formal nonprofit group, organizes confer-
ences and deals with intellectual property issues. Numerous Python conferences are
held around the world; O’Reilly’s OSCON and the PSF’s PyCon are the largest. The
former of these addresses multiple open source projects, and the latter is a Python-only
event that has experienced strong growth in recent years. PyCon 2012 and 2013 reached
2,500 attendees each; in fact, PyCon 2013 had to cap its limit at this level after a surprise
sell-out in 2012 (and managed to grab wide attention on both technical and nontech-
nical grounds that I won’t chronicle here). Earlier years often saw attendance double
—from 586 attendees in 2007 to over 1,000 in 2008, for example—indicative of
Python’s growth in general, and impressive to those who remember early conferences
whose attendees could largely be served around a single restaurant table.

Open Source Tradeoffs
Having said that, it’s important to note that while Python enjoys a vigorous develop-
ment community, this comes with inherent tradeoffs. Open source software can also
appear chaotic and even resemble anarchy at times, and may not always be as smoothly
implemented as the prior paragraphs might imply. Some changes may still manage to

How Is Python Developed and Supported? | 15

http://www.python.org

defy official protocols, and as in all human endeavors, mistakes still happen despite the
process controls (Python 3.2.0, for instance, came with a broken console input function
on Windows).

Moreover, open source projects exchange commercial interests for the personal pref-
erences of a current set of developers, which may or may not be the same as yours—
you are not held hostage by a company, but you are at the mercy of those with spare
time to change the system. The net effect is that open source software evolution is often
driven by the few, but imposed on the many.

In practice, though, these tradeoffs impact those on the “bleeding” edge of new releases
much more than those using established versions of the system, including prior releases
in both Python 3.X and 2.X. If you kept using classic classes in Python 2.X, for example,
you were largely immune to the explosion of class functionality and change in new-style
classes that occurred in the early-to-mid 2000s. Though these become mandatory in
3.X (along with much more), many 2.X users today still happily skirt the issue.

What Are Python’s Technical Strengths?
Naturally, this is a developer’s question. If you don’t already have a programming
background, the language in the next few sections may be a bit baffling—don’t worry,
we’ll explore all of these terms in more detail as we proceed through this book. For
developers, though, here is a quick introduction to some of Python’s top technical
features.

It’s Object-Oriented and Functional
Python is an object-oriented language, from the ground up. Its class model supports
advanced notions such as polymorphism, operator overloading, and multiple inheri-
tance; yet, in the context of Python’s simple syntax and typing, OOP is remarkably easy
to apply. In fact, if you don’t understand these terms, you’ll find they are much easier
to learn with Python than with just about any other OOP language available.

Besides serving as a powerful code structuring and reuse device, Python’s OOP nature
makes it ideal as a scripting tool for other object-oriented systems languages. For ex-
ample, with the appropriate glue code, Python programs can subclass (specialize)
classes implemented in C++, Java, and C#.

Of equal significance, OOP is an option in Python; you can go far without having to
become an object guru all at once. Much like C++, Python supports both procedural
and object-oriented programming modes. Its object-oriented tools can be applied if
and when constraints allow. This is especially useful in tactical development modes,
which preclude design phases.

In addition to its original procedural (statement-based) and object-oriented (class-
based) paradigms, Python in recent years has acquired built-in support for functional

16 | Chapter 1: A Python Q&A Session

programming—a set that by most measures includes generators, comprehensions, clo-
sures, maps, decorators, anonymous function lambdas, and first-class function objects.
These can serve as both complement and alternative to its OOP tools.

It’s Free
Python is completely free to use and distribute. As with other open source software,
such as Tcl, Perl, Linux, and Apache, you can fetch the entire Python system’s source
code for free on the Internet. There are no restrictions on copying it, embedding it in
your systems, or shipping it with your products. In fact, you can even sell Python’s
source code, if you are so inclined.

But don’t get the wrong idea: “free” doesn’t mean “unsupported.” On the contrary,
the Python online community responds to user queries with a speed that most com-
mercial software help desks would do well to try to emulate. Moreover, because Python
comes with complete source code, it empowers developers, leading to the creation of
a large team of implementation experts. Although studying or changing a programming
language’s implementation isn’t everyone’s idea of fun, it’s comforting to know that
you can do so if you need to. You’re not dependent on the whims of a commercial
vendor, because the ultimate documentation—source code—is at your disposal as a
last resort.

As mentioned earlier, Python development is performed by a community that largely
coordinates its efforts over the Internet. It consists of Python’s original creator—Guido
van Rossum, the officially anointed Benevolent Dictator for Life (BDFL) of Python—
plus a supporting cast of thousands. Language changes must follow a formal enhance-
ment procedure and be scrutinized by both other developers and the BDFL. This tends
to make Python more conservative with changes than some other languages and sys-
tems. While the Python 3.X/2.X split broke with this tradition soundly and deliberately,
it still holds generally true within each Python line.

It’s Portable
The standard implementation of Python is written in portable ANSI C, and it compiles
and runs on virtually every major platform currently in use. For example, Python pro-
grams run today on everything from PDAs to supercomputers. As a partial list, Python
is available on:

• Linux and Unix systems

• Microsoft Windows (all modern flavors)

• Mac OS (both OS X and Classic)

• BeOS, OS/2, VMS, and QNX

• Real-time systems such as VxWorks

• Cray supercomputers and IBM mainframes

What Are Python’s Technical Strengths? | 17

• PDAs running Palm OS, PocketPC, and Linux

• Cell phones running Symbian OS, and Windows Mobile

• Gaming consoles and iPods

• Tablets and smartphones running Google’s Android and Apple’s iOS

• And more

Like the language interpreter itself, the standard library modules that ship with Python
are implemented to be as portable across platform boundaries as possible. Further,
Python programs are automatically compiled to portable byte code, which runs the
same on any platform with a compatible version of Python installed (more on this in
the next chapter).

What that means is that Python programs using the core language and standard libraries
run the same on Linux, Windows, and most other systems with a Python interpreter.
Most Python ports also contain platform-specific extensions (e.g., COM support on
Windows), but the core Python language and libraries work the same everywhere. As
mentioned earlier, Python also includes an interface to the Tk GUI toolkit called tkinter
(Tkinter in 2.X), which allows Python programs to implement full-featured graphical
user interfaces that run on all major GUI desktop platforms without program changes.

It’s Powerful
From a features perspective, Python is something of a hybrid. Its toolset places it be-
tween traditional scripting languages (such as Tcl, Scheme, and Perl) and systems de-
velopment languages (such as C, C++, and Java). Python provides all the simplicity
and ease of use of a scripting language, along with more advanced software-engineering
tools typically found in compiled languages. Unlike some scripting languages, this
combination makes Python useful for large-scale development projects. As a preview,
here are some of the main things you’ll find in Python’s toolbox:

Dynamic typing
Python keeps track of the kinds of objects your program uses when it runs; it
doesn’t require complicated type and size declarations in your code. In fact, as
you’ll see in Chapter 6, there is no such thing as a type or variable declaration
anywhere in Python. Because Python code does not constrain data types, it is also
usually automatically applicable to a whole range of objects.

Automatic memory management
Python automatically allocates objects and reclaims (“garbage collects”) them
when they are no longer used, and most can grow and shrink on demand. As you’ll
learn, Python keeps track of low-level memory details so you don’t have to.

Programming-in-the-large support
For building larger systems, Python includes tools such as modules, classes, and
exceptions. These tools allow you to organize systems into components, use OOP

18 | Chapter 1: A Python Q&A Session

to reuse and customize code, and handle events and errors gracefully. Python’s
functional programming tools, described earlier, provide additional ways to meet
many of the same goals.

Built-in object types
Python provides commonly used data structures such as lists, dictionaries, and
strings as intrinsic parts of the language; as you’ll see, they’re both flexible and easy
to use. For instance, built-in objects can grow and shrink on demand, can be ar-
bitrarily nested to represent complex information, and more.

Built-in tools
To process all those object types, Python comes with powerful and standard op-
erations, including concatenation (joining collections), slicing (extracting sec-
tions), sorting, mapping, and more.

Library utilities
For more specific tasks, Python also comes with a large collection of precoded
library tools that support everything from regular expression matching to net-
working. Once you learn the language itself, Python’s library tools are where much
of the application-level action occurs.

Third-party utilities
Because Python is open source, developers are encouraged to contribute precoded
tools that support tasks beyond those supported by its built-ins; on the Web, you’ll
find free support for COM, imaging, numeric programming, XML, database ac-
cess, and much more.

Despite the array of tools in Python, it retains a remarkably simple syntax and design.
The result is a powerful programming tool with all the usability of a scripting language.

It’s Mixable
Python programs can easily be “glued” to components written in other languages in a
variety of ways. For example, Python’s C API lets C programs call and be called by
Python programs flexibly. That means you can add functionality to the Python system
as needed, and use Python programs within other environments or systems.

Mixing Python with libraries coded in languages such as C or C++, for instance, makes
it an easy-to-use frontend language and customization tool. As mentioned earlier, this
also makes Python good at rapid prototyping—systems may be implemented in Python
first, to leverage its speed of development, and later moved to C for delivery, one piece
at a time, according to performance demands.

It’s Relatively Easy to Use
Compared to alternatives like C++, Java, and C#, Python programming seems aston-
ishingly simple to most observers. To run a Python program, you simply type it and
run it. There are no intermediate compile and link steps, like there are for languages

What Are Python’s Technical Strengths? | 19

such as C or C++. Python executes programs immediately, which makes for an inter-
active programming experience and rapid turnaround after program changes—in many
cases, you can witness the effect of a program change nearly as fast as you can type it.

Of course, development cycle turnaround is only one aspect of Python’s ease of use. It
also provides a deliberately simple syntax and powerful built-in tools. In fact, some
have gone so far as to call Python executable pseudocode. Because it eliminates much
of the complexity in other tools, Python programs are simpler, smaller, and more flex-
ible than equivalent programs in other popular languages.

It’s Relatively Easy to Learn
This brings us to the point of this book: especially when compared to other widely used
programming languages, the core Python language is remarkably easy to learn. In fact,
if you’re an experienced programmer, you can expect to be coding small-scale Python
programs in a matter of days, and may be able to pick up some limited portions of the
language in just hours—though you shouldn’t expect to become an expert quite that
fast (despite what you may have heard from marketing departments!).

Naturally, mastering any topic as substantial as today’s Python is not trivial, and we’ll
devote the rest of this book to this task. But the true investment required to master
Python is worthwhile—in the end, you’ll gain programming skills that apply to nearly
every computer application domain. Moreover, most find Python’s learning curve to
be much gentler than that of other programming tools.

That’s good news for professional developers seeking to learn the language to use on
the job, as well as for end users of systems that expose a Python layer for customization
or control. Today, many systems rely on the fact that end users can learn enough Python
to tailor their Python customization code onsite, with little or no support. Moreover,
Python has spawned a large group of users who program for fun instead of career, and
may never need full-scale software development skills. Although Python does have
advanced programming tools, its core language essentials will still seem relatively sim-
ple to beginners and gurus alike.

It’s Named After Monty Python
OK, this isn’t quite a technical strength, but it does seem to be a surprisingly well-kept
secret in the Python world that I wish to expose up front. Despite all the reptiles on
Python books and icons, the truth is that Python is named after the British comedy
group Monty Python—makers of the 1970s BBC comedy series Monty Python’s Flying
Circus and a handful of later full-length films, including Monty Python and the Holy
Grail, that are still widely popular today. Python’s original creator was a fan of Monty
Python, as are many software developers (indeed, there seems to be a sort of symmetry
between the two fields...).

20 | Chapter 1: A Python Q&A Session

This legacy inevitably adds a humorous quality to Python code examples. For instance,
the traditional “foo” and “bar” for generic variable names become “spam” and “eggs”
in the Python world. The occasional “Brian,” “ni,” and “shrubbery” likewise owe their
appearances to this namesake. It even impacts the Python community at large: some
events at Python conferences are regularly billed as “The Spanish Inquisition.”

All of this is, of course, very funny if you are familiar with the shows, but less so other-
wise. You don’t need to be familiar with Monty Python’s work to make sense of ex-
amples that borrow references from it, including many you will see in this book, but at
least you now know their root. (Hey—I’ve warned you.)

How Does Python Stack Up to Language X?
Finally, to place it in the context of what you may already know, people sometimes
compare Python to languages such as Perl, Tcl, and Java. This section summarizes
common consensus in this department.

I want to note up front that I’m not a fan of winning by disparaging the competition—
it doesn’t work in the long run, and that’s not the goal here. Moreover, this is not a
zero sum game—most programmers will use many languages over their careers. Nev-
ertheless, programming tools present choices and tradeoffs that merit consideration.
After all, if Python didn’t offer something over its alternatives, it would never have been
used in the first place.

We talked about performance tradeoffs earlier, so here we’ll focus on functionality.
While other languages are also useful tools to know and use, many people find that
Python:

• Is more powerful than Tcl. Python’s strong support for “programming in the large”
makes it applicable to the development of larger systems, and its library of appli-
cation tools is broader.

• Is more readable than Perl. Python has a clear syntax and a simple, coherent design.
This in turn makes Python more reusable and maintainable, and helps reduce pro-
gram bugs.

• Is simpler and easier to use than Java and C#. Python is a scripting language, but
Java and C# both inherit much of the complexity and syntax of larger OOP systems
languages like C++.

• Is simpler and easier to use than C++. Python code is simpler than the equivalent
C++ and often one-third to one-fifth as large, though as a scripting language,
Python sometimes serves different roles.

• Is simpler and higher-level than C. Python’s detachment from underlying hardware
architecture makes code less complex, better structured, and more approachable
than C, C++’s progenitor.

How Does Python Stack Up to Language X? | 21

• Is more powerful, general-purpose, and cross-platform than Visual Basic. Python
is a richer language that is used more widely, and its open source nature means it
is not controlled by a single company.

• Is more readable and general-purpose than PHP. Python is used to construct web-
sites too, but it is also applied to nearly every other computer domain, from robotics
to movie animation and gaming.

• Is more powerful and general-purpose than JavaScript. Python has a larger toolset,
and is not as tightly bound to web development. It’s also used for scientific mod-
eling, instrumentation, and more.

• Is more readable and established than Ruby. Python syntax is less cluttered, espe-
cially in nontrivial code, and its OOP is fully optional for users and projects to
which it may not apply.

• Is more mature and broadly focused than Lua. Python’s larger feature set and more
extensive library support give it a wider scope than Lua, an embedded “glue” lan-
guage like Tcl.

• Is less esoteric than Smalltalk, Lisp, and Prolog. Python has the dynamic flavor of
languages like these, but also has a traditional syntax accessible to both developers
and end users of customizable systems.

Especially for programs that do more than scan text files, and that might have to be
read in the future by others (or by you!), many people find that Python fits the bill better
than any other scripting or programming language available today. Furthermore, unless
your application requires peak performance, Python is often a viable alternative to
systems development languages such as C, C++, and Java: Python code can often ach-
ieve the same goals, but will be much less difficult to write, debug, and maintain.

Of course, your author has been a card-carrying Python evangelist since 1992, so take
these comments as you may (and other languages’ advocates’ mileage may vary arbi-
trarily). They do, however, reflect the common experience of many developers who
have taken time to explore what Python has to offer.

Chapter Summary
And that concludes the “hype” portion of this book. In this chapter, we’ve explored
some of the reasons that people pick Python for their programming tasks. We’ve also
seen how it is applied and looked at a representative sample of who is using it today.
My goal is to teach Python, though, not to sell it. The best way to judge a language is
to see it in action, so the rest of this book focuses entirely on the language details we’ve
glossed over here.

The next two chapters begin our technical introduction to the language. In them, we’ll
explore ways to run Python programs, peek at Python’s byte code execution model,
and introduce the basics of module files for saving code. The goal will be to give you

22 | Chapter 1: A Python Q&A Session

just enough information to run the examples and exercises in the rest of the book. You
won’t really start programming per se until Chapter 4, but make sure you have a handle
on the startup details before moving on.

Test Your Knowledge: Quiz
In this edition of the book, we will be closing each chapter with a quick open-book
quiz about the material presented herein to help you review the key concepts. The
answers for these quizzes appear immediately after the questions, and you are encour-
aged to read the answers once you’ve taken a crack at the questions yourself, as they
sometimes give useful context.

In addition to these end-of-chapter quizzes, you’ll find lab exercises at the end of each
part of the book, designed to help you start coding Python on your own. For now,
here’s your first quiz. Good luck, and be sure to refer back to this chapter’s material as
needed.

1. What are the six main reasons that people choose to use Python?

2. Name four notable companies or organizations using Python today.

3. Why might you not want to use Python in an application?

4. What can you do with Python?

5. What’s the significance of the Python import this statement?

6. Why does “spam” show up in so many Python examples in books and on the Web?

7. What is your favorite color?

Test Your Knowledge: Answers
How did you do? Here are the answers I came up with, though there may be multiple
solutions to some quiz questions. Again, even if you’re sure of your answer, I encourage
you to look at mine for additional context. See the chapter’s text for more details if any
of these responses don’t make sense to you.

1. Software quality, developer productivity, program portability, support libraries,
component integration, and simple enjoyment. Of these, the quality and produc-
tivity themes seem to be the main reasons that people choose to use Python.

2. Google, Industrial Light & Magic, CCP Games, Jet Propulsion Labs, Maya, ESRI,
and many more. Almost every organization doing software development uses
Python in some fashion, whether for long-term strategic product development or
for short-term tactical tasks such as testing and system administration.

3. Python’s main downside is performance: it won’t run as quickly as fully compiled
languages like C and C++. On the other hand, it’s quick enough for most appli-
cations, and typical Python code runs at close to C speed anyhow because it invokes

Test Your Knowledge: Answers | 23

linked-in C code in the interpreter. If speed is critical, compiled extensions are
available for number-crunching parts of an application.

4. You can use Python for nearly anything you can do with a computer, from website
development and gaming to robotics and spacecraft control.

5. This was mentioned in a footnote: import this triggers an Easter egg inside Python
that displays some of the design philosophies underlying the language. You’ll learn
how to run this statement in the next chapter.

6. “Spam” is a reference from a famous Monty Python skit in which people trying to
order food in a cafeteria are drowned out by a chorus of Vikings singing about
spam. Oh, and it’s also a common variable name in Python scripts...

7. Blue. No, yellow! (See the prior answer.)

Python Is Engineering, Not Art
When Python first emerged on the software scene in the early 1990s, it spawned what
is now something of a classic conflict between its proponents and those of another
popular scripting language, Perl. Personally, I think the debate is tired and unwarranted
today—developers are smart enough to draw their own conclusions. Still, this is one
of the most common topics I’m asked about on the training road, and underscores one
of the main reasons people choose to use Python; it seems fitting to say a few brief
words about it here.

The short story is this: you can do everything in Python that you can in Perl, but you can
read your code after you do it. That’s it—their domains largely overlap, but Python is
more focused on producing readable code. For many, the enhanced readability of
Python translates to better code reusability and maintainability, making Python a better
choice for programs that will not be written once and thrown away. Perl code is easy
to write, but can be difficult to read. Given that most software has a lifespan much
longer than its initial creation, many see Python as the more effective tool.

The somewhat longer story reflects the backgrounds of the designers of the two lan-
guages. Python originated with a mathematician by training, who seems to have natu-
rally produced an orthogonal language with a high degree of uniformity and coherence.
Perl was spawned by a linguist, who created a programming tool closer to natural
language, with its context sensitivities and wide variability. As a well-known Perl motto
states, there’s more than one way to do it. Given this mindset, both the Perl language
and its user community have historically encouraged untethered freedom of expression
when writing code. One person’s Perl code can be radically different from another’s.
In fact, writing unique, tricky code is often a source of pride among Perl users.

But as anyone who has done any substantial code maintenance should be able to attest,
freedom of expression is great for art, but lousy for engineering. In engineering, we need
a minimal feature set and predictability. In engineering, freedom of expression can lead
to maintenance nightmares. As more than one Perl user has confided to me, the result
of too much freedom is often code that is much easier to rewrite from scratch than to
modify. This is clearly less than ideal.

24 | Chapter 1: A Python Q&A Session

Consider this: when people create a painting or a sculpture, they do so largely for
themselves; the prospect of someone else changing their work later doesn’t enter into
it. This is a critical difference between art and engineering. When people write soft-
ware, they are not writing it for themselves. In fact, they are not even writing primarily
for the computer. Rather, good programmers know that code is written for the next
human being who has to read it in order to maintain or reuse it. If that person cannot
understand the code, it’s all but useless in a realistic development scenario. In other
words, programming is not about being clever and obscure—it’s about how clearly your
program communicates its purpose.

This readability focus is where many people find that Python most clearly differentiates
itself from other scripting languages. Because Python’s syntax model almost forces the
creation of readable code, Python programs lend themselves more directly to the full
software development cycle. And because Python emphasizes ideas such as limited
interactions, code uniformity, and feature consistency, it more directly fosters code that
can be used long after it is first written.

In the long run, Python’s focus on code quality in itself boosts programmer productivity,
as well as programmer satisfaction. Python programmers can be wildly creative, too,
of course, and as we’ll see, the language does offer multiple solutions for some tasks—
sometimes even more than it should today, an issue we’ll confront head-on in this book
too. In fact, this sidebar can also be read as a cautionary tale: quality turns out to be a
fragile state, one that depends as much on people as on technology. Python has histor-
ically encouraged good engineering in ways that other scripting languages often did
not, but the rest of the quality story is up to you.

At least, that’s some of the common consensus among many people who have adopted
Python. You should judge such claims for yourself, of course, by learning what Python
has to offer. To help you get started, let’s move on to the next chapter.

Test Your Knowledge: Answers | 25

CHAPTER 2

How Python Runs Programs

This chapter and the next take a quick look at program execution—how you launch
code, and how Python runs it. In this chapter, we’ll study how the Python interpreter
executes programs in general. Chapter 3 will then show you how to get your own
programs up and running.

Startup details are inherently platform-specific, and some of the material in these two
chapters may not apply to the platform you work on, so more advanced readers should
feel free to skip parts not relevant to their intended use. Likewise, readers who have
used similar tools in the past and prefer to get to the meat of the language quickly may
want to file some of these chapters away as “for future reference.” For the rest of us,
let’s take a brief look at the way that Python will run our code, before we learn how to
write it.

Introducing the Python Interpreter
So far, I’ve mostly been talking about Python as a programming language. But, as cur-
rently implemented, it’s also a software package called an interpreter. An interpreter is
a kind of program that executes other programs. When you write a Python program,
the Python interpreter reads your program and carries out the instructions it contains.
In effect, the interpreter is a layer of software logic between your code and the computer
hardware on your machine.

When the Python package is installed on your machine, it generates a number of com-
ponents—minimally, an interpreter and a support library. Depending on how you use
it, the Python interpreter may take the form of an executable program, or a set of
libraries linked into another program. Depending on which flavor of Python you run,
the interpreter itself may be implemented as a C program, a set of Java classes, or
something else. Whatever form it takes, the Python code you write must always be run
by this interpreter. And to enable that, you must install a Python interpreter on your
computer.

27

Python installation details vary by platform and are covered in more depth in Appen-
dix A. In short:

• Windows users fetch and run a self-installing executable file that puts Python on
their machines. Simply double-click and say Yes or Next at all prompts.

• Linux and Mac OS X users probably already have a usable Python preinstalled on
their computers—it’s a standard component on these platforms today.

• Some Linux and Mac OS X users (and most Unix users) compile Python from its
full source code distribution package.

• Linux users can also find RPM files, and Mac OS X users can find various Mac-
specific installation packages.

• Other platforms have installation techniques relevant to those platforms. For in-
stance, Python is available on cell phones, tablets, game consoles, and iPods, but
installation details vary widely.

Python itself may be fetched from the downloads page on its main website, http://www
.python.org. It may also be found through various other distribution channels. Keep in
mind that you should always check to see whether Python is already present before
installing it. If you’re working on Windows 7 and earlier, you’ll usually find Python in
the Start menu, as captured in Figure 2-1; we’ll discuss the menu options shown here
in the next chapter. On Unix and Linux, Python probably lives in your /usr directory
tree.

Because installation details are so platform-specific, we’ll postpone the rest of this story
here. For more details on the installation process, consult Appendix A. For the purposes
of this chapter and the next, I’ll assume that you’ve got Python ready to go.

Program Execution
What it means to write and run a Python script depends on whether you look at these
tasks as a programmer, or as a Python interpreter. Both views offer important perspec-
tives on Python programming.

The Programmer’s View
In its simplest form, a Python program is just a text file containing Python statements.
For example, the following file, named script0.py, is one of the simplest Python scripts
I could dream up, but it passes for a fully functional Python program:

print('hello world')
print(2 ** 100)

This file contains two Python print statements, which simply print a string (the text in
quotes) and a numeric expression result (2 to the power 100) to the output stream.
Don’t worry about the syntax of this code yet—for this chapter, we’re interested only

28 | Chapter 2: How Python Runs Programs

http://www.python.org
http://www.python.org

in getting it to run. I’ll explain the print statement, and why you can raise 2 to the
power 100 in Python without overflowing, in the next parts of this book.

You can create such a file of statements with any text editor you like. By convention,
Python program files are given names that end in .py; technically, this naming scheme
is required only for files that are “imported”—a term clarified in the next chapter—but
most Python files have .py names for consistency.

After you’ve typed these statements into a text file, you must tell Python to execute the
file—which simply means to run all the statements in the file from top to bottom, one
after another. As you’ll see in the next chapter, you can launch Python program files
by shell command lines, by clicking their icons, from within IDEs, and with other
standard techniques. If all goes well, when you execute the file, you’ll see the results of
the two print statements show up somewhere on your computer—by default, usually
in the same window you were in when you ran the program:

Figure 2-1. When installed on Windows 7 and earlier, this is how Python shows up in your Start
button menu. This can vary across releases, but IDLE starts a development GUI, and Python starts
a simple interactive session. Also here are the standard manuals and the PyDoc documentation engine
(Module Docs). See Chapter 3 and Appendix A for pointers on Windows 8 and other platforms.

Program Execution | 29

hello world
1267650600228229401496703205376

For example, here’s what happened when I ran this script from a Command Prompt
window’s command line on a Windows laptop, to make sure it didn’t have any silly
typos:

C:\code> python script0.py
hello world
1267650600228229401496703205376

See Chapter 3 for the full story on this process, especially if you’re new to programming;
we’ll get into all the gory details of writing and launching programs there. For our
purposes here, we’ve just run a Python script that prints a string and a number. We
probably won’t win any programming awards with this code, but it’s enough to capture
the basics of program execution.

Python’s View
The brief description in the prior section is fairly standard for scripting languages, and
it’s usually all that most Python programmers need to know. You type code into text
files, and you run those files through the interpreter. Under the hood, though, a bit
more happens when you tell Python to “go.” Although knowledge of Python internals
is not strictly required for Python programming, a basic understanding of the runtime
structure of Python can help you grasp the bigger picture of program execution.

When you instruct Python to run your script, there are a few steps that Python carries
out before your code actually starts crunching away. Specifically, it’s first compiled to
something called “byte code” and then routed to something called a “virtual machine.”

Byte code compilation

Internally, and almost completely hidden from you, when you execute a program
Python first compiles your source code (the statements in your file) into a format known
as byte code. Compilation is simply a translation step, and byte code is a lower-level,
platform-independent representation of your source code. Roughly, Python translates
each of your source statements into a group of byte code instructions by decomposing
them into individual steps. This byte code translation is performed to speed execution
—byte code can be run much more quickly than the original source code statements
in your text file.

You’ll notice that the prior paragraph said that this is almost completely hidden from
you. If the Python process has write access on your machine, it will store the byte code
of your programs in files that end with a .pyc extension (“.pyc” means compiled “.py”
source). Prior to Python 3.2, you will see these files show up on your computer after
you’ve run a few programs alongside the corresponding source code files—that is, in
the same directories. For instance, you’ll notice a script.pyc after importing a script.py.

30 | Chapter 2: How Python Runs Programs

In 3.2 and later, Python instead saves its .pyc byte code files in a subdirectory named
__pycache__ located in the directory where your source files reside, and in files whose
names identify the Python version that created them (e.g., script.cpython-33.pyc). The
new __pycache__ subdirectory helps to avoid clutter, and the new naming convention
for byte code files prevents different Python versions installed on the same computer
from overwriting each other’s saved byte code. We’ll study these byte code file models
in more detail in Chapter 22, though they are automatic and irrelevant to most Python
programs, and are free to vary among the alternative Python implementations described
ahead.

In both models, Python saves byte code like this as a startup speed optimization. The
next time you run your program, Python will load the .pyc files and skip the compilation
step, as long as you haven’t changed your source code since the byte code was last
saved, and aren’t running with a different Python than the one that created the byte
code. It works like this:

• Source changes: Python automatically checks the last-modified timestamps of
source and byte code files to know when it must recompile—if you edit and resave
your source code, byte code is automatically re-created the next time your program
is run.

• Python versions: Imports also check to see if the file must be recompiled because
it was created by a different Python version, using either a “magic” version number
in the byte code file itself in 3.2 and earlier, or the information present in byte code
filenames in 3.2 and later.

The result is that both source code changes and differing Python version numbers will
trigger a new byte code file. If Python cannot write the byte code files to your machine,
your program still works—the byte code is generated in memory and simply discarded
on program exit. However, because .pyc files speed startup time, you’ll want to make
sure they are written for larger programs. Byte code files are also one way to ship Python
programs—Python is happy to run a program if all it can find are .pyc files, even if the
original .py source files are absent. (See “Frozen Binaries” on page 39 for another
shipping option.)

Finally, keep in mind that byte code is saved in files only for files that are imported, not
for the top-level files of a program that are only run as scripts (strictly speaking, it’s an
import optimization). We’ll explore import basics in Chapter 3, and take a deeper look
at imports in Part V. Moreover, a given file is only imported (and possibly compiled)
once per program run, and byte code is also never saved for code typed at the interactive
prompt—a programming mode we’ll learn about in Chapter 3.

The Python Virtual Machine (PVM)

Once your program has been compiled to byte code (or the byte code has been loaded
from existing .pyc files), it is shipped off for execution to something generally known
as the Python Virtual Machine (PVM, for the more acronym-inclined among you). The

Program Execution | 31

PVM sounds more impressive than it is; really, it’s not a separate program, and it need
not be installed by itself. In fact, the PVM is just a big code loop that iterates through
your byte code instructions, one by one, to carry out their operations. The PVM is the
runtime engine of Python; it’s always present as part of the Python system, and it’s the
component that truly runs your scripts. Technically, it’s just the last step of what is
called the “Python interpreter.”

Figure 2-2 illustrates the runtime structure described here. Keep in mind that all of this
complexity is deliberately hidden from Python programmers. Byte code compilation is
automatic, and the PVM is just part of the Python system that you have installed on
your machine. Again, programmers simply code and run files of statements, and Python
handles the logistics of running them.

Performance implications

Readers with a background in fully compiled languages such as C and C++ might notice
a few differences in the Python model. For one thing, there is usually no build or “make”
step in Python work: code runs immediately after it is written. For another, Python byte
code is not binary machine code (e.g., instructions for an Intel or ARM chip). Byte code
is a Python-specific representation.

This is why some Python code may not run as fast as C or C++ code, as described in
Chapter 1—the PVM loop, not the CPU chip, still must interpret the byte code, and
byte code instructions require more work than CPU instructions. On the other hand,
unlike in classic interpreters, there is still an internal compile step—Python does not
need to reanalyze and reparse each source statement’s text repeatedly. The net effect
is that pure Python code runs at speeds somewhere between those of a traditional
compiled language and a traditional interpreted language. See Chapter 1 for more on
Python performance tradeoffs.

Development implications

Another ramification of Python’s execution model is that there is really no distinction
between the development and execution environments. That is, the systems that com-
pile and execute your source code are really one and the same. This similarity may have

Figure 2-2. Python’s traditional runtime execution model: source code you type is translated to byte
code, which is then run by the Python Virtual Machine. Your code is automatically compiled, but then
it is interpreted.

32 | Chapter 2: How Python Runs Programs

a bit more significance to readers with a background in traditional compiled languages,
but in Python, the compiler is always present at runtime and is part of the system that
runs programs.

This makes for a much more rapid development cycle. There is no need to precompile
and link before execution may begin; simply type and run the code. This also adds a
much more dynamic flavor to the language—it is possible, and often very convenient,
for Python programs to construct and execute other Python programs at runtime. The
eval and exec built-ins, for instance, accept and run strings containing Python program
code. This structure is also why Python lends itself to product customization—because
Python code can be changed on the fly, users can modify the Python parts of a system
onsite without needing to have or compile the entire system’s code.

At a more fundamental level, keep in mind that all we really have in Python is runtime—
there is no initial compile-time phase at all, and everything happens as the program is
running. This even includes operations such as the creation of functions and classes
and the linkage of modules. Such events occur before execution in more static lan-
guages, but happen as programs execute in Python. As we’ll see, this makes for a much
more dynamic programming experience than that to which some readers may be ac-
customed.

Execution Model Variations
Now that we’ve studied the internal execution flow described in the prior section, I
should note that it reflects the standard implementation of Python today but is not
really a requirement of the Python language itself. Because of that, the execution model
is prone to changing with time. In fact, there are already a few systems that modify the
picture in Figure 2-2 somewhat. Before moving on, let’s briefly explore the most prom-
inent of these variations.

Python Implementation Alternatives
Strictly speaking, as this book edition is being written, there are at least five imple-
mentations of the Python language—CPython, Jython, IronPython, Stackless, and
PyPy. Although there is much cross-fertilization of ideas and work between these Py-
thons, each is a separately installed software system, with its own developers and user
base. Other potential candidates here include the Cython and Shed Skin systems, but
they are discussed later as optimization tools because they do not implement the stan-
dard Python language (the former is a Python/C mix, and the latter is implicitly stati-
cally typed).

In brief, CPython is the standard implementation, and the system that most readers
will wish to use (if you’re not sure, this probably includes you). This is also the version
used in this book, though the core Python language presented here is almost entirely
the same in the alternatives. All the other Python implementations have specific pur-

Execution Model Variations | 33

poses and roles, though they can often serve in most of CPython’s capacities too. All
implement the same Python language but execute programs in different ways.

For example, PyPy is a drop-in replacement for CPython, which can run most programs
much quicker. Similarly, Jython and IronPython are completely independent imple-
mentations of Python that compile Python source for different runtime architectures,
to provide direct access to Java and .NET components. It is also possible to access Java
and .NET software from standard CPython programs—JPype and Python for .NET
systems, for instance, allow standard CPython code to call out to Java and .NET com-
ponents. Jython and IronPython offer more complete solutions, by providing full im-
plementations of the Python language.

Here’s a quick rundown on the most prominent Python implementations available
today.

CPython: The standard

The original, and standard, implementation of Python is usually called CPython when
you want to contrast it with the other options (and just plain “Python” otherwise). This
name comes from the fact that it is coded in portable ANSI C language code. This is
the Python that you fetch from http://www.python.org, get with the ActivePython and
Enthought distributions, and have automatically on most Linux and Mac OS X ma-
chines. If you’ve found a preinstalled version of Python on your machine, it’s probably
CPython, unless your company or organization is using Python in more specialized
ways.

Unless you want to script Java or .NET applications with Python or find the benefits
of Stackless or PyPy compelling, you probably want to use the standard CPython sys-
tem. Because it is the reference implementation of the language, it tends to run the
fastest, be the most complete, and be more up-to-date and robust than the alternative
systems. Figure 2-2 reflects CPython’s runtime architecture.

Jython: Python for Java

The Jython system (originally known as JPython) is an alternative implementation of
the Python language, targeted for integration with the Java programming language.
Jython consists of Java classes that compile Python source code to Java byte code and
then route the resulting byte code to the Java Virtual Machine (JVM). Programmers
still code Python statements in .py text files as usual; the Jython system essentially just
replaces the rightmost two bubbles in Figure 2-2 with Java-based equivalents.

Jython’s goal is to allow Python code to script Java applications, much as CPython
allows Python to script C and C++ components. Its integration with Java is remarkably
seamless. Because Python code is translated to Java byte code, it looks and feels like a
true Java program at runtime. Jython scripts can serve as web applets and servlets, build
Java-based GUIs, and so on. Moreover, Jython includes integration support that allows
Python code to import and use Java classes as though they were coded in Python, and

34 | Chapter 2: How Python Runs Programs

http://www.python.org

Java code to run Python code as an embedded language. Because Jython is slower and
less robust than CPython, though, it is usually seen as a tool of interest primarily to
Java developers looking for a scripting language to serve as a frontend to Java code. See
Jython’s website http://jython.org for more details.

IronPython: Python for .NET

A third implementation of Python, and newer than both CPython and Jython, IronPy-
thon is designed to allow Python programs to integrate with applications coded to work
with Microsoft’s .NET Framework for Windows, as well as the Mono open source
equivalent for Linux. .NET and its C# programming language runtime system are de-
signed to be a language-neutral object communication layer, in the spirit of Microsoft’s
earlier COM model. IronPython allows Python programs to act as both client and server
components, gain accessibility both to and from other .NET languages, and lever-
age .NET technologies such as the Silverlight framework from their Python code.

By implementation, IronPython is very much like Jython (and, in fact, was developed
by the same creator)—it replaces the last two bubbles in Figure 2-2 with equivalents
for execution in the .NET environment. Also like Jython, IronPython has a special focus
—it is primarily of interest to developers integrating Python with .NET components.
Formerly developed by Microsoft and now an open source project, IronPython might
also be able to take advantage of some important optimization tools for better perfor-
mance. For more details, consult http://ironpython.net and other resources to be had
with a web search.

Stackless: Python for concurrency

Still other schemes for running Python programs have more focused goals. For example,
the Stackless Python system is an enhanced version and reimplementation of the stan-
dard CPython language oriented toward concurrency. Because it does not save state on
the C language call stack, Stackless Python can make Python easier to port to small
stack architectures, provides efficient multiprocessing options, and fosters novel pro-
gramming structures such as coroutines.

Among other things, the microthreads that Stackless adds to Python are an efficient and
lightweight alternative to Python’s standard multitasking tools such as threads and
processes, and promise better program structure, more readable code, and increased
programmer productivity. CCP Games, the creator of EVE Online, is a well-known
Stackless Python user, and a compelling Python user success story in general. Try http:
//stackless.com for more information.

PyPy: Python for speed

The PyPy system is another standard CPython reimplementation, focused on perfor-
mance. It provides a fast Python implementation with a JIT (just-in-time) compiler,
provides tools for a “sandbox” model that can run untrusted code in a secure environ-

Execution Model Variations | 35

http://jython.org
http://ironpython.net
http://stackless.com
http://stackless.com

ment, and by default includes support for the prior section’s Stackless Python systems
and its microthreads to support massive concurrency.

PyPy is the successor to the original Psyco JIT, described ahead, and subsumes it with
a complete Python implementation built for speed. A JIT is really just an extension to
the PVM—the rightmost bubble in Figure 2-2—that translates portions of your byte
code all the way to binary machine code for faster execution. It does this as your pro-
gram is running, not in a prerun compile step, and is able to created type-specific ma-
chine code for the dynamic Python language by keeping track of the data types of the
objects your program processes. By replacing portions of your byte code this way, your
program runs faster and faster as it is executing. In addition, some Python programs
may also take up less memory under PyPy.

At this writing, PyPy supports Python 2.7 code (not yet 3.X) and runs on Intel x86
(IA-32) and x86_64 platforms (including Windows, Linux, and recent Macs), with
ARM and PPC support under development. It runs most CPython code, though C
extension modules must generally be recompiled, and PyPy has some minor but subtle
language differences, including garbage collection semantics that obviate some com-
mon coding patterns. For instance, its non-reference-count scheme means that tem-
porary files may not close and flush output buffers immediately, and may require man-
ual close calls in some cases.

In return, your code may run much quicker. PyPy currently claims a 5.7X speedup over
CPython across a range of benchmark programs (per http://speed.pypy.org/). In some
cases, its ability to take advantage of dynamic optimization opportunities can make
Python code as quick as C code, and occasionally faster. This is especially true for
heavily algorithmic or numeric programs, which might otherwise be recoded in C.

For instance, in one simple benchmark we’ll see in Chapter 21, PyPy today clocks in
at 10X faster than CPython 2.7, and 100X faster than CPython 3.X. Though other
benchmarks will vary, such speedups may be a compelling advantage in many domains,
perhaps even more so than leading-edge language features. Just as important, memory
space is also optimized in PyPy—in the case of one posted benchmark, requiring 247
MB and completing in 10.3 seconds, compared to CPython’s 684 MB and 89 seconds.

PyPy’s tool chain is also general enough to support additional languages, including
Pyrolog, a Prolog interpreter written in Python using the PyPy translator. Search for
PyPy’s website for more. PyPy currently lives at http://pypy.org, though the usual web
search may also prove fruitful over time. For an overview of its current performance,
also see http://www.pypy.org/performance.html.

36 | Chapter 2: How Python Runs Programs

http://speed.pypy.org/
http://pypy.org
http://www.pypy.org/performance.html

Just after I wrote this, PyPy 2.0 was released in beta form, adding support
for the ARM processor, and still a Python 2.X-only implementation. Per
its 2.0 beta release notes:

“PyPy is a very compliant Python interpreter, almost a drop-in replace-
ment for CPython 2.7.3. It’s fast due to its integrated tracing JIT com-
piler. This release supports x86 machines running Linux 32/64, Mac OS
X 64 or Windows 32. It also supports ARM machines running Linux.”

The claims seem accurate. Using the timing tools we’ll study in Chap-
ter 21, PyPy is often an order of magnitude (factor of 10) faster than
CPython 2.X and 3.X on tests I’ve run, and sometimes even better. This
is despite the fact that PyPy is a 32-bit build on my Windows test ma-
chine, while CPython is a faster 64-bit compile.

Naturally the only benchmark that truly matters is your own code, and
there are cases where CPython wins the race; PyPy’s file iterators, for
instance, may clock in slower today. Still, given PyPy’s focus on perfor-
mance over language mutation, and especially its support for the nu-
meric domain, many today see PyPy as an important path for Python.
If you write CPU-intensive code, PyPy deserves your attention.

Execution Optimization Tools
CPython and most of the alternatives of the prior section all implement the Python
language in similar ways: by compiling source code to byte code and executing the byte
code on an appropriate virtual machine. Some systems, such as the Cython hybrid, the
Shed Skin C++ translator, and the just-in-time compilers in PyPy and Psyco instead
attempt to optimize the basic execution model. These systems are not required knowl-
edge at this point in your Python career, but a quick look at their place in the execution
model might help demystify the model in general.

Cython: A Python/C hybrid

The Cython system (based on work done by the Pyrex project) is a hybrid language that
combines Python code with the ability to call C functions and use C type declarations
for variables, parameters, and class attributes. Cython code can be compiled to C code
that uses the Python/C API, which may then be compiled completely. Though not
completely compatible with standard Python, Cython can be useful both for wrapping
external C libraries and for coding efficient C extensions for Python. See http://cython
.org for current status and details.

Shed Skin: A Python-to-C++ translator

Shed Skin is an emerging system that takes a different approach to Python program
execution—it attempts to translate Python source code to C++ code, which your com-
puter’s C++ compiler then compiles to machine code. As such, it represents a platform-
neutral approach to running Python code.

Execution Model Variations | 37

http://speed.pypy.org
http://cython.org
http://cython.org

Shed Skin is still being actively developed as I write these words. It currently supports
Python 2.4 to 2.6 code, and it limits Python programs to an implicit statically typed
constraint that is typical of most programs but is technically not normal Python, so we
won’t go into further detail here. Initial results, though, show that it has the potential
to outperform both standard Python and Psyco-like extensions in terms of execution
speed. Search the Web for details on the project’s current status.

Psyco: The original just-in-time compiler

The Psyco system is not another Python implementation, but rather a component that
extends the byte code execution model to make programs run faster. Today, Psyco is
something of an ex-project: it is still available for separate download, but has fallen out
of date with Python’s evolution, and is no longer actively maintained. Instead, its ideas
have been incorporated into the more complete PyPy system described earlier. Still, the
ongoing importance of the ideas Psyco explored makes them worth a quick look.

In terms of Figure 2-2, Psyco is an enhancement to the PVM that collects and uses type
information while the program runs to translate portions of the program’s byte code
all the way down to true binary machine code for faster execution. Psyco accomplishes
this translation without requiring changes to the code or a separate compilation step
during development.

Roughly, while your program runs, Psyco collects information about the kinds of ob-
jects being passed around; that information can be used to generate highly efficient
machine code tailored for those object types. Once generated, the machine code then
replaces the corresponding part of the original byte code to speed your program’s over-
all execution. The result is that with Psyco, your program becomes quicker over time
as it runs. In ideal cases, some Python code may become as fast as compiled C code
under Psyco.

Because this translation from byte code happens at program runtime, Psyco is known
as a just-in-time compiler. Psyco is different from the JIT compilers some readers may
have seen for the Java language, though. Really, Psyco is a specializing JIT compiler—
it generates machine code tailored to the data types that your program actually uses.
For example, if a part of your program uses different data types at different times, Psyco
may generate a different version of machine code to support each different type com-
bination.

Psyco was shown to speed some Python code dramatically. According to its web page,
Psyco provides “2X to 100X speed-ups, typically 4X, with an unmodified Python in-
terpreter and unmodified source code, just a dynamically loadable C extension mod-
ule.” Of equal significance, the largest speedups are realized for algorithmic code writ-
ten in pure Python—exactly the sort of code you might normally migrate to C to op-
timize. For more on Psyco, search the Web or see its successor—the PyPy project de-
scribed previously.

38 | Chapter 2: How Python Runs Programs

Frozen Binaries
Sometimes when people ask for a “real” Python compiler, what they’re really seeking
is simply a way to generate standalone binary executables from their Python programs.
This is more a packaging and shipping idea than an execution-flow concept, but it’s
somewhat related. With the help of third-party tools that you can fetch off the Web, it
is possible to turn your Python programs into true executables, known as frozen bi-
naries in the Python world. These programs can be run without requiring a Python
installation.

Frozen binaries bundle together the byte code of your program files, along with the
PVM (interpreter) and any Python support files your program needs, into a single
package. There are some variations on this theme, but the end result can be a single
binary executable program (e.g., an .exe file on Windows) that can easily be shipped
to customers. In Figure 2-2, it is as though the two rightmost bubbles—byte code and
PVM—are merged into a single component: a frozen binary file.

Today, a variety of systems are capable of generating frozen binaries, which vary in
platforms and features: py2exe for Windows only, but with broad Windows support;
PyInstaller, which is similar to py2exe but also works on Linux and Mac OS X and is
capable of generating self-installing binaries; py2app for creating Mac OS X applica-
tions; freeze, the original; and cx_freeze, which offers both Python 3.X and cross-plat-
form support. You may have to fetch these tools separately from Python itself, but they
are freely available.

These tools are also constantly evolving, so consult http://www.python.org or your fa-
vorite web search engine for more details and status. To give you an idea of the scope
of these systems, py2exe can freeze standalone programs that use the tkinter, PMW,
wxPython, and PyGTK GUI libraries; programs that use the pygame game program-
ming toolkit; win32com client programs; and more.

Frozen binaries are not the same as the output of a true compiler—they run byte code
through a virtual machine. Hence, apart from a possible startup improvement, frozen
binaries run at the same speed as the original source files. Frozen binaries are also not
generally small (they contain a PVM), but by current standards they are not unusually
large either. Because Python is embedded in the frozen binary, though, it does not have
to be installed on the receiving end to run your program. Moreover, because your code
is embedded in the frozen binary, it is more effectively hidden from recipients.

This single file-packaging scheme is especially appealing to developers of commercial
software. For instance, a Python-coded user interface program based on the tkinter
toolkit can be frozen into an executable file and shipped as a self-contained program
on a CD or on the Web. End users do not need to install (or even have to know about)
Python to run the shipped program.

Execution Model Variations | 39

http://www.python.org

Future Possibilities?
Finally, note that the runtime execution model sketched here is really an artifact of the
current implementation of Python, not of the language itself. For instance, it’s not
impossible that a full, traditional compiler for translating Python source code to ma-
chine code may appear during the shelf life of this book (although the fact that one has
not in over two decades makes this seem unlikely!).

New byte code formats and implementation variants may also be adopted in the future.
For instance:

• The ongoing Parrot project aims to provide a common byte code format, virtual
machine, and optimization techniques for a variety of programming languages,
including Python. Python’s own PVM runs Python code more efficiently than Par-
rot (as famously demonstrated by a pie challenge at a software conference—search
the Web for details), but it’s unclear how Parrot will evolve in relation to Python
specifically. See http://parrot.org or the Web at large for details.

• The former Unladen Swallow project—an open source project developed by Goo-
gle engineers—sought to make standard Python faster by a factor of at least 5, and
fast enough to replace the C language in many contexts. This was an optimization
branch of CPython (specifically Python 2.6), intended to be compatible yet faster
by virtue of adding a JIT to standard Python. As I write this in 2012, this project
seems to have drawn to a close (per its withdrawn Python PEP, it was “going the
way of the Norwegian Blue”). Still, its lessons gained may be leveraged in other
forms; search the Web for breaking developments.

Although future implementation schemes may alter the runtime structure of Python
somewhat, it seems likely that the byte code compiler will still be the standard for some
time to come. The portability and runtime flexibility of byte code are important features
of many Python systems. Moreover, adding type constraint declarations to support
static compilation would likely break much of the flexibility, conciseness, simplicity,
and overall spirit of Python coding. Due to Python’s highly dynamic nature, any future
implementation will likely retain many artifacts of the current PVM.

Chapter Summary
This chapter introduced the execution model of Python—how Python runs your pro-
grams—and explored some common variations on that model: just-in-time compilers
and the like. Although you don’t really need to come to grips with Python internals to
write Python scripts, a passing acquaintance with this chapter’s topics will help you
truly understand how your programs run once you start coding them. In the next
chapter, you’ll start actually running some code of your own. First, though, here’s the
usual chapter quiz.

40 | Chapter 2: How Python Runs Programs

http://parrot.org

Test Your Knowledge: Quiz
1. What is the Python interpreter?

2. What is source code?

3. What is byte code?

4. What is the PVM?

5. Name two or more variations on Python’s standard execution model.

6. How are CPython, Jython, and IronPython different?

7. What are Stackless and PyPy?

Test Your Knowledge: Answers
1. The Python interpreter is a program that runs the Python programs you write.

2. Source code is the statements you write for your program—it consists of text in
text files that normally end with a .py extension.

3. Byte code is the lower-level form of your program after Python compiles it. Python
automatically stores byte code in files with a .pyc extension.

4. The PVM is the Python Virtual Machine—the runtime engine of Python that in-
terprets your compiled byte code.

5. Psyco, Shed Skin, and frozen binaries are all variations on the execution model. In
addition, the alternative implementations of Python named in the next two answers
modify the model in some fashion as well—by replacing byte code and VMs, or by
adding tools and JITs.

6. CPython is the standard implementation of the language. Jython and IronPython
implement Python programs for use in Java and .NET environments, respectively;
they are alternative compilers for Python.

7. Stackless is an enhanced version of Python aimed at concurrency, and PyPy is a
reimplementation of Python targeted at speed. PyPy is also the successor to Psyco,
and incorporates the JIT concepts that Psyco pioneered.

Test Your Knowledge: Answers | 41

CHAPTER 3

How You Run Programs

OK, it’s time to start running some code. Now that you have a handle on the program
execution model, you’re finally ready to start some real Python programming. At this
point, I’ll assume that you have Python installed on your computer; if you don’t, see
the start of the prior chapter and Appendix A for installation and configuration hints
on various platforms. Our goal here is to learn how to run Python program code.

There are multiple ways to tell Python to execute the code you type. This chapter
discusses all the program launching techniques in common use today. Along the way,
you’ll learn how to both type code interactively, and how to save it in files to be run as
often as you like in a variety of ways: with system command lines, icon clicks, module
imports, exec calls, menu options in the IDLE GUI, and more.

As for the previous chapter, if you have prior programming experience and are anxious
to start digging into Python itself, you may want to skim this chapter and move on to
Chapter 4. But don’t skip this chapter’s early coverage of preliminaries and conven-
tions, its overview of debugging techniques, or its first look at module imports—a topic
essential to understanding Python’s program architecture, which we won’t revisit until
a later part. I also encourage you to see the sections on IDLE and other IDEs, so you’ll
know what tools are available when you start developing more sophisticated Python
programs.

The Interactive Prompt
This section gets us started with interactive coding basics. Because it’s our first look at
running code, we also cover some preliminaries here, such as setting up a working
directory and the system path, so be sure to read this section first if you’re relatively
new to programming. This section also explains some conventions used throughout
the book, so most readers should probably take at least a quick look here.

43

Starting an Interactive Session
Perhaps the simplest way to run Python programs is to type them at Python’s interactive
command line, sometimes called the interactive prompt. There are a variety of ways to
start this command line: in an IDE, from a system console, and so on. Assuming the
interpreter is installed as an executable program on your system, the most platform-
neutral way to start an interactive interpreter session is usually just to type python at
your operating system’s prompt, without any arguments. For example:

% python
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

Typing the word “python” at your system shell prompt like this begins an interactive
Python session; the “%” character at the start of this listing stands for a generic system
prompt in this book—it’s not input that you type yourself. On Windows, a Ctrl-Z gets
you out of this session; on Unix, try Ctrl-D instead.

The notion of a system shell prompt is generic, but exactly how you access it varies by
platform:

• On Windows, you can type python in a DOS console window—a program named
cmd.exe and usually known as Command Prompt. For more details on starting this
program, see this chapter’s sidebar “Where Is Command Prompt on Win-
dows?” on page 45.

• On Mac OS X, you can start a Python interactive interpreter by double-clicking on
Applications→Utilities→Terminal, and then typing python in the window that
opens up.

• On Linux (and other Unixes), you might type this command in a shell or terminal
window (for instance, in an xterm or console running a shell such as ksh or csh).

• Other systems may use similar or platform-specific devices. On handheld devices,
for example, you might click the Python icon in the home or application window
to launch an interactive session.

On most platforms, you can start the interactive prompt in additional ways that don’t
require typing a command, but they vary per platform even more widely:

• On Windows 7 and earlier, besides typing python in a shell window, you can also
begin similar interactive sessions by starting the IDLE GUI (discussed later), or by
selecting the “Python (command line)” menu option from the Start button menu
for Python, as shown in Figure 2-1 in Chapter 2. Both spawn a Python interactive
prompt with the same functionality obtained with a “python” command.

• On Windows 8, you don’t have a Start button (at least as I write this), but there are
other ways to get to the tools described in the prior bullet, including tiles, Search,
File Explorer, and the “All apps” interface on the Start screen. See Appendix A for
more pointers on this platform.

44 | Chapter 3: How You Run Programs

• Other platforms have similar ways to start a Python interactive session without
typing commands, but they’re too specific to get into here; see your system’s doc-
umentation for details.

Anytime you see the >>> prompt, you’re in an interactive Python interpreter session—
you can type any Python statement or expression here and run it immediately. We will
in a moment, but first we need to get a few startup details sorted out to make sure all
readers are set to go.

Where Is Command Prompt on Windows?
So how do you start the command-line interface on Windows? Some Windows readers
already know, but Unix developers and beginners may not; it’s not as prominent as
terminal or console windows on Unix systems. Here are some pointers on finding your
Command Prompt, which vary slightly per Windows version.

On Windows 7 and earlier, this is usually found in the Accessories section of the
Start→All Programs menu, or you can run it by typing cmd in the Start→Run... dialog
box or the Start menu’s search entry field. You can drag out a desktop shortcut to get
to it quicker if desired.

On Windows 8, you can access Command Prompt in the menu opened by right-clicking
on the preview in the screen’s lower-left corner; in the Windows System section of the
“All apps” display reached by right-clicking your Start screen; or by typing cmd or
command prompt in the input field of the Search charm pulled down from the screen’s
upper-right corner. There are probably additional routes, and touch screens offer sim-
ilar access. And if you want to forget all that, pin it to your desktop taskbar for easy
access next time around.

These procedures are prone to vary over time, and possibly even per computer and
user. I’m trying to avoid making this a book on Windows, though, so I’ll cut this topic
short here. When in doubt, try the system Help interface (whose usage may differ as
much as the tools it provides help for!).

A note to any Unix users reading this sidebar who may be starting to feel like a fish out
of water: you may also be interested in the Cygwin system, which brings a full Unix
command prompt to Windows. See Appendix A for more pointers.

The System Path
When we typed python in the last section to start an interactive session, we relied on
the fact that the system located the Python program for us on its program search path.
Depending on your Python version and platform, if you have not set your system’s
PATH environment variable to include Python’s install directory, you may need to replace
the word “python” with the full path to the Python executable on your machine. On
Unix, Linux, and similar, something like /usr/local/bin/python or /usr/bin/python3
will often suffice. On Windows, try typing C:\Python33\python (for version 3.3):

The Interactive Prompt | 45

c:\code> c:\python33\python
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

Alternatively, you can run a “cd” change-directory command to go to Python’s install
directory before typing python—try the cd c:\python33 command on Windows, for
example:

c:\code> cd c:\python33
c:\Python33> python
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

But you’ll probably want to set your PATH eventually, so a simple “python” suffices. If
you don’t know what PATH is or how to set it, see Appendix A—it covers environment
variables like this whose usage varies per platform, as well as Python command-line
arguments we won’t be using much in this book. The short story for Windows users:
see the Advanced settings in the System entry of your Control Panel. If you’re using
Python 3.3 and later, this is now automatic on Windows, as the next section explains.

New Windows Options in 3.3: PATH, Launcher
The foregoing section and much of this chapter at large describe the generic state of
play for all 2.X and 3.X Pythons prior to version 3.3. Starting with Python 3.3, the
Windows installer has an option to automatically add Python 3.3’s directory to your
system PATH, if enabled in the installer’s windows. If you use this option, you won’t
need to type a directory path or issue a “cd” to run python commands as in the prior
section. Be sure to select this option during the install if you want it, as it’s currently
disabled by default.

More dramatically, Python 3.3 for Windows ships with and automatically installs the
new Windows launcher—a system that comes with new executable programs, py with
a console and pyw without, that are placed in directories on your system path, and so
may be run out of the box without any PATH configurations, change-directory com-
mands, or directory path prefixes:

c:\code> py
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

c:\code> py −2
Python 2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMD64)] ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

c:\code> py −3.1
Python 3.1.4 (default, Jun 12 2011, 14:16:16) [MSC v.1500 64 bit (AMD64)] ...

46 | Chapter 3: How You Run Programs

Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

As shown in the last two commands here, these executables also accept Python version
numbers on the command line (and in Unix-style #! lines at the top of scripts, as dis-
cussed later), and are associated to open Python files when clicked just like the original
python executable—which is still available and works as before, but is somewhat su-
perseded by the launcher’s new programs.

The launcher is a standard part of Python 3.3, and is available standalone for use with
other versions. We’ll see more on this new launcher in this and later chapters, including
a brief look at its #! line support here. However, because it is of interest only to Windows
users, and even for this group is present only in 3.3 or where installed separately, I’ve
collected almost all of the details about the launcher in Appendix B.

If you’ll be working on Windows under Python 3.3 or later, I suggest taking a brief
detour to that appendix now, as it provides an alternative, and in some ways better,
way to run Python command lines and scripts. At a base level, launcher users can type
py instead of python in most of the system commands shown in this book, and may
avoid some configuration steps. Especially on computers with multiple Python ver-
sions, though, the new launcher gives you more explicit control over which Python
runs your code.

Where to Run: Code Directories
Now that I’ve started showing you how to run code, I want to say a few words up front
about where to run code. To keep things simple, in this chapter and book at large I’m
going to be running code from a working directory (a.k.a. folder) I’ve created on my
Windows computer called C:\code—a subdirectory at the top of my main drive. That’s
where I’ll start most interactive sessions, and where I’ll be both saving and running
most script files. This also means the files that examples will create will mostly show
up in this directory.

If you’ll be working along, you should probably do something similar before we get
started. Here are some pointers if you need help getting set up with a working directory
on your computer:

• On Windows, you can make your working code directory in File Explorer or a
Command Prompt window. In File Explorer, look for New Folder, see the File
menu, or try a right-click. In Command Prompt, type and run a mkdir command,
usually after you cd to your desired parent directory (e.g., cd c\: and mkdir code).
Your working directory can be located wherever you like and called whatever you
wish, and doesn’t have to be C:\code (I chose this name because it’s short in
prompts). But running out of one directory will help you keep track of your work
and simplify some tasks. For more Windows hints, see this chapter’s sidebar on
Command Prompt, as well as Appendix A.

The Interactive Prompt | 47

• On Unix-based systems (including Mac OS X and Linux), your working directory
might be in /usr/home and be created by a mkdir command in a shell window or
file explorer GUI specific to your platform, but the same concepts apply. The Cyg-
win Unix-like system for Windows is similar too, though your directory names
may vary (/home and /cygdrive/c are candidates).

You can store your code in Python’s install directory too (e.g., C:\Python33 on Win-
dows) to simplify some command lines before setting PATH, but you probably shouldn’t
—this is for Python itself, and your files may not survive a move or uninstall.

Once you’ve made your working directory, always start there to work along with the
examples in this book. The prompts in this book that show the directory that I’m
running code in will reflect my Windows laptop’s working directory; when you see C:
\code> or %, think the location and name of your own directory.

What Not to Type: Prompts and Comments
Speaking of prompts, this book sometimes shows system prompts as a generic %, and
sometimes in full C:\code> Windows form. The former is meant to be platform agnostic
(and derives from earlier editions’ use of Linux), and the latter is used in Windows-
specific contexts. I also add a space after system prompts just for readability in this
book. When used, the % character at the start of a system command line stands for the
system’s prompt, whatever that may be on your machine. For instance, on my machine
% stands for C:\code> in Windows Command Prompt, and just $ in my Cygwn install.

To beginners: don’t type the % character (or the C:\code system prompt it sometimes
stands for) you see in this book’s interaction listings yourself—this is text the system
prints. Type just the text after these system prompts. Similarly, do not type the >>>
and ... characters shown at the start of lines in interpreter interaction listings—these
are prompts that Python displays automatically as visual guides for interactive code
entry. Type just the text after these Python prompts. For instance, the ... prompt is
used for continuation lines in some shells, but doesn’t appear in IDLE, and shows up
in some but not all of this book’s listings; don’t type it yourself if it’s absent in your
interface.

To help you remember this, user inputs are shown in bold in this book, and prompts
are not. In some systems these prompts may differ (for instance, the PyPy performance-
focused implementation described in Chapter 2 uses four-character >>>> and), but
the same rules apply. Also keep in mind that commands typed after these system and
Python prompts are meant to be run immediately, and are not generally to be saved in
the source files we will be creating; we’ll see why this distinction matters ahead.

In the same vein, you normally don’t need to type text that starts with a # character in
listings in this book—as you’ll learn, these are comments, not executable code. Except
when # is used to introduce a directive at the top of a script for Unix or the Python 3.3

48 | Chapter 3: How You Run Programs

Windows launcher, you can safely ignore the text that follows it (more on Unix and
the launcher later in this chapter and in Appendix B).

If you’re working along, interactive listings will drop most “...” contin-
uation prompts as of Chapter 17 to aid cut-and-paste of larger code such
as functions and classes from ebooks or other; until then, paste or type
one line at a time and omit the prompts. At least initially, it’s important
to type code manually, to get a feel for syntax details and errors. Some
examples will be listed either by themselves or in named files available
in the book’s examples package (per the preface), and we’ll switch be-
tween listing formats often; when in doubt, if you see “>>>”, it means
the code is being typed interactively.

Running Code Interactively
With those preliminaries out of the way, let’s move on to typing some actual code.
However it’s started, the Python interactive session begins by printing two lines of
informational text giving the Python version number and a few hints shown earlier
(which I’ll omit from most of this book’s examples to save space), then prompts for
input with >>> when it’s waiting for you to type a new Python statement or expression.

When working interactively, the results of your code are displayed below the >>> input
lines after you press the Enter key. For instance, here are the results of two Python
print statements (print is really a function call in Python 3.X, but not in 2.X, so the
parentheses here are required in 3.X only):

% python
>>> print('Hello world!')
Hello world!
>>> print(2 ** 8)
256

There it is—we’ve just run some Python code (were you expecting the Spanish Inqui-
sition?). Don’t worry about the details of the print statements shown here yet; we’ll
start digging into syntax in the next chapter. In short, they print a Python string and
an integer, as shown by the output lines that appear after each >>> input line (2 ** 8
means 2 raised to the power 8 in Python).

When coding interactively like this, you can type as many Python commands as you
like; each is run immediately after it’s entered. Moreover, because the interactive ses-
sion automatically prints the results of expressions you type, you don’t usually need to
say “print” explicitly at this prompt:

>>> lumberjack = 'okay'
>>> lumberjack
'okay'
>>> 2 ** 8
256

The Interactive Prompt | 49

>>> ^Z # Use Ctrl-D (on Unix) or Ctrl-Z (on Windows) to exit
%

Here, the first line saves a value by assigning it to a variable (lumberjack), which is
created by the assignment; and the last two lines typed are expressions (lumberjack and
2 ** 8), whose results are displayed automatically. Again, to exit an interactive session
like this and return to your system shell prompt, type Ctrl-D on Unix-like machines,
and Ctrl-Z on Windows. In the IDLE GUI discussed later, either type Ctrl-D or simply
close the window.

Notice the italicized note about this on the right side of this listing (staring with “#”
here). I’ll use these throughout to add remarks about what is being illustrated, but you
don’t need to type this text yourself. In fact, just like system and Python prompts, you
shouldn’t type this when it’s on a system command line; the “#” part is taken as a
comment by Python but may be an error at a system prompt.

Now, we didn’t do much in this session’s code—just typed some Python print and
assignment statements, along with a few expressions, which we’ll study in detail later.
The main thing to notice is that the interpreter executes the code entered on each line
immediately, when the Enter key is pressed.

For example, when we typed the first print statement at the >>> prompt, the output (a
Python string) was echoed back right away. There was no need to create a source code
file, and no need to run the code through a compiler and linker first, as you’d normally
do when using a language such as C or C++. As you’ll see in later chapters, you can
also run multiline statements at the interactive prompt; such a statement runs imme-
diately after you’ve entered all of its lines and pressed Enter twice to add a blank line.

Why the Interactive Prompt?
The interactive prompt runs code and echoes results as you go, but it doesn’t save your
code in a file. Although this means you won’t do the bulk of your coding in interactive
sessions, the interactive prompt turns out to be a great place to both experiment with
the language and test program files on the fly.

Experimenting

Because code is executed immediately, the interactive prompt is a perfect place to ex-
periment with the language and will be used often in this book to demonstrate smaller
examples. In fact, this is the first rule of thumb to remember: if you’re ever in doubt
about how a piece of Python code works, fire up the interactive command line and try
it out to see what happens.

For instance, suppose you’re reading a Python program’s code and you come across
an expression like 'Spam!' * 8 whose meaning you don’t understand. At this point,
you can spend 10 minutes wading through manuals, books, and the Web to try to figure
out what the code does, or you can simply run it interactively:

50 | Chapter 3: How You Run Programs

% python
>>> 'Spam!' * 8 # Learning by trying
'Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!'

The immediate feedback you receive at the interactive prompt is often the quickest way
to deduce what a piece of code does. Here, it’s clear that it does string repetition: in
Python * means multiply for numbers, but repeat for strings—it’s like concatenating a
string to itself repeatedly (more on strings in Chapter 4).

Chances are good that you won’t break anything by experimenting this way—at least,
not yet. To do real damage, like deleting files and running shell commands, you must
really try, by importing modules explicitly (you also need to know more about Python’s
system interfaces in general before you will become that dangerous!). Straight Python
code is almost always safe to run.

For instance, watch what happens when you make a mistake at the interactive prompt:

>>> X # Making mistakes
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'X' is not defined

In Python, using a variable before it has been assigned a value is always an error—
otherwise, if names were filled in with defaults, some errors might go undetected. This
means you must initial counters to zero before you can add to them, must initial lists
before extending them, and so on; you don’t declare variables, but they must be as-
signed before you can fetch their values.

We’ll learn more about that later; the important point here is that you don’t crash
Python or your computer when you make a mistake this way. Instead, you get a mean-
ingful error message pointing out the mistake and the line of code that made it, and
you can continue on in your session or script. In fact, once you get comfortable with
Python, its error messages may often provide as much debugging support as you’ll need
(you’ll learn more about debugging options in the sidebar “Debugging Python
Code” on page 83).

Testing

Besides serving as a tool for experimenting while you’re learning the language, the
interactive interpreter is also an ideal place to test code you’ve written in files. You can
import your module files interactively and run tests on the tools they define by typing
calls at the interactive prompt on the fly.

For instance, the following tests a function in a precoded module that ships with Python
in its standard library (it prints the name of the directory you’re currently working in,
with a doubled-up backslash that stands for just one), but you can do the same once
you start writing module files of your own:

>>> import os
>>> os.getcwd() # Testing on the fly
'c:\\code'

The Interactive Prompt | 51

More generally, the interactive prompt is a place to test program components, regard-
less of their source—you can import and test functions and classes in your Python files,
type calls to linked-in C functions, exercise Java classes under Jython, and more. Partly
because of its interactive nature, Python supports an experimental and exploratory
programming style you’ll find convenient when getting started. Although Python pro-
grammers also test with in-file code (and we’ll learn ways to make this simple later in
the book), for many, the interactive prompt is still their first line of testing defense.

Usage Notes: The Interactive Prompt
Although the interactive prompt is simple to use, there are a few tips that beginners
should keep in mind. I’m including lists of common mistakes like the following in this
chapter for reference, but they might also spare you from a few headaches if you read
them up front:

• Type Python commands only. First of all, remember that you can only type
Python code at Python’s >>> prompt, not system commands. There are ways to
run system commands from within Python code (e.g., with os.system), but they
are not as direct as simply typing the commands themselves.

• print statements are required only in files. Because the interactive interpreter
automatically prints the results of expressions, you do not need to type complete
print statements interactively. This is a nice feature, but it tends to confuse users
when they move on to writing code in files: within a code file, you must use
print statements to see your output because expression results are not automati-
cally echoed. Remember, you must say print in files, but it’s optional interactively.

• Don’t indent at the interactive prompt (yet). When typing Python programs,
either interactively or into a text file, be sure to start all your unnested statements
in column 1 (that is, all the way to the left). If you don’t, Python may print a
“SyntaxError” message, because blank space to the left of your code is taken to be
indentation that groups nested statements. Until Chapter 10, all statements you
write will be unnested, so this includes everything for now. Remember, a leading
space generates an error message, so don’t start with a space or tab at the interactive
prompt unless it’s nested code.

• Watch out for prompt changes for compound statements. We won’t meet
compound (multiline) statements until Chapter 4 and not in earnest until Chap-
ter 10, but as a preview, you should know that when typing lines 2 and beyond of
a compound statement interactively, the prompt may change. In the simple shell
window interface, the interactive prompt changes to ... instead of >>> for lines 2
and beyond; in the IDLE GUI interface, lines after the first are instead automatically
indented.

You’ll see why this matters in Chapter 10. For now, if you happen to come across
a ... prompt or a blank line when entering your code, it probably means that you’ve
somehow confused interactive Python into thinking you’re typing a multiline

52 | Chapter 3: How You Run Programs

statement. Try hitting the Enter key or a Ctrl-C combination to get back to the
main prompt. The >>> and ... prompt strings can also be changed (they are avail-
able in the built-in module sys), but I’ll assume they have not been in the book’s
example listings.

• Terminate compound statements at the interactive prompt with a blank
line. At the interactive prompt, inserting a blank line (by hitting the Enter key at
the start of a line) is necessary to tell interactive Python that you’re done typing the
multiline statement. That is, you must press Enter twice to make a compound
statement run. By contrast, blank lines are not required in files and are simply
ignored if present. If you don’t press Enter twice at the end of a compound state-
ment when working interactively, you’ll appear to be stuck in a limbo state, because
the interactive interpreter will do nothing at all—it’s waiting for you to press Enter
again!

• The interactive prompt runs one statement at a time. At the interactive prompt,
you must run one statement to completion before typing another. This is natural
for simple statements, because pressing the Enter key runs the statement entered.
For compound statements, though, remember that you must submit a blank line
to terminate the statement and make it run before you can type the next statement.

Entering multiline statements

At the risk of repeating myself, I’ve received multiple emails from readers who’d gotten
burned by the last two points, so they probably merit emphasis. I’ll introduce multiline
(a.k.a. compound) statements in the next chapter, and we’ll explore their syntax more
formally later in this book. Because their behavior differs slightly in files and at the
interactive prompt, though, two cautions are in order here.

First, be sure to terminate multiline compound statements like for loops and if tests
at the interactive prompt with a blank line. In other words, you must press the Enter
key twice, to terminate the whole multiline statement and then make it run. For example
(pun not intended):

>>> for x in 'spam':
... print(x) # Press Enter twice here to make this loop run
...

You don’t need the blank line after compound statements in a script file, though; this
is required only at the interactive prompt. In a file, blank lines are not required and are
simply ignored when present; at the interactive prompt, they terminate multiline state-
ments. Reminder: the ... continuation line prompt in the preceding is printed by
Python automatically as a visual guide; it may not appear in your interface (e.g., IDLE),
and is sometimes omitted by this book, but do not type it yourself if it’s absent.

Also bear in mind that the interactive prompt runs just one statement at a time: you
must press Enter twice to run a loop or other multiline statement before you can type
the next statement:

The Interactive Prompt | 53

>>> for x in 'spam':
... print(x) # Press Enter twice before a new statement
... print('done')
 File "<stdin>", line 3
 print('done')
 ^
SyntaxError: invalid syntax

This means you can’t cut and paste multiple lines of code into the interactive prompt,
unless the code includes blank lines after each compound statement. Such code is better
run in a file—which brings us to the next section’s topic.

System Command Lines and Files
Although the interactive prompt is great for experimenting and testing, it has one big
disadvantage: programs you type there go away as soon as the Python interpreter ex-
ecutes them. Because the code you type interactively is never stored in a file, you can’t
run it again without retyping it from scratch. Cut-and-paste and command recall can
help some here, but not much, especially when you start writing larger programs. To
cut and paste code from an interactive session, you would have to edit out Python
prompts, program outputs, and so on—not exactly a modern software development
methodology!

To save programs permanently, you need to write your code in files, which are usually
known as modules. Modules are simply text files containing Python statements. Once
they are coded, you can ask the Python interpreter to execute the statements in such a
file any number of times, and in a variety of ways—by system command lines, by file
icon clicks, by options in the IDLE user interface, and more. Regardless of how it is
run, Python executes all the code in a module file from top to bottom each time you
run the file.

Terminology in this domain can vary somewhat. For instance, module files are often
referred to as programs in Python—that is, a program is considered to be a series of
precoded statements stored in a file for repeated execution. Module files that are run
directly are also sometimes called scripts—an informal term usually meaning a top-level
program file. Some reserve the term “module” for a file imported from another file, and
“script” for the main file of a program; we generally will here, too (though you’ll have
to stay tuned for more on the meaning of “top-level,” imports, and main files later in
this chapter).

Whatever you call them, the next few sections explore ways to run code typed into
module files. In this section, you’ll learn how to run files in the most basic way: by
listing their names in a python command line entered at your computer’s system
prompt. Though it might seem primitive to some—and can often be avoided altogether
by using a GUI like IDLE, discussed later—for many programmers a system shell com-
mand-line window, together with a text editor window, constitutes as much of an

54 | Chapter 3: How You Run Programs

integrated development environment as they will ever need, and provides more direct
control over programs.

A First Script
Let’s get started. Open your favorite text editor (e.g., vi, Notepad, or the IDLE editor),
type the following statements into a new text file named script1.py, and save it in your
working code directory that you set up earlier:

A first Python script
import sys # Load a library module
print(sys.platform)
print(2 ** 100) # Raise 2 to a power
x = 'Spam!'
print(x * 8) # String repetition

This file is our first official Python script (not counting the two-liner in Chapter 2). You
shouldn’t worry too much about this file’s code, but as a brief description, this file:

• Imports a Python module (libraries of additional tools), to fetch the name of the
platform

• Runs three print function calls, to display the script’s results

• Uses a variable named x, created when it’s assigned, to hold onto a string object

• Applies various object operations that we’ll begin studying in the next chapter

The sys.platform here is just a string that identifies the kind of computer you’re work-
ing on; it lives in a standard Python module called sys, which you must import to load
(again, more on imports later).

For color, I’ve also added some formal Python comments here—the text after the #
characters. I mentioned these earlier, but should be more formal now that they’re
showing up in scripts. Comments can show up on lines by themselves, or to the right
of code on a line. The text after a # is simply ignored as a human-readable comment
and is not considered part of the statement’s syntax. If you’re copying this code, you
can ignore the comments; they are just informative. In this book, we usually use a
different formatting style to make comments more visually distinctive, but they’ll ap-
pear as normal text in your code.

Again, don’t focus on the syntax of the code in this file for now; we’ll learn about all
of it later. The main point to notice is that you’ve typed this code into a file, rather than
at the interactive prompt. In the process, you’ve coded a fully functional Python script.

Notice that the module file is called script1.py. As for all top-level files, it could also be
called simply script, but files of code you want to import into a client have to end with
a .py suffix. We’ll study imports later in this chapter. Because you may want to import
them in the future, it’s a good idea to use .py suffixes for most Python files that you
code. Also, some text editors detect Python files by their .py suffix; if the suffix is not
present, you may not get features like syntax colorization and automatic indentation.

System Command Lines and Files | 55

