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Preface

This book collects a series of essays to celebrate the work of David Hendry:
one of the most influential of all modern econometricians.

David’s writing has covered many areas of modern econometrics, which
brings together insights from economic theory, past empirical evidence, the
power of modern computing, and rigorous statistical theory to try to build
useful empirically appealing models. His work led to the blossoming of the
use of error correction models in applied and theoretical work. The questions
he asked about multivariate nonstationary time-series were the basis of Clive
Granger’s formalization of cointegration. His sustained research programme
has led to a massive increase in the rigour with which many economists carry
out applied work on economic time-series. He pioneered the development
of strong econometric software (e.g. PcGive and PcGets) to allow applied
researchers to use their time effectively and developed the general-to-specific
approach to model selection. Throughout the period we have known him
he has been the most intellectually generous colleague we have ever had. A
brave searcher for truth and clarity, with broad and deep knowledge, he is, to
us, what an academic should be.

The volume is a collection of original research in time-series econometrics,
both theoretical and applied, and reflects David’s interests in econometric
methodology. The volume is broadly divided into five sections, including
model selection, correlations, forecasting, methodology, and empirical appli-
cations, although the boundaries are certainly opaque. The first four chapters
focus on issues of model selection, a topic that has received a revival of
interest in the last decade, partly due to David’s own writings on the sub-
ject. Johansen and Nielsen provide rigorous model selection theory by deriv-
ing an innovative estimator that is robust to outliers and structural breaks.
Three further chapters consider more applied aspects of model selection,
including Hoover, Demiralp, and Perez who use automatic causal search and
selection search algorithms to identify structural VARs, White and Kennedy
who develop methods for defining, identifying, and estimating causal effects,
and Doornik who develops a new general-to-specific search algorithm, Auto-
metrics.
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The next two chapters focus on techniques for modelling financial data,
with applications to equity and commodity prices. Engle proposes a new
estimation method for Factor DCC models called the ‘McGyver’ method, and
Trivedi and Zimmer consider the use of copula mixture models to test for
dependence.

The third section focuses on economic forecasting, an area that David
has been prolific in. Stock and Watson consider the performance of factor
based macroeconomic forecasts under structural instability, Banerjee and
Marcellino extend the dynamic factor model to incorporate error correc-
tion models, and Clements considers whether forecasters are consistent in
making forecasts, enabling a test of forecaster rationality. The fourth section
considers econometric methodology in the broad sense, commencing with
Granger’s appeal for pragmatic econometrics, embodying much of David’s
econometric philosophy. The question of how to undertake simulations in
dynamic models is addressed by Abadir and Paruolo, both Dolado, Gonzalo,
and Mayoral, and Davidson examine the order of integration of time-series
data, either for fractionally integrated processes or stationary versus nonsta-
tionary processes, and finally Hendry, Lu, and Mizon, complete the section
by considering model identification and the implications it has for model
evaluation.

The final section of the volume consists of a range of empirical applica-
tions that implement much of the Hendry methodology. Beyer and Juselius
consider the question of how to aggregate data, with an application to a
small monetary model of the Euro-area, Bårdsen and Nymoen consider the
US natural rate of unemployment, selecting between a Phillips curve and
a wage equilibrium correction mechanism, and Ericsson and Kamin revisit
a model of Argentine broad money demand using general-to-specific model
selection algorithms. The contributions cover the full breadth of time-series
econometrics but all with the overarching theme of congruent econometric
modelling using the coherent and comprehensive methodology that David
has pioneered.

The volume assimilates original scholarly work at the frontier of academic
research, encapsulating the current thinking in modern day econometrics and
reflecting the intellectual impact that David has had, and will continue to
have, on the profession.

We are indebted to a great many referees for their hard work in ensuring
a consistently high standard of essays. Furthermore, it is a great pleasure to
acknowledge all who helped to organize the conference in honour of David,
held in Oxford in August 2007. In particular, our thanks go to Maureen
Baker, Ann Gibson, Carlos Santos, Bent Nielsen, Jurgen Doornik, and the
staff at the Economics Department. The conference was generously supported
by our sponsors including the Bank of England, ESRC, Journal of Applied
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Econometrics, Oxford-Man Institute of Quantitative Finance, Oxford Eco-
nomic Papers, Oxford University Press, Royal Economic Society, Timberlake
Consultants, and Wiley-Blackwell Publishers, and we are delighted to record
our gratitude to them. Finally, our thanks extend to David, whose interactions
and discussions with all the authors in the volume have been the inspiration
for the research in this collection.

Jennifer L. Castle
Neil Shephard
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1

An Analysis of the Indicator Saturation
Estimator as a Robust Regression
Estimator

Søren Johansen and Bent Nielsen∗

1.1 Introduction

In an analysis of US food expenditure Hendry (1999) used an indicator satura-
tion approach. The annual data spanned the period 1931–1989 including the
Great Depression, World War II, and the oil crises. These episodes, covering
25% of the sample, could potentially result in outliers. An indicator saturation
approach was adopted by forming zero-one indicators for these observations.
Condensing the outcome, this large number of indicators could be reduced to
just two outliers with an institutional interpretation.

The suggestion for outlier detection divides the sample in two sets and
saturates first one set and then the other with indicators. The indicators are
tested for significance using the parameter estimates from the other set and
the corresponding observation is deleted if the test statistic is significant. The
estimator is the least squares estimator based upon the retained observations.
A formal version of this estimator is the indicator saturation estimator. This
was analysed recently by Hendry, Johansen, and Santos (2008), who derived
the asymptotic distribution of the estimator of the mean in the case of i.i.d.
observations.

The purpose of the present chapter is to analyse the indicator saturation
algorithm as a special case of a general procedure considered in the literature
of robust statistics. We consider the regression model yt = ‚′xt + εt where εt

∗ The first author gratefully acknowledges support from Center for Research in Economet-
ric Analysis of Time Series, CREATES, funded by the Danish National Research Foundation.
The second author received financial support from ESRC grant RES-000-27-0179. The figure
was constructed using R (R Development Core Team, 2006). The authors would like to thank
David Cox and Mette Ejrnæs for some useful comments on an earlier version of the chapter.

1



Johansen and Nielsen

are i.i.d. (0, Û2), and a preliminary estimator (‚̂, Û̂2), which gives residuals
rt = yt − ‚̂′xt. Let ˆ̆2

t be an estimate of the variance of rt. Examples are ˆ̆2
t = Û̂2

which is constant in t and ˆ̆2
t = Û̂2{1− x′t(

∑T
s=1 xsx′s)

−1xt} which varies with
t. From this define the normalized residuals vt = rt/ ˆ̆ t. The main result in
Theorem 1.1 is an asymptotic expansion of the least squares estimator for
(‚,Û2) based upon those observations for which c ≤ vt ≤ c.

This expansion is then applied to find asymptotic distributions for various
choices of preliminary estimator, like least squares and the split least squares
considered in the indicator saturation approach. Asymptotic distributions are
derived under stationary and trend stationary autoregressive processes and
some results are given for unit root processes.

We do not give any results on the behaviour of the estimators in the
presence of outliers, but refer to further work which we intend to do in the
future.

1.1.1 The Relation to the Literature on Robust Statistics

Detections of outliers is generally achieved by robust statistics in the class of
M-estimators, or L-estimators, see for instance Huber (1981). An M-estimator
of the type considered here is found by solving

T∑
t=1

(yt − ‚′xt)x′t1(Ûc≤yt−‚′xt≤Ûc̄) = 0, (1.1)

supplemented with an estimator of the variance of the residual. The objective
function is known as Huber’s skip function and has the property that it is not
differentiable in ‚,Û2. The solution may not be unique and the calculation
can be difficult due to the lack of differentiability, see Koenker (2005). A more
tractable one-step estimator can be found from a preliminary estimator (‚̂,Û̂)
and choice of ˆ̆2

t , by solving

T∑
t=1

(yt − ‚′xt)x′t1( ˆ̆t c≤yt−‚̂
′ xt≤ ˆ̆t c̄) = 0, (1.2)

which is just the least squares estimator where some observations are removed
as outliers according to a test based on the preliminary estimator. Note that
the choice of the quantiles requires that we know the density f of εt.

An alternative method is to order the residuals rt = yt − ‚′xt and eliminate
the smallest T·1 and largest T·2 observations, and then use the remaining
observations to calculate the least squares estimators. This is an L-estimator,
based upon order statistics. A one-step estimator is easily calculated if a
preliminary estimator is used to define the residuals. One can consider the
M- and L-estimators as the estimators found by iterating the one step proced-
ure described.

2



Saturation by Indicators in Regression Models

Rather than discarding outliers they could be capped at the quantile c as
in the Winsorized least squares estimator solving

∑T
t=1 rtx′t min(1,c ˆ̆ t/|rt|) = 0,

see Huber (1981, page 18). While the treatment of the outliers must depend
on the substantive context, we focus on the skip estimator in this chapter. A
related estimator is the least trimmed squares estimator by Rousseeuw (1984)
which minimizes

∑h
i=1 r 2

i after having discarded the largest T − h = T(·1 + ·2)
values of r 2

i .
The estimator we consider in our main result is the estimator (1.2), and we

apply the main result to get the asymptotic distribution of the estimators for
stationary processes, trend stationary processes, and some unit root processes
for different choices of preliminary estimator.

One-step estimators have been considered before. The paper by Bickel
(1975) has a one-step M-estimator of a different kind as the minimization
problem is approximated using a linearization of the derivative of the objec-
tive function around a preliminary estimator. The estimator considered by
Ruppert and Carroll (1980), however, is a one-step estimator of the kind
described above, although of the L-type, see also Yohai and Maronna (1976).

The focus in the robustness literature has been on deterministic regressors
satisfying T−1∑T

t=1 xtx′t → ” > 0, whereas we prove results for stationary and
trend stationary autoregressive processes. We also allow for a nonsymmetric
error distribution.

We apply the theory of empirical processes using tightness arguments
similar to Bickel (1975). The representation in our main result Theorem 1.1
generalizes the representations in Ruppert and Carroll (1980) to stochastic
regressors needed for time-series analysis.

As an example of the relation between the one-step estimator we consider
and the general theory of M-estimators, consider the representation we find
in Theorem 1.1 for the special case of i.i.d. observations with a symmetric
distribution with mean Ï, so that xt = 1. In this case we find

T1/2(Ï̆− Ï) = (1− ·)−1

{
T−1/2

T∑
t=1

εt1(cÛ≤εt≤Ûc) + 2cf(c)T1/2(Ï̂− Ï)

}
+ oP (1) .

If we iterate this procedure we could end up with an estimator, Ï∗, which
satisfies

T1/2(Ï∗ − Ï) = (1− ·)−1

{
T−1/2

T∑
t=1

εt1(cÛ≤εt≤Ûc) + 2cf(c)T1/2(Ï∗ − Ï)

}
+ oP (1) ,

so that

T1/2(Ï∗ − Ï) = {1− ·− 2cf(c)}−1T−1/2
T∑

t=1

εt1(cÛ≤εt≤Ûc) + oP (1)

D→ N
[
0,Û2 Ùc

2

{1− ·− 2cf(c)}2
]

,

3



Johansen and Nielsen

which is the limit distribution conjectured by Huber (1964) for the
M-estimator (1.1). It is also the asymptotic distribution of the least trimmed
squares estimator, see Rousseeuw and Leroy (1987, p. 180), who rely on Yohai
and Maronna (1976) for the i.i.d case.

1.1.2 The Structure of the Chapter

The one-step estimators are described in detail in section 1.2, and in section
1.3 we find the asymptotic expansion of the estimators under general assump-
tions on the regressor variables, but under the assumption that the data
generating process is given by the regression model without indicators. The
situation where the initial estimator is a least square estimator is analysed for
stationary processes in section 1.4.1. The situation where the initial estimator
is an indicator saturated estimator is then considered for stationary process in
section 1.4.2 and for trend stationary autoregressive processes and unit root
processes in section 1.5. Section 1.6 contains the proof of the main theorem,
which involves techniques for empirical processes, whereas proofs for special
cases are given in section 1.7. Finally, section 1.8 concludes.

1.2 The One-step M-estimators

First the statistical model is set up. Subsequently, the considered one-step
estimators are introduced.

1.2.1 The Regression Model

As a statistical model consider the regression model

yt = ‚′xt +
T∑

i=1

„i1(i=t) + εt t = 1, . . . ,T, (1.3)

where xt is an m-dimensional vector of regressors and the conditional dis-
tribution of the errors, εt, given (x1, . . . xt,ε1, . . . ,εt−1) has density Û−1f(Û−1ε),
so that Û−1εt are i.i.d. with density f. Thus, the density of yt given the past
should be a member of a location-scale family such as the family of univariate
normal distributions. When working with other distributions, such as the t-
distribution the degrees of freedom should be known. We denote expectation
and variance given (x1, . . . xt,ε1, . . . ,εt−1) by Et−1 and Vart−1.

The parameter space of the model is given by ‚,
(
„1, . . . ,„T

)
,Û2 ∈ �m × �T ×

�+. The number of parameters is therefore larger than the sample length.
We want to make inference on the parameter of interest ‚ in this regression

4



Saturation by Indicators in Regression Models

problem with T observations and m regressors, where we consider the „is as
nuisance parameters. The least squares estimator for ‚ is contaminated by the
„is and we therefore seek to robustify the estimator by introducing two critical
values c < c chosen so that

Ùc
0 =
∫ c

c
f(v)dv = 1− · and Ùc

1 =
∫ c

c
vf(v)dv = 0. (1.4)

It is convenient to introduce as a general notation

Ùn =
∫

�

unf(u)du, Ùc
n =
∫ c

c
unf(u)du, (1.5)

for n ∈ �0, for the moments and truncated moments of f. A smoothness
assumption to the density is needed.

Assumption A. The density f has continuous derivative f′ and satisfies the
condition

sup
v∈�

{(1 + v4)f(v) + (1 + v2)|f′(v)|} < ∞,

with moments Ù1 = 0, Ù2 = 1, Ù4 < ∞.

1.2.2 Two One-step M-estimators

Two estimators are presented based on algorithms designed to eliminate
observations with large values of |„i |. Both estimators are examples of one-
step M-estimators. They differ in the choice of initial estimator. The first is
based on a standard least squares estimator, while the second is based on the
indicator saturation argument.

1.2.2.1 The Robustified Least Squares Estimator

The robustified least squares estimator is a one-step M-estimator with initial
estimator given as the least squares estimator (‚̂,Û̂2). From this, construct the
t-ratios for testing „t = 0 as

vt = (yt − ‚̂′xt)/ ˆ̆ t, (1.6)

where ˆ̆2
t could simply be chosen as Û̂2 or as Û̂2{1− x′t(

∑T
s=1 xsx′s)

−1xt} by
following the usual finite sample formula for the distribution of residuals for
fixed regressors.

We base the estimator on those observations that are judged insignificantly
different from the predicted value ‚̂′xt, and define the robustified least squares

5



Johansen and Nielsen

estimator as the one-step M-estimator

‚̆LS =

{
T∑

t=1

xtx′t1(c≤vt≤c)

}−1 T∑
t=1

xt yt1(c≤vt≤c), (1.7)

Û̆2
LS =

(
Ùc

2

1− ·

)−1
{

T∑
t=1

1(c≤vt≤c)

}−1 T∑
t=1

(yt − ‚̆
′
LS xt)21(c≤vt≤c). (1.8)

It will be shown that {∑T
t=1 1(c≤vt≤c)}−1∑T

t=1(yt − ‚̆
′
LS xt)21(c≤vt≤c)

P→ Û2Ùc
2/(1− ·),

which justifies the bias correction in the expression for Û̆2
LS .

Obviously the denominators can be zero, but in this case also the numerator
is zero and we can define ‚̆LS = 0 and Û̆2

LS = 0.

1.2.2.2 The Indicator Saturation Estimator

Based on the idea of Hendry (1999) the indicator saturated estimator is defined
as follows:

1. We split the data in two sets �1 and �2 of T1 and T2 observations
respectively, where Tj T−1 → Î j > 0 for T →∞.

2. We calculate the ordinary least squares estimator for (‚,Û2) based upon
the sample � j

‚̂ j =

⎛⎝∑
t∈� j

xtx′t

⎞⎠−1∑
t∈� j

xt yt, Û̂2
j =

1
Tj

∑
t∈� j

(yt − ‚̂′j xt)2, (1.9)

and define the t-ratios for testing „t = 0:

vt = 1(t∈�2)(yt − ‚̂′1xt)/ ˆ̆ t,1 + 1(t∈�1)(yt − ‚̂′2xt)/ ˆ̆ t,2, (1.10)

where ˆ̆2
t, j could be chosen as Û̂2

j or Û̂2
j{1 + x′t(

∑
s �∈� j

xsx′s)
−1xt} as for fixed

regressors.

3. We then compute robustified least squares estimators ‚̃ and Û̃2 by (1.7)
and (1.8) based on vt given by (1.10).

4. Based on the estimators ‚̃ and Û̃2 define the t-ratios for testing „t = 0:

ṽ t = (yt − ‚̃′xt)/ ˜̆ t, (1.11)

where ˜̆2
t could be chosen as Û̃2. It is less obvious how to choose a finite

sample correction since the second round initial estimator (‚̃,Û̃2) is not
based upon least squares.

5. Finally, compute the indicator saturated estimators ‚̆Sat and Û̆2
Sat as the

robustified least squares estimators (1.7) and (1.8) based on ṽ t given
by (1.11).

6
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1.3 The Main Asymptotic Result

Asymptotic distributions will be derived under the assumption that in (1.3)
the indicators are not needed because „i = 0 for all i, that is, (yt − ‚′xt)/Û are
i.i.d. with density f. The main result, given here, shows that in the analysis of
one-step M-estimators the indicators 1(c≤vt≤c), based on the normalized resid-
ual vt = (yt − ‚̂′xt)/ ˆ̆ t, can be replaced by 1(cÛ≤εt<c̄Û) combined with correction
terms. This shows how the limit distributions of the initial estimators ‚̂ and
Û̂2 influence the limit distribution of the robustified estimators. The result
is the basis for any further asymptotic analysis and can be applied both for
stationary and trend stationary regressors, and for unit root processes, but not
for explosive processes.

It is convenient to define product moments of the retained observations for
any two processes ut and wt as Suw =

∑T
t=1 utw

′
t1(c≤vt≤c), so that the robustified

estimators (1.7) and (1.8) become

‚̆ = S−1
xx Sxy, (1.12)

Û̆2 = (1− ·)(Ùc
2S11)−1(Syy − SyxS−1

xx Sxy). (1.13)

The estimator ˆ̆2
t for the variance of residual rt can be chosen from a wide

range of estimators including Û̂2 and Û̂2{1− x′t(
∑T

s=1 xsx′s)
−1xt}. These estimators

do, however, have to satisfy the following condition.

Assumption B. The estimator ˆ̆2
t is chosen so max1≤t≤TT1/2| ˆ̆2

t − Û̂2| = oP (1).

We can now formulate the main result which shows how the product
moments Suv depend on the truncation points c and c and the initial esti-
mators ‚̂ and Û̂2.

Theorem 1.1. Consider model (1.3), where „i = 0 for all i, and there exists some
estimators (‚̂,Û̂2) and nonstochastic normalization matrices NT → 0, so that

(i) The initial estimators satisfy

(a) T1/2(Û̂2 − Û2), (N−1
T )′(‚̂− ‚) = OP (1),

(b) ˆ̆2
t satisfies Assumption B.

(ii) The regressors satisfy, jointly,

(a) NT
∑T

t=1 xtx′t N
′
T

D→ ”
a.s.
> 0,

(b) T−1/2 NT
∑T

t=1 xt
D→ Ï,

(c) maxt≤T E|T1/2 NT xt|4 = O (1).

7
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(iii) The density f satisfies Assumption A, and c and c are chosen so that Ùc
1 = 0.

Then it holds

T−1S11
P→ 1− ·, (1.14)

NT Sxx N′
T

D→ (1− ·)”, (1.15)

T−1/2 NT Sx1
D→ (1− ·)Ï. (1.16)

For Óc
n = (c)n f (c)− (c)n f (c) and Ùc

2 =
∫ c

c v2f(v)dv we find the expansions

NT Sxε = NT

T∑
t=1

{
xtεt1(cÛ≤εt≤cÛ) + Óc

1xtx′t(‚̂− ‚) + Óc
2(Û̂− Û)xt

}
+ oP (1) , (1.17)

Sεε =
T∑

t=1

{
ε2

t 1(cÛ≤εt≤cÛ) + ÛÓc
2(‚̂− ‚)′xt + ÛÓc

3(Û̂− Û)
}

+ oP
(
T1/2) , (1.18)

S11 =
T∑

t=1

{
1(cÛ≤εt≤cÛ) + Óc

0(‚̂− ‚)′xt/Û + Óc
1(Û̂/Û− 1)

}
+ oP

(
T1/2) . (1.19)

Combining the expressions for the product moments gives expressions for
the one-step M-estimators of the form (1.12), (1.13). The expressions give a
linearization of these estimators in terms of the initial estimators. For particu-
lar initial estimators explicit expressions for the limiting distributions are then
derived in the subsequent sections.

Corollary 1.2. Suppose the assumptions of Theorem 1.1 are satisfied. Then

(1− ·)”
(
N−1

T

)′(‚̆− ‚) = NT

T∑
t=1

xtεt1(cÛ≤εt≤Ûc)

+ Óc
1”
(
N−1

T

)′(‚̂− ‚) + Óc
2T1/2(Û̂− Û)Ï + oP (1) , (1.20)

Ùc
2T1/2(Û̆2 − Û2) = T−1/2

T∑
t=1

(
ε2

t − Û2 Ùc
2

1− ·

)
1(cÛ≤εt≤Ûc)

+ ÛÊc
2Ï

′(N−1
T

)′(‚̂− ‚) + ÛÊc
3T1/2(Û̂− Û) + oP (1) , (1.21)

where Êc
n = Óc

n − Óc
n−2Ù

c
2/(1− ·). It follows that{
(N−1

T )′(‚̆− ‚),T1/2(Û̆2 − Û2)
}

= OP (1) , (1.22)

so that (‚̆,Û̆2)
P→ (‚,Û2).

The proofs of Theorem 1.1 and Corollary 1.2 are given in section 1.6. It
involves a series of steps. In section 1.6.1 a number of inequalities are given for
the indicator functions appearing in Sxx and Sxε, and in section 1.6.2 we show
some limit results which take care of the remainder terms in the expansions.
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The argument involves weighted empirical processes with weights xtx′t, xtεt, ε2
t

and 1 appearing in the numerator and denominators of ‚̆ and Û̆2. Weighted
empirical processes have been studied by Koul (2002), but with conditions on
the weights that would be too restrictive for this study. Finally, the threads are
pulled together in section 1.6.3.

The assumptions (ii,a) and (ii,b) are satisfied in a wide range of models.
The assumption (ii,c) is slightly more restrictive: It permits classical stationary
regressions as well as stationary autoregressions in which case NT = T−1/2 and
trend stationary processes with a suitable choice of NT . It also permits unit
root processes where NT = T−1, as well as processes combining stationary and
unit root phenomena. The assumption (ii,c) does, however, exclude expo-
nentially growing regressors. As an example let xt = 2t. In that case NT = 2−T

and maxt≤T T1/22−T2t = T1/2 diverges. Likewise, explosive autoregressions are
excluded.

Similarly, the assumption (i,b), referring to Assumption B, is satisfied for
a wide range of situations. If ˆ̆2

t = Û̂2 it is trivially satisfied. If ˆ̆2
t = Û̂2{1−

x′t(
∑T

s=1 xsx′s)
−1xt} as in the computation of the robustified least squares esti-

mator the assumption is satisfied when the regressors xt have stationary, unit
root, or polynomial components, but not if the regressors are explosive. This
is proved by first proving (ii,a,c) and then combining these conditions.

The assumption that Ùc
1 = 0 is important. If it had been different from zero

then εt1(cÛ≤ε≤Ûc) would not have zero mean and the conclusion (1.22) would
in general fail because NT Sxε would diverge.

1.4 Asymptotic Distributions in the Stationary Case

We now apply Theorem 1.1 and Corollary 1.2 to the case of stationary regres-
sors with finite fourth moment where we can choose NT = T−1/2 Im. With this
choice the assumptions (ii)(a,b,c) of Theorem 1.1 are satisfied by the Law of
Large Numbers for stationary processes with finite fourth moments.

The stationary case covers a wide range of standard models:

(i) The classical regression model, where xt is stationary with finite fourth
moment.

(ii) Stationary autoregression of order k. We let yt = Xt and xt =
(Xt−1 . . . Xt−k)′. An intercept could, but need not, be included as in the
equation

Xt =
k∑

j=1

· j Xt− j + Ï + εt.

(iii) Autoregressive distributed lag models of order k. For this purpose con-
sider a p-dimensional stationary process Xt partitioned as Xt = (yt,z′t)

′.

9
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This gives the model equation for yt given the past (Xs,s ≤ t − 1) and zt

yt =
k∑

j=1

·′j Xt− j + ‚′zt + Ïy + εt.

Here, the regressor zt could be excluded to give the equation of a vector
autoregression.

1.4.1 Asymptotic Distribution of the Robustified Least Squares Estimator

In this section we denote the least squares estimators by (‚̂,Û̂2) and we let
(‚̆LS ,Û̆2

LS) be the robustified least squares estimators based on these, as given
by (1.6), (1.12), and (1.13). We find the asymptotic distribution of these
estimators with a proof in section 1.7.

Theorem 1.3. Consider model (1.3) with „i = 0 for all i. We assume that xt

is a stationary process with mean Ï, variance ”, and finite fourth moment so we
can take NT = T−1/2 Im, and that ˆ̆2

t satisfies Assumption B. The density f satisfies
Assumption A, and c and c̄ are chosen so that Ùc

1 = 0. Then

T1/2

(
‚̆LS − ‚

Û̆2
LS − Û2

)
D→ Nm+1

{
0,

(
Ÿ‚ Ÿc

Ÿ′
c ŸÛ

)}
,

where

Ÿ‚ = Û2(Á‚”
−1 + Í‚”

−1ÏÏ′”−1),

Ÿc = Û3(Ác”
−1Ï + Íc”

−1ÏÏ′”−1Ï),

ŸÛ = 2Û4(ÁÛ + ÍÛÏ′”−1Ï),

and

(1− ·)2Á‚ = Ùc
2

(
1 + 2Óc

1

)
+
(
Óc

1

)2
,

(1− ·)2Í‚ = Óc
2

{
1
4

Óc
2(Ù4 − 1) + Óc

1Ù3 + Ùc
3

}
,

(1− ·)Ùc
2Ác = Êc

2(Ùc
2 + Óc

1) +
Óc

2

2

{
Ùc

4 −
(Ùc

2)2

1− ·

}
+

Óc
2Ê

c
3

4
(Ù4 − 1)

+ (1 + Óc
1)Ùc

3 +
Êc

3

2
(Ùc

3 + Óc
1Ù3),

(1− ·)Ùc
2Íc =

(Êc
2)2

2
Ùc

3,

2(Ùc
2)2ÁÛ =

{
Ùc

4 −
(Ùc

2)2

1− ·

}
(1 + Êc

3) +
(Êc

3)2

4
(Ù4 − 1),

2(Ùc
2)2ÍÛ = Êc

2(Êc
2 + 2Ùc

3 + Êc
3Ù3).
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For a given f, ·, c, and c̄, the coefficients Á and Í are known. The param-
eters (Û2,”,Ï) are estimated by Û̆2

LS , see (1.22), NT Sxx NT/(1− ·), see (1.15), and
T−1/2 NT Sx1/(1− ·), see (1.16), respectively, so that, for instance

(Á‚”̆
−1

+ Í‚”̆
−1

Ï̆Ï̆′”̆
−1

)−1/2Û̆−1
LS T1/2(‚̆LS − ‚)

D→ Nm (0,Im) .

The case where f is symmetric is of special interest. The critical value is
then c = −c = c and Ù3 = Ùc

3 = 0 and Óc
0 = Óc

2 = 0 so Êc
2 = 0, whereas Óc

1 = 2cf (c)
and Óc

3 = 2c3f(c) so Êc
3 = {c2 − Ùc

2/(1− ·)}2cf(c). It follows that Í‚ = ÍÛ = Íc = Ác =
0. Theorem 1.3 then has the following Corollary.

Corollary 1.4. If f is symmetric and the assumptions of Theorem 1.3 hold,
then

T1/2

(
‚̆LS − ‚

Û̆2
LS − Û2

)
D→ Nm+1

{
0,

(
Û2Á‚”

−1 0

0 2Û4ÁÛ

)}
,

where, with Óc
1 = 2cf (c) and Êc

3 = {c2 − Ùc
2/(1− ·)}2cf(c), it holds

(1− ·)2Á‚ = Ùc
2

(
1 + 2Óc

1

)
+
(
Óc

1

)2
,

2 (Ùc
2)2 ÁÛ = {Ùc

4 −
(
Ùc

2

)2
1− ·

}(1 + Êc
3) +

(
Êc

3

)2
4

(Ù4 − 1).

Corollary 1.4 shows that the efficiency of the indicator saturated estimator
‚̆LS with respect to the least squares estimator ‚̂ is

efficiency(‚̂,‚̆LS) = {asVar(‚̆LS)}−1{asVar(‚̂)} = Á−1
‚ .

Likewise the efficiency of Û̆LS is efficiency(Û̂2,Û̆2
LS) = Á−1

Û . In the symmetric case
the efficiency coefficients do not depend on the parameters of the process,
only on the reference density f and the chosen critical value c = c = −c. They
are illustrated in Figure 1.1.

1.4.2 The Indicator Saturated Estimator

The indicator saturated estimator, ‚̆Sat, is a one-step M-estimator iterated
twice. Its properties are derived from Theorem 1.1. We first prove two rep-
resentations corresponding to (1.20) and (1.21) for the first round estimators
‚̃, Û̃2 based on the least squares estimators ‚̂ j and Û̂ j . Secondly, the limiting
distributions of these first round estimators are found. Finally, the limiting
distributions of the second round estimators ‚̆Sat, Û̆Sat are found.

Theorem 1.5. Suppose „i = 0 for all i in model (1.3), and that xt is stationary
with mean Ï, variance ”, and finite fourth moment, and that ˆ̆2

t,1 and ˆ̆2
t,2 satisfy

Assumption B. The density f satisfies Assumption A, and c and c̄ are chosen so

11
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FIG. 1.1. The efficiency of the estimators ‚̆LS and Û̆2
LS with respect to the least squares

estimators ‚̂ and Û̂2, respectively, for f equal to the Gaussian density.

that Ùc
1 = 0. Then, for j = 1,2 it holds, with Î1 + Î2 = 1 and Î j > 0, that

T−1
∑
t∈� j

xt
P→ Î jÏ, T−1

∑
t∈� j

xtx′t
P→ Î j”. (1.23)

Defining Êc
n = Óc

n − Óc
n−2Ù

c
2Û

2/(1− ·) and the function ht = (Î1/Î2)1{t∈�2} +
(Î2/Î1)1{t∈�1}. Then it holds that

(1− ·)”T1/2(‚̃− ‚) = T−1/2
T∑

t=1

[
xt
{
εt1(cÛ≤εt≤Ûc) + htÓ

c
1εt
}

+
Óc

2

2
Ïht
(
ε2

t /Û− Û
)]

+ oP (1) , (1.24)

Ùc
2T1/2(Û̃2 − Û2) = T−1/2

T∑
t=1

{(
ε2

t − Û2 Ùc
2

1− ·

)
1(cÛ≤εt≤Ûc) + ÛÊc

2Ï
′”−1xtεtht

+ Û
Êc

3

2

(
ε2

t /Û− Û
)
ht

}
+ oP (1) . (1.25)

The asymptotic distribution of the first-round estimators ‚̃,Û̃2 can now be
deduced. For simplicity only ‚̃ is considered.

Theorem 1.6. Suppose „i = 0 for all i in model (1.3), and that xt is stationary
with mean Ï, variance ”, and finite fourth moment, and that ˆ̆2

t,1 and ˆ̆2
t,2 satisfy

Assumption B. The density f satisfies Assumption A, and c and c̄ are chosen so that
Ùc

1 = 0. Then

T1/2(‚̃− ‚)
D→ Nm

{
0,Û2(Á”−1 + Í”−1ÏÏ′”−1)

}
, (1.26)

12
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where

(1− ·)2Á = Ùc
2

(
1 + 2Óc

1

)
+
(
Óc

1

)2 (Î2
2

Î1
+

Î2
1

Î2

)
,

(1− ·)2Í = Óc
2

[{
1
4

Óc
2(Ù4 − 1) + Óc

1Ù3

}(
Î2

2

Î1
+

Î2
1

Î2

)
+ Ùc

3

]
.

We note that the result of Hendry, Johansen, and Santos (2008) is a spe-
cial case of Theorem 1.6. They were concerned with the situation of esti-
mating the mean in an i.i.d. sequence where ” = 1. Due to the relatively
simple setup their proof could avoid the empirical process arguments used
here.

In the special case where Î1 = Î2 = 1/2 then the limiting expression for ‚̃ is
exactly the same as that for the robustified least squares estimator ‚̆LS , in that
Á = Á‚ and Í = Í‚.

We finally analyse the situation where we first find the least squares esti-
mators in the two subsets �1 and �2, then construct ‚̃ and finally find the
robustified least squares estimator ‚̆Sat based upon ‚̃. For simplicity we con-
sider only the symmetric case.

Theorem 1.7. Suppose „t = 0, t = 1, . . . ,T in model (1.3), and that xt is station-
ary with mean Ï, variance ”, and finite fourth moment, and that ˆ̆2

t, j and ˜̆2
t

satisfy Assumption B. The symmetric density f satisfies Assumption A, and c and c̄
are chosen so that Ùc

1 = 0. Then

T1/2(‚̆Sat − ‚)
D→ Nm(0,Û2”−1ÁSat),

where

(1− ·)4ÁSat =
(
1− · + Óc

1

)
Ùc

2

{(
1− · + Óc

1

)
+ 2
(
Óc

1

)2} +
(
Óc

1

)4 (Î2
1

Î2
+

Î2
2

Î1

)
. (1.27)

The assumption to the residual variance estimators is satisfied in a number
of situations. If ˆ̆2

t, j = Û̂2
j and ˜̆2

t = Û̃2 then Assumption B is trivially satisfied.
If ˆ̆2

t, j = Û̂2
j{1 + x′t(

∑
s /∈� j

xsx′s)
−1xt} then Assumption B is satisfied due to the

difference in the order of magnitude of xt and
∑

s /∈� j
xsx′s.

1.5 Asymptotic Distribution for Trending
Autoregressive Processes

We first discuss the limit distribution of the least squares estimator in a
trend stationary k-th order autoregression, and then apply the results to the
indicator saturated estimator. Finally, the unit root case is discussed.
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1.5.1 Least Squares Estimation in an Autoregression

The asymptotic distribution of the least squares estimator is derived for a trend
stationary autoregression. Consider a time series y1−k, . . . , yT . The model for yt

has a deterministic component dt. These satisfy the autoregressive equations

yt =
k∑

i=1

‰i yt−i + êdt−1 + εt, (1.28)

dt = Ddt−1,

where εt ∈ � are independent, identically distributed with mean zero and
variance Û2, whereas dt ∈ �� are deterministic terms. The autoregression (1.28)
is of the form (1.3) with x′t = (yt−1, . . . ,yt−k,d′t) and ‚′ = (‰1, . . . ,‰k,ˆ), so m = k + �.
The least squares estimator is denoted (‚̂,Û̂2).

The deterministic terms are defined in terms of the matrix D which has
characteristic roots on the complex unit circle, so dt is a vector of terms such
as a constant, a linear trend, or periodic functions like seasonal dummies. For
example

D =

(
1 0
0 −1

)
with d0 =

(
1
1

)

will generate a constant and a dummy for a bi-annual frequency. The deter-
ministic term dt is assumed to have linearly independent coordinates, which
is formalized as follows.

Assumption C.
∣∣eigen (D)

∣∣ = 1 and rank (d1, . . . , d�) = �.

It is convenient to introduce the companion form

Yt−1 =

⎛⎜⎜⎝
yt−1

...
yt−k

⎞⎟⎟⎠ , A =

{
(‰1, . . . ,‰k−1) ‰k

Ik−1 0

}
, ÷ =

(
ê
0

)
, et =

(
εt

0

)
,

so that Yt = AYt−1 + ÷dt−1 + et. Focusing on the stationary case where∣∣eigen (A)
∣∣ < 1 so A and D have no eigenvalues in common, Nielsen (2005,

section 3) shows that

Yt = Y∗
t + ÿdt where Y∗

t = AY∗
t−1 + et,

and ÿ is the unique solution of the linear equation ÷ = ÿD− Aÿ.
A normalization matrix NT is needed. To construct this let

MT =

(
T∑

t=1

dt−1d′t−1

)−1/2

,
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so that MT
∑T

t=1 dt−1d′t−1 M′
T = I�. Equivalently, a block diagonal normalization,

ND, could be chosen if D, without loss of generality, were assumed to have
a Jordan structure as in Nielsen (2005, section 4). Theorem 4.1 of that paper
then implies that

T−1/2 MT

T∑
t=1

dt−1 → ÏD,

for some vector ÏD. For the entire vector of regressors, xt = (Y′
t−1,d′t−1)′, define

NT =

(
T−1/2 0

0 MT

)(
Ik −ÿ
0 I�

)
. (1.29)

Theorem 1.8. Let yt be the trend stationary process given by (1.28)
so |eigen(A)| < 1, with finite fourth moment and deterministic component
satisfying Assumption C. Then, with ”Y =

∑∞
t=0 AtŸ (At)′ and ”D = I� and

ÏD = limT→∞ T−1/2 MT
∑T

t=1 dt it holds

NT

T∑
t=1

(
Yt−1

dt−1

)(
Yt−1

dt−1

)′
N′

T
P→ ”

def=

(
”Y 0
0 ”D

)
, (1.30)

T−1/2 NT

T∑
t=1

(
Yt−1

dt−1

)
P→ Ï

def=

(
0

ÏD

)
, (1.31)

max
1≤t≤T

|MTdt| = O(T−1/2), (1.32)

NT

T∑
t=1

(
Yt−1

dt−1

)
ε′t

D→ Nm(0,Û2”). (1.33)

In particular, it holds

(N−1
T )′(‚̂− ‚)

D→ Nm(0,Û2”−1), (1.34)

T1/2(Û̂2 − Û2) = T−1/2
T∑

t=1

(ε2
t − Û2) + oP (1) = OP (1) . (1.35)

A conclusion from the above analysis is that the normalization by NT

involving the parameter separates the asymptotic distribution into indepen-
dent components. This will be exploited to simplify the analysis of the indi-
cator saturated estimator below.

1.5.2 Indicator Saturation in a Trend Stationary Autoregression

We now turn to the indicator saturated estimator in the trend stationary
autoregression, although only the first round estimator ‚̃ is considered. As
before this estimator will consist of a numerator and a denominator term,
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each of which is a sum of two components. The main result in Theorem 1.1
can then be applied to each of these components.

Theorem 1.9. Let yt be the trend stationary process given by (1.28) so
|eigen(A)| < 1, with finite fourth moment, deterministic component satisfying
Assumption C, and ˆ̆2

t, j satisfies Assumption B. Suppose the density f satisfies
Assumption A, and the truncation points are chosen so that Ùc

1 = 0. Finally, assume
that

lim
T→∞

MT

∑
t∈� j

dtd′t MT = ”D, j > 0, (1.36)

lim
T→∞

T−1/2 MT

∑
t∈� j

dt = ÏD, j , (1.37)

where ”D,1 + ”D,2 = Im and ÏD,1 + ÏD,2 = Ï and define

Ï j =

(
0

ÏD, j

)
, ” j =

(
Î j”Y 0

0 ”D, j

)
.

Then it holds

(N′
T)−1 (̃‚− ‚)

D→ Nm(0,Û2”−1÷”−1), (1.38)

where ” = ”1 + ”2 and

(1− ·)2÷ = Ùc
2

(
1 + 2Óc

1

)
” +

(
Óc

1

)2(
”2”

−1
1 ”2 + ”1”

−1
2 ”1

)
+ Ùc

3
Óc

2

2
(Ï2Ï

′
1 + Ï1Ï

′
2)
(

1
Î1

+
1
Î2

)
+ (Ù4 − 1)

(
Óc

2

2

)2 (
Ï2Ï

′
2

Î1
+

Ï1Ï
′
1

Î2

)

+ Ù3
Óc

1Ó
c
2

2

(
Ï2Ï

′
1”

−1
1 ”2 + ”2”

−1
1 Ï1Ï

′
2

Î1
+

Ï1Ï
′
2”

−1
2 ”1 + ”1”

−1
2 Ï2Ï

′
1

Î2

)
.

A closer look at the expression for ÷ shows that it is block diagonal. The
variance for the autoregressive components is (1− ·)2÷Y = ”Y{Ùc

2(1 + 2Óc
1) +

(Óc
1)2(Î2

2Î
−1
1 + Î2

1Î
−1
2 )}. The somewhat complicated limiting covariance matrix

for the deterministic terms, ÷D, simplifies in two important special cases
highlighted in the next Corollary. This covers the case where the reference
density f is symmetric so Óc

2 = 0 and the terms involving Ï j disappear. Alter-
natively, the proportionality ”D, j = Î j I� and ÏD, j = Î jÏD would also simplify
the covariance. In section 1.5.3 it is shown how this proportionality can be
achieved by choosing the index sets in a particular way.

Corollary 1.10. If f is symmetric then Óc
2 = 0 so

(1− ·)2÷ = Ùc
2(1 + 2Óc

1)” + (Óc
1)2(”2”

−1
1 ”2 + ”1”

−1
2 ”1).
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If ”D, j = Î j I� and ÏD, j = Î jÏD then ” j = Î j” and Ï j = Î jÏ so ÷ = Á‚” + Í‚ÏÏ′,
where the constants Á‚, Í‚ were defined in Theorem 1.3.

1.5.3 Choice of Index Sets in the Nonstationary Case

Corollary 1.10 showed that the limiting distribution for the trend stationary
case reduces to that of the strictly stationary case in the presence of propor-
tionality, that is, if ”D, j = Î j I� and ÏD, j = Î jÏD. This can be achieved if the
index sets are chosen carefully. The key is that the index sets are, up to an
approximation, alternating and dense in [0,1], so that for any 0 ≤ u ≤ v ≤ 1

1
T

int(Tv)∑
t∈int(Tu)+1

1(t∈� j ) → Î j (v − u) , (1.39)

where Î1 + Î2 = 1. The alternating nature of the sets allows information to
be accumulated in a proportional fashion over the two sub-samples, even
though the process at hand is trend stationary. Two schemes for choosing
the index sets are considered. First, a random scheme which is, perhaps,
most convenient in applications, and, secondly, a deterministic scheme. The
random scheme is not far from what has been applied in some Monte Carlo
simulation experiments made by David Hendry in similar situations.

1.5.3.1 RANDOM INDEX SETS

We will consider one particular index set which is alternating in a random
way. Generate a series of independent Bernoulli variables, Ú1, . . . ,ÚT taking the
values 1 and 2 so that

P (Út = 1) = Î1, P (Út = 2) = Î2, so Î1 + Î2 = 1

for some 0 ≤ Î1,Î2 ≤ 1. Then form the index sets

�1 = (t : Út = 1) and �2 = (t : Út = 2) .

The index sequence has to be independent of the generating process for the
data, so that the data can be analysed conditionally on the index sets. In the
following we will comment on examples of deterministic processes and unit
root processes.

Consider the trend stationary model in (1.28). Since the index sets are
constructed by independent sampling then

E

⎛⎝NT

∑
t∈� j

xtx′t N
′
T

⎞⎠ = E

{
NT

T∑
t=1

(xtx′t)N
′
T

}
E1(Út= j) = E

{
NT

T∑
t=1

xtx′t N
′
T

}
Î j → Î j”,

E

⎛⎝T−1/2 NT

∑
t∈� j

xt

⎞⎠ = E

(
T−1/2 NT

T∑
t=1

xt

)
E1(Út= j) = E

(
T−1/2 NT

T∑
t=1

xt

)
Î j → Î jÏ.

17



Johansen and Nielsen

1.5.3.2 ALTERNATING INDEX SETS

It is instructive also to consider an index set, which is alternating in a deter-
ministic way. That is

�1 = (t is odd) and �2 = (t is even) .

This index set satisfies the property (1.39) with Î1 = Î2 = 1/2.
Consider the trend stationary model in (1.28) where the eigenvalues of the

deterministic transition matrix D are all at one, so only polynomial trends
are allowed. For simplicity restrict the calculations to a bivariate deterministic
terms and let T be even, so with

dt =

(
1
t

)
, QT =

(
1 0
0 T−1

)
,

the desired proportionality then follows, in that

T−1 QT

∑
t∈� j

dtd′t QT = T−1 QT

T/2−1∑
t=0

d2t+ j d′2t+ j QT → 1
2

(
1 1/2

1/2 1/3

)
,

T−1 QT

∑
t∈� j

dt = T−1 QT

T/2−1∑
t=0

d2t+ j → 1
2

(
1

1/2

)
.

The proportionality will, however, fail if the process has a seasonal com-
ponent with the same frequency as the alternation scheme. If for instance
dt = (−1)t and T even then it holds that

ÏD,1 = T−1
∑
t∈�1

(−1)t = −1
2

, ÏD,2 = T−1
∑
t∈�2

(−1)t =
1
2

, Ï = T−1
T∑

t=1

(−1)t = 0,

so ÏD, j =/ Î jÏ, and proportionality does not hold. The proportionality will only
arise when information is accumulated proportionally over the two index sets,
either by choosing them randomly or by constructing them to be out of sync
with the seasonality, for instance by choosing the first index set as every third
observation.

1.5.4 A Few Results for Unit Root Processes

Consider the first order autoregression

Xt = ‚Xt−1 + εt, (1.40)

where ‚ = 1 gives the unit root situation, and we assume for simplicity that
f is symmetric so Óc

2 = 0 and the term involving kt falls away. The Functional

18
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Central Limit Theorem shows that

T−1/2
int(Tu)∑

t=1

⎧⎪⎨⎪⎩
εt1(t∈�1)

εt1(t∈�2)

εt1(|εt |<cÛ)

⎫⎪⎬⎪⎭ D→
⎛⎜⎝w1u

w2u

wc
u

⎞⎟⎠ = Wu,

where Wu is a Brownian motion with variance matrix

Ÿ̃
def= Û2

⎛⎜⎝ Î1 0 Î1Ùc
2

0 Î2 Î2Ùc
2

Î1Ùc
2 Î2Ùc

2 Ùc
2

⎞⎟⎠ .

From the decomposition∑
t∈� j

X2
t−1 =

T∑
t=1

X2
t−11(t∈� j ) =

T∑
t=1

X2
t−1Î j +

T∑
t=1

X2
t−1

{
1(t∈� j ) − Î j

}
,

it is seen that the first term is of order T2, whereas the second term has mean
zero and variance Î1Î2E(

∑T
t=1 X4

t−1); it is therefore of order T3/2. It follows that

1
T2

⎛⎝∑
t∈�1

X2
t−1,

∑
t∈�2

X2
t−1,

T∑
t=1

X2
t−1

⎞⎠ D→ (Î1,Î2,1)
∫ 1

0
w2

udu,

where wu = w1u + w2u is the Brownian motion generated by the cumulated εt.
The information accumulated over each of the two sub-samples are therefore
proportional to

∫ 1
0 w2

udu. It follows from Corollary 1.2, that the first round
indicator saturated estimator satisfies

T (̃‚− 1)
D→
∫ 1

0 wud
{
wc

u + 2cf (c)
(
Î−1

1 Î2w1u + Î−1
2 Î1w2u

)}
(1− ·)

∫ 1
0 w2

udu
.

When c →∞ then wc
u

D→ wu while cf (c) → 0 and · → 0 giving the usual
Dickey–Fuller distribution

T(‚̂− 1)
D→
∫ 1

0 wudwu∫ 1
0 w2

udu
.

While the limiting distribution is now different from the stationary case,
the relevant modification corresponds to the usual modification of normal
distributions into Dickey–Fuller-type distributions when moving from the
stationary to the nonstationary case.

For the case of alternating index sets, nearly the same arguments apply as
with random index sets. In this case the definition of the Brownian motions
becomes

T−1/2
int(Tu/2)∑

t=1

⎧⎪⎨⎪⎩
ε2t−1

ε2t

εt1(|εt |<c)

⎫⎪⎬⎪⎭ D→
⎛⎜⎝w1u

w2u

wc
u

⎞⎟⎠ = Wu.
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1.6 Proof of Main Result

The results of Theorem 1.1 concern the matrices

NT Sxx N′
T =

T∑
t=1

NT xtx′t N
′
T1(c≤vt≤c), NT Sxε =

T∑
t=1

NT xtεt1(c≤vt≤c).

For NT Sxx N′
T the main idea in the proof is to approximate ˆ̆ tvt = εt − (‚̂− ‚)′xt

by εt and the indicator 1(c≤vt≤c) by 1(cÛ≤εt≤cÛ), because the limit of the approxi-
mation

∑T
t=1 NT xtx′t N

′
T1(cÛ≤εt≤cÛ) is easy to find. It turns out that the approxima-

tion involves terms from the preliminary estimator of ‚ and Û. In the proof
of Theorem 1.1 this replacement is justified using techniques for empirical
processes and in particular Koul (2002, Theorem 7.2.1, p. 298).

We define the normalized regressors xTt = T1/2 NT xt and the estimation errors
âTt = ˆ̆ t − Û, âT = Û̂− Û and b̂T = T−1/2(N−1

T )′(‚̂− ‚). Then T1/2(âT ,b̂T) = OP(1)
and T1/2 max1≤t≤T |âTt − âT | = T1/2 max1≤t≤T | ˆ̆ t − Û̂| = oP(1) by assumption (i)
of Theorem 1.1. Note that

ˆ̆ tvt = εt − (‚̂− ‚)′xt = εt − {T−1/2(N−1
T )′(‚̂− ‚)}′(T1/2 NT xt) = εt − b̂′T xTt, (1.41)

so that

(c ≤ vt ≤ c) = {c (Û + âTt) ≤ εt − b̂′T xTt ≤ c (Û + âTt)}.

We define u = (a,b′)′ and

It (u) = It (a,b) = 1{c(Û+a)≤εt−b′xTt≤c(Û+a)} − 1(cÛ≤εt≤cÛ), (1.42)

and find for the denominator NT Sxx N′
T

NT Sxx N′
T = T−1

T∑
t=1

xTtx′Tt1(c≤vt≤c) = T−1
T∑

t=1

xTtx′Tt1(cÛ≤εt≤cÛ) (1.43)

+ T−1
T∑

t=1

xTtx′Tt{It(âTt,b̂T)− It(âT ,b̂T)} + T−1
T∑

t=1

xTtx′Tt It(âT ,b̂T).

We then have to show that âTt is so close to âT that the second term tends to
zero, and if we can show that T−1∑T

t=1 xTtx′Tt It(a,b) is tight as a process in (a,b)
and because T−1∑T

t=1 xTtx′Tt It(0,0) = 0, and (âT ,b̂T) = OP(T1/2), we find that the
last term tends to zero. Finally we find from the Law of Large Numbers the
probability limit of the first term.
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Similarly we find for NT Sxε

NT Sxε = T−1/2
T∑

t=1

xTtεt1(c≤vt≤c) = T−1/2
T∑

t=1

xTtεt1(cÛ≤εt≤cÛ)

+ T−1/2
T∑

t=1

xTtεt{It(âtT ,b̂T)− It(âT ,b̂T)} + T−1/2
T∑

t=1

xTtεt It(âT ,b̂T).

The limit of the second term will be shown to be zero because âTt is very close
to âT . We get a contribution from the third term, which we decompose at the
point (a,b) as

T−1/2
T∑

t=1

xTtεt It(a,b) = T−1/2
T∑

t=1

xTt[εt It(a,b)− Et−1{εt It(a,b)}]

+ T−1/2
T∑

t=1

xTtEt−1{εt It(a,b)}.

The first of these tends to zero, and for the second we find that a linear
approximation to the smooth function Et−1{εt It(a,b)} is aÓc

2 + b′xTtÓ
c
1, and we

therefore introduce the processes, for �,m = 0,1,2,

M�,m
T = T−1/2

T∑
t=1

gm (xTt) ε�
t {It(âTt,b̂T)− It(âT ,b̂T)}, (1.44)

W�,m
T (a,b) =

1
T

T∑
t=1

gm (xTt) ε�
t It (a,b) , (1.45)

V�,m
T (a,b) =

1√
T

T∑
t=1

gm(xTt)
{
ε�

t It (a,b)− Û�−1 (aÓc
�+1 + b′xTtÓ

c
�

)}
, (1.46)

where the function gm is given as

g0 (xTt) = 1, g1 (xTt) = xTt, g2 (xTt) = xTtx′Tt. (1.47)

Lemma 1.14 below shows that Û�−1(aÓc
�+1 + b′xTtÓ

c
�) is an approximation to the

conditional mean of ε�
t It (a,b) given the past. Theorems 1.15, 1.16, and 1.17

below show that as T →∞ and if T1/2(âT ,b̂T) is tight, then

M�,m
T

P→ 0, W�,m
T (âT ,b̂T)

P→ 0 and V�,m
T (âT ,b̂T)

P→ 0. (1.48)

Some equalities and expansions are established initially in section 1.6.1. The
remainder terms are analysed in section 1.6.2. Finally, the threads are pulled
together in a proof of Theorem 1.1 in section 1.6.3.

21



Johansen and Nielsen

1.6.1 Some Initial Inequalities and Expansions

We define the indicator function 1(e≤ε≤ f ) as

1(e≤ε≤ f ) = 1(e≤ f ){1(ε≤ f ) − 1(ε≤e)}.
We first prove an inequality for differences of such indicator functions.

Lemma 1.11. For e < f , e0 < f0, and Ê ≥ max(|e − e0|,| f − f0|) we have

|1(e≤ε≤ f ) − 1(e0≤ε≤ f0)| ≤ 1(|ε−e0|≤Ê) + 1(|ε− f0|≤Ê).

Proof of Lemma 1.11. From e = e0 + (e − e0) and |e − e0| ≤ Ê we find e0 −
Ê ≤ e ≤ e0 + Ê and similarly f0 − Ê ≤ f ≤ f0 + Ê. Hence using the monotonicity
in e and f , we find

1(e0+Ê≤ε≤ f0−Ê) ≤ 1(e≤ε≤ f ) ≤ 1(e0−Ê≤ε≤ f0+Ê).

Because the same inequalities hold for 1{e0≤ε≤ f0} we find

|1(e≤ε≤ f ) − 1(e0≤ε≤ f0)| ≤ 1(e0−Ê≤ε≤ f0+Ê) − 1(e0+Ê≤ε≤ f0−Ê) ≤ 1(|ε−e0|≤Ê) + 1(|ε− f0|≤Ê),

where the last inequality is found by exploiting that e0 ≤ f0 by assumption so

1(e0−Ê≤ε≤ f0+Ê) = 1(e0−Ê≤ f0+Ê){1(ε≤ f0+Ê) − 1(ε≤e0−Ê} = 1(ε≤ f0+Ê) − 1(ε≤e0−Ê),

whereas 1(e0+Ê> f0−Ê){1(ε≤e0+Ê) − 1(ε≤ f0−Ê)} ≥ 0 so

−1(e0+Ê≤ε≤ f0−Ê) = 1(e0+Ê≤ f0−Ê){1(ε≤e0+Ê) − 1(ε≤ f0−Ê)} ≤ 1(ε≤e0+Ê) − 1(ε≤ f0−Ê).

Now, apply this result to the indicator function It (u) introduced in (1.42).
Note that It (0) = 0 and introduce the notation, for some ‰ > 0, and c =
max(|c|,|c|),

J t(u,‰) = 1{|εt−c(Û+a)−b′xTt |≤‰(c+|xTt |)} + 1{|εt−c(Û+a)−b′xTt |≤‰(c+|xTt |)}.

Lemma 1.12. For u = (a,b′)′, u0 = (a0,b′0)′ and |u− u0| ≤ ‰ we have

|It(u)− It(u0)| ≤ J t(u0,‰).

Proof of Lemma 1.12. The object of interest is

It(u)− It(u0) = 1{c(Û+a)+b′xTt≤εt≤c(Û+a)+b′xTt} − 1{c(Û+a0)+b′0xTt≤εt≤c(Û+a0)+b′0xTt }.

The inequality follows from Lemma 1.11 by the choice e = c(Û + a) + b′xTt, e0 =
c(Û + a0) + b′0xTt, f = c(Û + a) + b′xTt, f0 = c(Û + a0) + b′0xTt, and Ê = ‰(c + |xTt|).

Introduce the notation Et−1 for the expectation conditional on the informa-
tion given by (xs,εs,s ≤ t − 1,xt).
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