INSTRUCTION MANUAL

206-0 $80-00-\mathrm{Bm}_{2}$ oettip 7 A11 AMPLIFIER

Tektronix, Inc.
c. Reset the Frequency Range to $65-500$ megahertz. Starting at 65 megahertz, slowly increase the frequency until the amplitude of the CRT display decreases to 4.2 divisions.
d. CHECK - The frequency of the 067-0532-00 Signal Generator is 75 megahertz or greater with the 7500 series Oscilloscope, or 105 megahertz or greater with the 7700 series Oscilloscope.
e. Remove the Calibration Fixture from the 067-0532-00 Signal Generator and connect it to the output connector of the Type 191 Signal Generator. Replace the P6022 Current Probe with the P6021 Current Probe. Set the Type 191 to 50 kHz and adjust the amplitude for a six-division display on the CRT.
f. Reset the Type 191 Frequency Range to $42-100$ megahertz. Starfing at 42 megahertz slowly increase the frequency until the amplitude of the CRT display decreases to 4.2 divisions.
g. CHECK-The frequency of the Type 191 is 45 megahertz or greater with the 7500 series Oscilloscope, or 50 megaheriz or greater with the 7700 series Oscilloscope.
15. Check Overall Noise Level Tangentially
a. Reset the Type 7A14 CURRENT/DIV to 1 mA ; set the Indicator Oscilloscope Calibrator Volts to 4 volts and the Calibrator Rate to 1 kHz ; set the Time-Base TIME/ DIV to 10 us and the Triggering MODE to AUTO.
b. Connect the Type 7A14 through the P6021 Current Probe, the Calibration Fixture, a Variable Attenuator, a $\times 10$ Attenuator, and a GR to BNC. Adapter to the Calibrator Volts Output connector.
c. Turn the Variable Attenuator fully clockwise (minimum resistance) and adjust the Time-Base LEVEL/SLOPE to obtain a free-running trace. Observe two noise bands displayed on the CRT (noise and free-running squarewave). See Fig. 5-9.
d. Reduce the input to the Type 7A14 by slowly furning the Variable Attenuator counterclockwise until the two noise bands merge to the point where the darker band between the two noise bands just disappears. See Fig. 5-9.

Fig. 5-9, (a) Display showing two noise bands when checking overall noise level, tangentially. (b) Two noise bands merged.
e. Remove the $\times 10$ Attenuator and connect the Variable Attenuator to the GR to BNC Adopter.
f. Reset the Type 7A14 CURRENT/DIV to 10 mA and the Time-Base TIME/DIV to .5 ms .
g. CHECK - The square-wave amplitude should not exceed 0.2 division.
h. This completes the calibration procedure for the Type 7A14. Disconnect all test equipment.

PARTS LIST ABBREVIATIONS

BHB	binding head brass	int	internal
BHS	binding head steel	lg	length or long
cap.	capacitor	met.	metal
cer	ceramic	mtg hdw	mounting hardware
comp	composition	OD	outside diameter
conn	connector	OHB	oval head brass
CRT	cathode-ray tube	OHS	oval head steel
CRT	cathode-ray tube	P/O	part of
csk	countersunk	PHB	pan head brass
DE	double end	PHS	pan head steel
dia	diameter	plstc	plastic
div	division	PMC	paper, metal cased
elect.	electrolytic	poly	polystyrene
EMC	electrolytic, metal cased	prec	precision
EMT	electrolytic, metal tubular	PT	paper, tubular
ext	external	PTM	paper or plastic, tubular, molded
F \& I	focus and intensity	RHB	round head brass
FHB	flat head brass	RHS	round head steel
FHS	flat head steel	SE	single end
Fil HB	fillister head brass	5 N or S / N	serial number
Fil HS	fillister head steel	S or SW	switch
h	height or high	TC	temperature compensated
hex.	hexagonal	THB	truss head brass
HHB	hex head brass	thk	thick
HHS	hex head steel	THS	truss head steel
HSB	hex socket brass	tub.	tubular
HSS	hex socket steel	vor	variable
ID	inside diameter	w	wide or width
inc	incandescent	WW	wire-wound

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial or model number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, inc. Field Office or representative will contact you concerning any change in part number.

SPECIAL NOTES AND SYMBOLS

$\times 000$ Part first added at this serial number
$00 \times$ Part removed after this serial number
*000-0000-00 Asterisk preceding Tektronix Part Number indicates manufactured by or for Tektronix, Inc., or reworked or checked components.
Use 000-0000-00 Part number indicated is direct replacement.

Fig. 8-8. A50 Switch Board.

Fig. 8-9. A40 LED Board.

FRONT PANEL

P/O A50 SWITCH BOARD

COMPONENT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION	COL COMPONENT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION		
S100	B	3	1	0	SOL		COL

P/O A40 LED Board

FRONT PANEL \langle

Fig. 1-1. 7A19 Amplifier plug-in (Left) and 7A19 with Variable delay option (Right).

SPECIFICATION

Introduction

The 7A19 Amplifier plug-in unit is a wide band amplifier designed for use with TEKTRONIX 7000-Series oscilloscopes. Readout encoding circuitry is provided in the 7A19 to allow probe coding, deflection factor readout, and IDENTIFY functions. The 7A19 can be operated in any compartment of the 7000-Series oscilloscopes, but is primarily intended for use in the vertical plug-in compartments.

The following electrical characteristics are valid over the stated environmental range for instruments calibrated at an ambient temperature of $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$, and after a five minute warmup unless otherwise noted.

Option 4

An optional VARIABLE DELAY may be ordered with the 7A 19 to provide a signal delay of up to ± 500 ps.

TABLE 1-1
ELECTRICAL

Characteristic	Performance Requirement	Supplemental Information
Deflection Factor Calibrated Range Gain Ratio Accuracy	$10 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{div}, 7$ steps in a $1,2,5$ sequence Within 3% with GAIN adjusted at 10 $\mathrm{mV} / \mathrm{div}$ when driven from 50 ohm source.	Pre-Charge circuit may be used as a calibrated 100X attenuator Front panel GAIN control allows calibration to mainframe.
Frequency Response (8 division reference, mainframe dependent) Upper Bandwidth AC or DC coupled $10 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{div}$ Lower Bandwidth AC Coupled	With 7400, 65 MHz ; With 7500, 100 MHz ; With $7700,175 \mathrm{MHz}$; With 7900 , 500 MHz 1 kHz or less	
Maximum Input Power DC or AC coupled Voltage (AC coupled)	2 watts average or 50 divisions peak deflection. 100 volts ($D C+$ peak $A C$) not to exceed 2 watts average or 50 divisions peak.	CAUTION Pre-charge circuit must be used for both charging and discharging AC coupling capacitor to potentials greater than 50 divisions equivalent voltage.
Input Impedance Resistance (DC or DC GND) Reflection Coefficient (Time Domain)	50 ohms ± 1 ohm Less than 0.1 peak to peak	VSWR is typically less than 1.25 @ 500 MHz
Maximum Input Current	Less than 0.2 mA	

THEORY OF OPERATION

INTRODUCTION

This section of the manual contains a description of the circuitry used in the 7A24. The 7A24 description begins with a discussion of the instrument using the block diagram shown in the Diagrams section. The circuit diagrams are segmented with gray-tint blocks named according to circuit function. These circuit block titles serve as indexes to the circuit discussion. Detailed diagrams of each circuit are located in the diagram foldout section at the rear of this manual. Refer to the appropriate diagram when reading this discussion.

BLOCK DIAGRAM

The Channel 1 Amplifier circuit provides gain setting, variable gain control, and trace positioning. The Channel 2 Amplifier provides signal-polarity inversion in addition to gain setting, variable gain control, and trace positioning. The signal to be displayed on the crt is applied to the CH 1 or CH 2 Input connector. The signal passes through the Input Coupling switch, where it is either connected to the attenuators or to a 50 -ohm dummy load. The VOLTS/DIV switch selects the correct amount of attenuation, and the signal is passed to the Switched-Gain Amplifier.

When the VOLTS/DIV switch is set to the 5 mV and 10 mV positions, the signal connected to the Input connector is passed through the attenuators without attenuation. When the VOLTS/DIV switch is set in the 5 mV position, the Switched-Gain Amplifier operates at full gain. In all other positions of the VOLTS/DIV switch, the gain of the Switched-Gain Amplifier is reduced by two. Internal gain and balance adjustments are included in the Switched-Gain Amplifier.

Overall GAIN and VARIABLE gain are adjusted in the Gain Amplifier. Variable balance and high-frequency adjustments are also controlled in the Gain Amplifier. The output of the Gain Amplifier is connected to the Positioning circuitry where the POSITION and IDENTIFY functions are controlled. This circuitry also shifts the signal level to provide zero volts at the plugin output. Channel 2 is identical to Channel 1, with the exception of the polarity-inversion function in Channel 2.

The Signal Splitter Amplifier divides the signal for use at the Display and Trigger Channel Switching amplifiers.

The Display and Trigger Channel Switching amplifiers provide differential signal outputs for the signal and trigger lines, from each channel, to a common display and trigger output.

The output of the Display and Trigger Channel Switching amplifiers are connected to the oscilloscope mainframe via the interface connector.

Readout encoding circuitry used in the 7A24 is compatible with all 7000-series mainframes.

CH 1 AND CH 2 ATTENUATORS 《 \uparrow

NOTE

The CH 1 and CH 2 amplifier circuits are identical with the exception of the CH 2 GAIN stage U2450, which includes a POLARITY inverting circuit. Only CH 2 is described in detail throughout this discussion.

INPUT FUSE AND SWITCH

Signals connected to the Input connector pass through a 0.2 ampere fuse (F 100) before reaching the Input Coupling switch. The fuse protects the attenuators and amplifier by preventing excessive voltages from reaching these components.

Input signals can be dc-coupled or internally disconnected. S100A is a cam-type switch; a contactclosure chart showing the operation is given on the schematic diagrams. When the Input Coupling switch is in the DC position, the input signal is connected to the attenuators. The OFF position opens the signal path to the attenuators and connects the input signal to an internal 50 -ohm dummy load. This provides a ground reference without the need to disconnect the applied signal from the Input connector, and presents a constant 50 -ohm load at the Input connector.

INPUT ATTENUATOR

The effective overall deflection factor of the 7A24 is determined by the setting of the VOLTS/DIV switch, S 100 B . The basic deflection factor is 10 millivolts per division of crt deflection. To increase the deflection factor to the values indicated on the front panel, precision attenuators are switched into the circuit. S100B is a cam-type switch. The dots on the contactclosure chart (see Diagram 1) indicate when the associated contacts are in the position shown (open or closed). In the $5 \mathrm{mV} / \mathrm{Div}$ and $10 \mathrm{mV} /$ Div positions, the attenuators are not used; the input signal is connected directly to the Switched-Gain Amplifier. The $10 \mathrm{mV} /$ Div position decreases the gain of the Switched-Gain Amplifier. For switch positions above $10 \mathrm{mV} / \mathrm{Div}^{2}$ the attenuators are either switched into the circuit singly or are stacked, producing the

Theory of Operation-7A24 (SN B103000 \& UP)

deflection factor indicated on the front panel. The hybrid attenuators are constant impedance, T -pad dividers. In addition to providing constant attenuation at all frequencies within the bandwidth of the instrument, the input attenuators are designed to maintain the same input impedance (50 ohms) for all settings of the VOLTS/DIV switch.

CH 1 AND CH 2 AMPLIFIERS

SWITCHED-GAIN AMPLIFIER

The coaxial coupler between the Attenuator circuit board and the Main Amplifier circuit board acts as a balun transformer to provide differential drive to U1350 at high frequencies. U1350 is a paraphase-type amplifier with dual differential outputs.

In the 5 mV position, full drive is provided from pins 5 and 9 of U1350 to the U1450 load resistors, R1401 and R1403. In all other attenuator positions, the signal-path drive current through the lcad resistors .s divided in half. The other half is diverted through pins 6 an, 8 ff U1350 and is dissipated in dummy-load resistors R1.334 and R1336. Resistor R1332 sets the basic gain by a factor of two for all positions of the VOLTS/DIV switch except 5 mV .

Components CR1319 and R1319 maintain proper collector voltage while switching between the 5 mV and 10 mV positions. Components C1332 and R1332 compensate for thermal variations. Components R1336 and C1336 are high-frequency adjustments.

Fixed length inductors and capacitors are part of the Amplifier etched circuit board and provide T-coil peaking at the input of U1350.

GAIN AND POLARITY INVERT AMPLIFIER

Integrated circuit U2450 is a variable-gain cascode amplifier which sets the overall channel gain. The GAIN (R2432B) and VARIABLE (R2432A) controls determine the ratio of base currents through pins 11 and 12 of U2450. The base-current ratio determines the shared collector output levels between pins 5-6, 8 9.

Variable resistor R2424 provides adjustable lowfrequency compensation. Resistors R2422 and RT2420 compensate for temperature variations. Components R2430 and C2430 provide adjustable high-frequency compensation. The U2450 input T-coil peaking inductors and capacitors are part of the circuit board. Dc balance over the variable range is adjusted by R2410

LEVEL SHIFT AND POSITION CONTROL

This circuitry shifts the dc level between U2450 and U2550, and provides positioning current.

Low frequency and dc signals are coupled through R2450, L2450, Q2450, R2455 and R2460, L2460, Q2460, R2455 which shifts the quiescent level from +8 volts to -8 volts. Capacitors C2450 and C2460, located in the transmission line between U2450 and U2550, provide ac coupling for high-frequency signals. Resistors R2452 and R2462 provide operating current for Q2450, Q2460, and U2450 while R2467 and R2468 set the operating point of these devices. The level shifter gain is unity.

Transistors Q2470 and Q2480 are current sources which add positioning current to the input of U2550. When POSITION control R2487 is at center, Q2470 and Q2480 provide equal currents resulting in zero offset current. As the control is rotated from center the differential offset at 02470 and 02480 produces a corresponding amount of positioning current. Resistors R2473, R2483, R2486, and R2487 form a base voltage divider for O 2470 and Q 2480 in all display modes except ADD. In ADD, CR2474 and CR2484 conduct, which replaces R2487 with R2474 and R2484. Thus, the CH 2 POSITION control is disabled in ADD mode which limits position control to Channel 1 only.

The IDENTIFY circuit, composed of R2488, CR2488, and S2465, adds enough current to 02480 to produce approximately 0.3 division trace shift at the crt for trace identification. When S2465 is closed, the junction of CR2488, R2488, and R2489 becomes more positive resulting in additional emitter current at Q2480 (approximately 200 microamps). When the switch is open, the junction shifts more negative and less emitter current flows. In this condition, when a multiplier probe is connected to the CH 2 Input, the additional resistance to ground produces just enough current shift at the readout circuit (Diagram 4) to indicate the appropriate multiplier on the crt.

SIGNAL SPLITTER AMPLIFIER

Integrated circuit U2550 provides two separate signals for use in the display and trigger channel switches on Diagram 3. Components C2515 and R2515 provide adjustable high frequency compensation. Output transient response is adjustable at C2560, C2562, R2560, and R2562.

DISPLAY SWITCHING AND OUTPUT

DISPLAY AND TRIGGER SWITCHING

The display and trigger channel switches provide selection of the channel one and/or channel two signals from the Switching Amplifiers on Diagram 2 for use in the mainframe.

Switching control is provided by the Switch Control circuits described later.

Integrated circuit U2750 passes or blocks the Channel 2 display signal depending on logic levels at pins 11 and 12. The signal is passed when a high appears at pin 12 and blocked when a low is at pin 12. Pin 11 follows the opposite state. When the switch is off, the signal appears at output pins 6 and 8. Ic U1750's operation is identical to U2750. The output signals of both switches are combined, terminated, and fed to display out terminals. Capacitor C2753 adjusts highfrequency compensation.

Trigger channel switches U1850 and U2850 operate in a similar manner as the display channel switches. Components C1857, C2857, R1857, and R2857 compensate for additional trigger pickoff transmission line losses.

SWITCH CONTROL

Since the display and trigger switch control circuits are identical, only the display circuit is described in detail.

Transistors Q1920, Q1930 and Q1940, Q1950 are unity gain paraphrase amplifiers that control the channel one and channel two switches, respectively. Display commands from the mode switch are level shifted and applied to the channel switches. Transistor Q1910 is a voltage source for both amplifiers. In the ADD mode, 01950 is forced on by 01960 causing both channel switches to simultaneously pass signals. Components CR1970 and R1970 correct the common mode output voltage level when the channel switches are in ADD mode.

CH 1 AND CH 2 READOUT

READOUT ENCODING

The Readout Encoding circuit consists of switching resistors and probe sensing stage Q620. This circuit encodes the Channel 1 and 2, Row and Column output lines for readout of deflection factor, uncalibrated deflection factor (VARIABLE) information, and signal inversion (Channel 2 only). Data is encoded on these output lines by switching resistors between them and the time-slot input lines, or by adding current through Q620.

Components R647-CR647 are switched between timeslot three (TS-3) and Column output line when the CAL \mathbb{N} switch is in the uncal position. This results in the symbol > (greater than) being displayed preceding the deflection factor readout. Resistor R648 (Channel 2 only) is switched between TS-2 and the Column output line when the CH 2 POLARITY switch is in the INVERT position. This results in the symbol ! (inverted) being displayed preceding the deflection factor readout.

Switching resistors are used to indicate the setting of the

VOLTS/DIV switch to the mainframe readout system. The VOLTS/DIV switch is a cam-type switch. The dots on the contact-closure chart (see Diagram 4) indicate when the associated contacts are closed. Resistors R633, R634, and R635 select the numbers 1, 2, or 5 depending on the resistor combination that is switched in. Resistors R636, R642 select the m (milli-) prefix and R639 and R643 select the symbol V (volts) in the 5 mV through $0.5 \vee(500 \mathrm{mV})$ positions of the VOLTS/DIV switch. Resistors R636 and R642 select the symbol V in the 1 V position. Resistors R630, R631, and the output of the probe sensing stage (0620) select the decimal point (number of zeroes), again depending on the resistor combination switched in by the VOLTS/DIV switch.

Probe sensing stage 0620 identifies the attenuation factor of the probe connected to the Input connector by sensing the amount of current flowing from the current sink through the probe coding resistance. The output of this circuit corrects the mainframe readout system to include the probe attenuation factor. The third contact of the Input connector provides the input to the probe sensing stage from the probe coding resistance (coded probes only; see Operating Instructions). The third contact is also used for the IDENTIFY input. The coding resistor forms a voltage divider with R621 through CR621 to the -15 V supply. The resultant voltage sets the bias on 0620 and determines, along with emitter resistor R622, the collector current. When the -15 volt time-slot pulse is applied to Interface Connector B33, 0620 is interrogated and its collector current is added to the Column current output through Interface Connector A37.

With a 1X probe (or no probe) connected to the Input connector, $\mathbf{Q} 620$ is turned off. The deflection factor readout is determined by the VOLTS/DIV switch position. With a 10X probe connected, the bias on Q620 will allow 100 microamperes of collector current to flow. This increases the deflection factor readout by a factor of 10 .

The IDENTIFY button (S1465 on Diagram 2 or S2465 on Diagram 3) does two things when pressed:

1. It causes the trace representing the appropriate channel of the 7A24 to move about 0.3 division (see the Front-Panel Controls and Connectors, Figure 1-3).
2. It forward biases CR621 and O620 to result in a sufficient amount of collector current which, when added to the Column current output, replaces the deflection factor readout with the word "IDENTIFY".

These two actions aid in identifying the 7A24 trace when multiple traces are displayed. When the IDENTIFY button is released, the deflection factor readout and trace position are restored.

Diodes CR1465 in CH 1, and CR2465 in CH 2 isolate readout circuitry from the position circuitry. For further information on the operation of the readout system, see the oscilloscope instruction manual.

VOLTAGE AND WAVEFORM CONDITIONS

The voltages and waveforms shown were obtained with the 7A24 controls set as follows:
CH 1 and CH 2 VOLTS/DIV, 5 mV ; CH 1 and CH 2 Input switches, DC; CH 1 and CH 2 POSITION, center trace on graticule; DISPLAY MODE, CH 1; TRIGGER SOURCE, MODE; CH 2 POLARITY, +UP.

Waveform Conditions. The waveforms shown below were obtained using a test oscilloscope system with $10 \mathrm{M} \Omega$ input impedance and at least 30 MHz bandwidth (Tektronix 7603, 7B53A Time Base, and 7A13 Differential Comparator equipped with 10 X probe). A $1 \mathrm{kHz}, 20 \mathrm{mV}$ into 50Ω signal was fed to CH 1 of the 7A24.

Voltage Conditions. The voltages shown on the diagram were obtained using a digital multimeter with a 10 m Ω input impedance (Tektronix DM501 or Tektronix 7D13 Digital Multimeter used with readout equipped, 7000-series oscilloscope). The 7A24 CH 2 VOLTS/DIV is set to 10 mV .

3

(9)

Figure 8-6. A2 and A4-Readout circuit board assembly.

$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$	GRID COORD	$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { GRID } \\ & \text { COORD } \end{aligned}$
C621	1D	R633	2C
		R634	2B
CR621	1C	R635	2B
CR630	1B	R636	2B
CR631	1B	R638	2B
CR634	1B	R639	2A
CR635	1B	R640	2C
CR638	1B	R642	2B
CR647	1B	R643	2A
CR648	1B	R645	2B
		R647	1B
0620	1C	R648	1C
		$\begin{array}{\|l\|} \text { R1421 } \\ \text { R1423A } \end{array}$	2E
R620	1C	R1423B	1C
R621	1 D	R2421	2F
R622	1 C	R2423A	2E
R629	1A	R2423B	2C
R630	1C	S1423	1D
R631	2C	S2423	2 D

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols and Reference Designators

Electrical components shown on the diagrams are in the following units unless noted otherwise:

Capacitors $=\quad$	Values one or greater are in picofarads (pF). Values less than one are in microfarads $(\mu \mathrm{F})$..

Resistors $=$ Ohms (Ω).
Symbols used on the diagrams are based on ANSI Standard Y32.2-1975.
Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

The following prefix letters are used as reference designators to identify components or assemblies on the diagrams.

A	Assembly, separable or repair- able (circult board, etc.)	H	Heat dissipating device (heat sink, heat radiator, etc.)	RT	Thermistor		
AT	Attenuator, fixed or variable	HR	Heater	S	Switch	,	T
:---							

The following special symbols are used on the diagrams:

SINGLE

\qquad

INTEGRATED CIRCUITS

Figure 8-1. Semiconductor Lead Configurations.

Figure 8-2. Circuit Board Locations.

Figure B-3. A1-Main circuit board assembly.

$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$	GRID COORD	$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$	GRID COORD	$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$	GRID COORD	$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$	GRID COORD	$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$	GRID COORD	$\begin{aligned} & \text { CKI } \\ & \text { NO } \end{aligned}$	GRID COORD	$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$
C22	11	CR43	38	Q54	IF	R42	3B	R109	2G	F147	5 G	8182
C24	31	CR44	3	Q114	3G	R46	4B	R110	31	R148	51	R183
C28	2.J	CR66	28	0124	36	R50	2F	R111	31	R149	5G	R184
C32	11	CR114	2H	0184	IL	R5 1	2 F	R112	31	A150	5J	R185
C34	21	CR124	3G	0226	5D	K52	2E	0113	2H	R151	4 H	R186
C35	IK	CR133	4G	0249	3E	R53	2 F	R115	31	8152	5.	R18
C42	1 H	CR134	5 H	0268	$3 E$	R54	1E	R120	4H	R153	4 H	R21:
C43	48	CR135	4G	0342	48	REE	2 B	R121	4 H	R154	5G	R219
C44	IK	CR136	5H			R61	2B	R122	4H	9155	$5 G$	R22
C46	48.	CR229	3J	A18	21	R62	1B	R123	3 G	R182	5G	R22
C115	3 H	CR230	$2 E$	R22	$1 . J$	R63	1F	H124	2 C	R163	$4 E$	R22
C144	51	CR234	$\mathfrak{G E}$	R24	31	R64	IF	R125	2 G	A164	5G	A 22.
C148	51			R25	21	R65	3B	A132	5G	R166	20	8226
C150	58	J22	1 J	R26	21	R66.	38	R133	5 G	R170	5K	R22
C152	51			R28	21	R67	2 B	R134	6G	R171	5K	R228
C162	5 E	142	3 B	R2.9	21	R68:	$2 B$	R135	4H	R172	4K	R22s
C356	2D	$\stackrel{43}{ }$	4B	R31	2.J	R69	2J	R140	5 H	R173	5G	R23C
		14.4	4B	R32	1K	873	2B	R141	5H	R170	4 K	R23
CR24	11	L. 166	2E	R33	2.J	R75	2B	R142	4H	F175	5 X	R23:
CR33	21			R35	21	R76	2B	R143	5G	R176	5K	R23:
CR34	21	024	11	R36	2K	R77	28	R144	5 H	R 177	4 K	R23
CR35	21	032	1 J	R37	2K	R78	16	R145	4H	R178	4k	R23!
CR42	3B	034	3H	R4)	3B	R107	2 H	R146	51	R179	4K	R23

ard assombly.

KT	GRID COORD	$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { GRI[J } \\ & \text { COORD } \end{aligned}$	$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$	GRID COORD	$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$	GRID COORD	$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$	GRID COORD
147	5 G	R18.2	2K	R237	4E	R277	4K	RY108	26
148	$5)$	R183	2K	R238	4 E	R312	5D	RT317	3 B
149	5G	R184	2K	R239	4 E	R313	5 C	RT345	5 B
150	5J	R185	2 G	R241	3F	R314	5 C		
151	$4{ }_{4}$	R.186	2 K	R242	35	R315	3 B	U26	11
152	5.3	8187	2K	R244	3 E	R316	38	U36	1 K
153	4H	R212	$1 E$	R245	$3 F$	R318	2 D	U111	3 H
154	56	R219	2 H	R246	2 F	R33,	4 B	U12.1	3 H
155	5 G	R221	2 H	R248	2E	R334	4 B	U132	5 F
162	5G	R223	$2 E$	R249	2G	R335	SC	U162	5E
163	4 E	R224	2 E	R261	3G	R336	5 C	U174	4 K
164	5G	R225	$5 E$	R262	2 G	R337	4 C	U178	3 K
166	20	R226	5F	R263	2D	R338	4 C	$\cup 228$	3J
170	5K	R227	5G	R264	$3 F$	R342	4B	U234	50
171	5K	R228	21	R265	3 F	R343	5 B	U246	2F
$!72$	4K	R229	2 J	R266	2F	R344	58	U266	35
173	56	R230	2 E	ค267	3 E	R352	2 D	U314	5 C
174	4 K	R231	2 E .	R268	2 E	R353	2 D	U334	68
175	5 K	R232	5 E	R269	3F	R354	30		
176	5K	R233	5D	R270	2G	R355	30	VR35	21
177	4K	R234	5 F	R271	2 G	R356	20		
178	4 K	R236	5 C	R273	2 F	R357	3 D		
179	4K	R236	5 C	R276	2 H	R365	2D		

Figure 8-4. A3-Readout Switching circuit board assembly.

GKT	GRID	CKT	GRID
NO	COORD	NO	COORD
P22O	$1 B$		
		$S 64$	$2 C$
R222	$2 D$	$S 222$	$2 C$

AA4DF's
 AA4DF's Radio/Electronics Site

[Free Download Sites]
Links to Where Unscrupulous Vendors Acquire "Their" Manuals!
[Tektronix, HP, Fluke, Wavetek, Etc.]
[Free Downloads]Current Free Download(s) Available
[For Sale/Trade] Other-Than-Manual Sale/Trade Items_
[FTP Manual Trades] Manuals Needed \& Manuals Offered (FTP) [Radio Equipment \& Other Manuals] Radio Equipment and Other Manuals Available [Broadcast TV/Radio Manuals]Broadcast/Video Service/Ops Manuals Available [Consumer Electronics Manuals] Consumer Electronics Service/Ops Manuals Available
[Pager Manuals] Pager Service/Programming Manuals Available [Tektronix 7000 Series] 60 Volume Plug-In Manuals Set!
[Amateur Radio Manuals]Ham Radio Manuals by FTP
[Amateur Radio Manuals]Ham Radio Manuals on CD
[Amateur Radio Manuals]Large Collections on CD and DVD
[Thousands of Scanned Manuals!] Big Buck\$ Distributing \$canned Manual\$ on eBay!! - - EEWR
[Some Tech Links]Links to Technical Sites
[Manufacturers]Manufacturer Addresses and Telephone Numbers
[TK-860H] Schematic and Software to Program Radio
[Wavetek 3001 PLLs] PA0KEP's Wavetek 3001 PLL Frequency Plan [CT-Systems 3000B Mods] Wavetek/CT-Systems 3000B Information
[The XYL] Why AA4DF Is Such A Happy Fellow!
Comments? Email AA4DF

AA4DF's Catalog

This is only a small part of our inventory. Our complete inventory can be seen at www.aa4df.com and is available on CD, on DVD, and by FTP. We also have a respectable inventory of original manuals available on the site.

Tektronix Service/Operating Manuals:

$\underline{1440}$	$\underline{177}$	178	1L5	1S2	$\underline{221}$
3B3	475	475A	528A	576	5A18N
5A19N	5A20N	5A22N	5A38	5A48	5B12N
5B40	5B42	5CT1N	5L4N	5S14N	647
7104	7503	$\underline{7603}$	7613	7623	7623A
7633	7704A	7834	7854	$\underline{7903}$	$\underline{7904}$
7904A	$\underline{7 A 11}$	7A12	7A13	7A15A	7A16
7A16P	7A18	7A18A	7A19	7A22	$\underline{7424}$
7A26	7A29	7B10	7B15	7B50A	$\underline{\text { 7B51 }}$
7B52	7B53A	7B70	7B71	7B80	7B85
$\underline{7 B 87}$	7B90P	7892A	7CT1N	7D01	7D02
7D10	7D11	7D12	7D13	7D15	$\underline{7 D 20}$
$\underline{\text { 7L13 }}$	7M13	$\underline{\text { 7S11 }}$	$\underline{7 T 11}$	7T11A	A6302

Tektronix Service/Operating Manuals, Continued:

A6302XL	A6303	A6303XL	$\underline{\text { A6312 }}$	AF501	AFG5101
$\underline{\text { AM502 }}$	AM503	AM511	AM6565/U		DC501
DC503	DC503A	DC504	DC505	DC505A	DC508A
DC509	DC510	DD501	DF1	DF2	DM44
DM501	DM501A	DM502	DM502A	DM5110/	
DM5120/	5520	FG501	FG501A	FG502	FG503
FG504	MR501	$\underline{\text { P2220 }}$	P5100	P5200	P5205
P6007	P6009	P6011	P6015	P6021	$\underline{\text { P6022 }}$
P6042	P6046	P6053A	P6054A	P6058	P6061
P6063B	P6101A	P6105	P6106	P6106A	P6107
P6108	P6112	P6120	P6130	P6131	P6133
P6138A	P6139A	P6156	P6202	P6202A	P6243
P6246	P6248	P6407	P6430	P6460	P6462
P6563A	P6602	PG501	PG502	PG505	PG506
PG508	$\underline{\text { PS5010 }}$	PS501	PS502	PS503A	PS505
R146	RG501	RM529	S1	S3A	$\underline{\text { S4 }}$
S51	$\underline{\text { S6 }}$	$\underline{\text { SC501 }}$	SC502	$\underline{\text { SC503 }}$	$\underline{\text { SC504 }}$

Tektronix Service/Operating Manuals, Continued:

SG502	$\underline{\text { SG503 }}$	$\underline{\text { SW503 }}$	T921	T922	T922R
TDS3000	TG501	TG501A	TM5006	TM501	TM503
TM504	$\underline{\text { TM506 }}$	$\underline{\text { TM515 }}$	TR502	TR503	TU-7
TYPE Q					

TekScope Issues:

$\underline{\text { Apr '69 Feb'70 Mar'71 Nov'71 Jan'72 Mar'72 }}$
$\underline{\text { Jul '72 }} \underline{\text { Sep'72 }}$ Nov'72 Jan'73 Mar'73 May'73
Sep '73 Nov'73 Jan'74 Mar'74 '77 V9 N1
Tektronix Manual Sets (Libraries):
16 Volume 7000 Series 'Scope Frames Service Manual Set
60 Volumes 7000 Series Plugin Manual Set
65 Volume 7000 Series Plugins Manual Set
79 Volume 7000 Series Operating Manual Set
26 Volume 5000 Series Service / Operating Manual Set
Miscellaneous:
7854 App Notes \& Related Documentation 2 CD Set
7854 Programming Applications Manual

AA4DF's Service/Operating Manuals \& Other Listings:

Original Paper Documentation Listings

Hewlett-Packard/Agilent Listings

Consumer Electronics Manual Listings

Other (Fluke, Wavetek, etceteras) Listings
Discrete Ham Radio CD Manual Listings
Discrete Ham Radio FTP Manual Listings
Ham Radio Manual Set (Library) Listings
Broadcast \& Studio Manual Listings

We strive to produce the highest quality manuals we can. However, anyone can make a mistake. We welcome constructive criticism, and ask you to please bring any errors to our attention, whether the material is paid for or is free.

Thank you!
-Dave Miller, AA4DF
Mrs. Hilda Diaz-Miller
Ms. Jill Bryant
Ms. Dallas Eberhard
http://www.aa4df.com

