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This book is dedicated to the 70th birthday of
Georgy Egorychev, the author of the
influential, milestone book “Integral
Representation and the Computation of
Combinatorial Sums”, and a recipient of the
Fulkerson Prize for solving the van der
Waerden conjecture on the determination of
the minimum of the permanent of a doubly
stochastic matrix.



Foreword

It is a pleasure for me to have the opportunity to write the foreword to this volume,
which is dedicated to Professor Georgy Egorychev on the occasion of his seventieth
birthday. I have learned a great deal from his creative and important work, as has
the whole world of mathematics. From his life’s work (so far) in having made dis-
tinguished contributions to fields as diverse as the theory of permanents, Lie groups,
combinatorial identities, the Jacobian conjecture, etc., let me comment on just two
of the most important of his research areas.

The permanent of an n×n matrix A is

Per(A) = ∑a1,i1a2,i2 . . .an,in , (1)

extended over the n! permutations {i1, . . . , in} of {1,2, . . . ,n}. Thus, the permanent
is “like the determinant except for dropping the sign factors from the terms.” How-
ever by dropping those signs, one loses almost all of the friendly characteristics of
determinants, such as the fact that det(AB) = det(A)det(B), the invariance under
elementary row and column operations, and so forth. The permanent is a creature of
multilinear algebra, rather than of linear algebra, and is much crankier to deal with
in virtually all of its aspects, both theoretical and algorithmic.

Nonetheless the permanent is quite an important concept, for example in combi-
natorial mathematics. The permanent of a matrix whose entries are all either 0’s or
1’s is (see (1) above) the number of permutations of n letters for which all n of the
entries {aν,iν}n

ν=1 are 1’s, and this is a valuable tool for counting permutations with
restricted positions, for counting Latin rectangles and squares, and so forth.

In 1926, B. L. van der Waerden conjectured that among all n×n matrices whose
entries are nonnegative real numbers and whose row and column sums are all equal
to 1, the matrix whose permanent is as small as possible is uniquely the one whose
entries are all equal to 1/n. In view of the numerous applications of permanents, the
truth of this conjecture would have valuable consequences. Fifty-six years later the
conjecture was proved [1] by Egorychev. (Another proof, found almost simultane-
ously, is due to Falikman [4].)
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viii Foreword

That achievement alone would have been enough to assure Professor Ego-
rychev’s place on the honor roll of great mathematicians, but we must mention an-
other aspect of his research that reinforces this evaluation. I am referring to his work
on combinatorial identities, as described in his book ([2], [3]). There he has shown
how a wide class of combinatorial identities can be proved and/or discovered by the
methods of complex analysis, thereby making an important contribution to the unity
of a subject which has in the past been highly fragmented, but which now, thanks to
his and other remarkable advances, is starting to show signs of maturity. Professor
Egorychev discusses some recent developments of this line of thought in Chapter 1
below.

As you read the contributions by his friends and colleagues in this volume, take
note of the variety and the beauty of the fields of mathematics that they encompass,
and reflect on the varied and extensive advances in mathematics that we owe to
Professor Georgy Egorychev.
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Preface

The Second Waterloo Workshop on Computer Algebra (WWCA 2008) was held
May 5-7, 2008 at Wilfrid Laurier University, Waterloo, Canada. This conference
was dedicated to the 70th birthday of Georgy Egorychev (Krasnoyarsk, Russia),
who is well known and highly regarded as the author of the influential, milestone
book “Integral Representation and the Computation of Combinatorial Sums,” which
described a regular approach to combinatorial summation, today also known as the
method of coefficients. Another great success of this Russian mathematician came
in 1980, when he solved the van der Waerden conjecture on the determination of
the minimum of the permanent of a doubly stochastic matrix and was awarded the
D.R. Fulkerson Prize.

Topics discussed at the workshop1 were devoted to these two themes (combi-
natorial and algorithmic summation and special polynomials) and related problems
in enumerative combinatorics. The workshop’s format included invited lectures and
presentations, and it attracted international participants from the USA, Europe, Tai-
wan, as well as several Canadian universities. Different aspects of the method of co-
efficients and its relation to algorithmic summation methods and methods of proving
combinatorial identities were thoroughly discussed by George E. Andrews (Penn-
sylvania State University, USA), Georgy Egorychev (Siberian Federal University,
Russia), Ira Gessel (Brandeis University, USA), I-Chiau Huang (Institute of Mathe-
matics, Taiwan), Peter Paule (RISC-Linz, Austria), Marko Petkovsek (University of
Ljubljana, Slovenia), and Doron Zeilberger (Rutgers University, USA). The theory
and applications of the permanent and other special polynomials were presented by
Leonid Gurvits (Los Alamos National Laboratory, USA) and Herbert Wilf (Univer-
sity of Pennsylvania, USA). Michiel Hazewinkel (CWI, the Netherlands) discussed
the “niceness” of mathematical objects and theorems.

The workshop was financially supported by the Fields Institute of the University
of Toronto and various offices of Wilfrid Laurier University.

1 http://www.cargo.wlu.ca/wwca2008/
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x Preface

This book presents a collection of selected formally refereed papers submitted
after the workshop. The topics discussed in this book are closely related to Georgy
Egorychev’s influential works.

This book would not have been possible without the dedication and hard work of
the anonymous referees, who supplied detailed referee reports and helped authors to
improve their papers significantly. Finally, we wish to thank the people at Springer-
Verlag, in particular Ruth Allewelt and Martin Peters, for working closely with us
and for their unequivocal support throughout the entire publication process.

Waterloo, Ilias S. Kotsireas
May 2009 Eugene V. Zima
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Chapter 1
Method of Coefficients: an algebraic
characterization and recent applications

Georgy P. Egorychev

Abstract The article is devoted to the algebraic-logical foundations of the analytic
approach to summation problems in various fields of mathematics and its applica-
tions. Here we present the foundations of the method of coefficients developed by
the author in late 1970’s and its recent applications to several well-known problems.

1.1 Introduction

The article is devoted to the algebraic-logical foundations of the analytical approach
to summation problems in various fields of mathematics and its applications. Here
we present the foundations of the method of integral representations and compu-
tation of combinatorial sums (the method of coefficients) developed by the author
in the end of 1970’s [25] and its recent applications to several well-known prob-
lems (see reviews in [26, 31]). The article contains several new results, including
the method of coefficients (the set of inference rules and the Completeness Lemma)
with operations in the ring of formal Dirichlet series of usual type, as well as several
new properties of the characteristic function of the stopping height for the Collatz
problem [27, 28], and the solutions of two interesting problems of summation in
the theory of holomorphic functions in C

n. Finally we shall give a new algebraic
characterization of the method of coefficients, which is based on the ϕ-operation of
isomorphism [9, 20, 59], generated by the classical one-to-one mapping ϕ between
the set A of numerical sequences and the set B of generating series of given type.
These results allow one to formulate the following statement [32].

E-principle of summation: each pair of inverse linear transforms (for se-
quences, series, functions, etc.), independently of the way of definition of the one-
to-one mapping ϕ , generates the corresponding method of summation (the method
of coefficients).

Georgy P. Egorychev
Siberian Federal University, Krasnoyarsk, RUSSIA, e-mail: anott@scn.ru

I.S. Kotsireas, E.V. Zima (eds.), Advances in Combinatorial Mathematics,
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2 Egorychev G.P.

This principle provides for the first time a foundation for the classical method
of generating functions (generating integrals) as a method of summation for dif-
ferent classes of generating series (the Completeness Lemma). It also makes it
possible to reduce the variety of calculations with them to a uniform combinato-
rial scheme, and to set a new extensive program of solving open summation prob-
lems.

1.2 The method of generating functions as a method of
summation (the method of coefficients)

1.2.1 Computational scheme

The general scheme of the method of integral representations of sums can be broken
down into the following steps [25].

1. Assignment of a table of integral representations of combinatorial numbers.
For example, the binomial coefficients

(n
k

)
, n, k = 0,1, . . . ,

(
n
k

)
= resw (1+w)n w−k−1 =

1
2πi

∫

|w|=ρ
(1+w)n w−k−1dw, ρ > 0; (1.1)

(
n+ k−1

k

)
= resw (1−w)−n w−k−1 =

1
2πi

∫

|w|=ρ
(1−w)−n w−k−1dw, 0 < ρ < 1.

(1.2)
Stirling numbers of the second kind S2(n,k), n, k = 0,1, . . .([25], p. 273):

S2(0,0) := 1, and

S2(n,k) = resw{(−1+expw)nw−k−1}=
1

2πi

∫

|w|=ρ
(−1+expw)nw−k−1dw, ρ > 0.

(1.3)
The Kronecker symbol δ (n,k), n, k = 0,1, . . . ,

δ (n,k) = resww−n+k−1. (1.4)

2. Representation of the summand ak of the original sum ∑k ak by a sum of prod-
uct of combinatorial numbers.

3. Replacement of the combinatorial numbers by their integrals.
4. Reduction of products of integrals to multiple integral.
5. Interchange of the order of summation and integration. This gives the integral

representation of original sum with the kernel represented by a series. The use of
this transformation requires us to deform the domain of integration in such a way
as to obtain the series under the integral which converges uniformly on this domain
saving the value of the integral.
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6. Summation of the series under the integral sign. As a rule, this series turns
out to be a geometric progression [46]. This gives the integral representation of the
original sum with the kernel in closed form.

7. Computation of the resulting integral by means of tables of integrals, iterated
integration, the theory of one-dimensional and multidimensional residues, or other
suitable methods.

1.2.2 Operations with formal power series and the inference rules

Hans Rademacher [87] has noted, that the applications of the method of generating
functions is connected usually with use of operations over the Laurent series and the
Dirichlet series. Earlier the author has developed the method of integral representa-
tions and calculation of combinatorial sums of various types [25, 26, 29, 31], con-
nected with use of the theory of analytic functions, the theory of multiple residues
in C

n and the formal power Laurent series over C. In this section we give an analo-
gous construction and the foundation of the method of coefficients for classic formal
Dirichlet series of one variable over C.

1.2.2.1 Laurent power series: definition and properties of the residue operator

Using the res concept and its properties the idea of integral representations can be
extended on sums that allow computation with the help of formal Laurent power
series of one and several variables over C. The res concept is directly connected
with the classic concept of residue in the theory of analytic functions and which
may be used with series of various types. This connection has enabled us to express
properties of res operator analogous to properties of residue in the theory of analytic
functions. This in turn allows us to unify the scheme of the method of integral rep-
resentations independently of what kind of series – convergent or formal – is being
used (separately, or jointly) in the process of computation of a particular sum.

In this section we shall restrict ourselves to explaining only one-dimensional
case, although in further computations the res concept shall also be used for multi-
variate series. Besides, the one-dimensional case is interesting by itself in the com-
putation of multiple integrals in terms of repeated integrals.

Let L be the set of formal Laurent power series over C containing only finitely
many terms with negative degrees. The order of the monomial ckwk is k. The order
of the series C(w) = ∑k ckwk from L is the minimal order of monomials with nonzero
coefficient. Let Lk denote the set of series of order k, L = U∞

k=−∞ Lk. Two series
A(w) = ∑k akwk and B(w) = ∑k bkwk from L are equal iff ak = bk for all k. We
can introduce in L operations of addition, multiplication, substitution, inversion and
differentiation [15, 35, 47]. The ring L is a field [85]. Let f (w) , ψ (w) ∈ L0. Below
we shall use the following notations: h(w) = w f (w) ∈ L1, l (w) = w/ψ(w) ∈ L1,
z′(w) = d

dw z(w), h = h(z) ∈ L1 – the inverse series of the series z = h(w) ∈ L1.
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For C(w) ∈ L define the formal residue as

reswC(w) = c−1. (1.5)

Let A(w) = ∑k akwk be the generating function for the sequence {ak}. Then

ak = reswA(w)w−k−1, k = 0,1, .... (1.6)

For example, one of the possible representations of the binomial coefficient is
(

n
k

)
= resw (1+w)n w−k−1, k = 0,1, ...,n. (1.7)

There are several properties (inference rules) for the res operator which immedi-
ately follow from its definition and properties of operations in formal Laurent power
series over C. We list only a few of them which will be used in this article. Let
A(w) = ∑k akwk and B(w) = ∑k bkwk be generating functions from L.
Rule 1 (Removal).

reswA(w)w−k−1 = reswB(w)w−k−1 for all k iff A(w) = B(w). (1.8)

Rule 2 (Linearity). For any α , β from C

α reswA(w)w−k−1 +β reswB(w)w−k−1 = resw((αA(w)+βB(w))w−k−1). (1.9)

By induction from (1.9) it follows, that the operators ∑ and res are commutative.
Rule 3 (Substitution). a) For w ∈ Lk (k ≥ 1) and A(w) any element of L, or b) for
A(w) polynomial and w any element of L including a constant

∑
k

wkresz

(
A(z)z−k−1

)
= [A(z)]z=w = A(w). (1.10)

Rule 4 (Inversion). For f (w) from L0

∑
k

zkresw

(
A(w) f (w)kw−k−1

)
=

[
A(w)/ f (w)h′(w)

]
w=h(z) , (1.11)

where z = h(w) = w f (w) ∈ L1.
Rule 5 (Change of variables). If f (w) ∈ L0, then

resw

(
A(w) f (w)kw−k−1

)
= resz(

[
A(w)/ f (w)h′(w)

]
w=h(z) z−k−1), (1.12)

where z = h(w) = w f (w) ∈ L1.
Rule 6 (Differentiation).

k reswA(w)w−k−1 = reswA′−k. (1.13)
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1.2.2.2 Dirichlet series: definitions and properties of the [q−s] operator

Let H be the set of formal Dirichlet series A(s) = ∑k≥1 akk−s of usual type in for-
mal variable s with complex coefficients. Two series A(s) = ∑k akk−s and B(s) =
∑k bkk−s from H are equal iff ak = bk for all k. We can introduce in H operations of
addition, multiplication and differentiation of series [63, 70]. The set H is a ring.

Let G be the set of formal exponential series of type A(s) = ∑q∈Q aqq−s in vari-
able s with complex coefficients, H ⊂ G. For A(s) ∈ G define the [q−s]-operator
as

aq =
[
q−s](A(s)), ∀q ∈ Q, (1.14)

i.e. the [q−s]-operator is the coefficient at the exponent q−s of the series A(s). If
A(s) = ∑k akk−s from H is the generating function for the sequence {ak} then as
usual

ak =
[
k−s](A(s)), k = 1,2, . . . (1.15)

Remark. Here the sign ∑q∈Q is analogous to the sign ∑k∈N which we often use
instead the sign ∑∞

k=0 for power series and formal Dirichlet series of usual type (see
also [85], p.118). The notion of the formal exponential series A(s) = ∑q∈Q aqq−s

from G is necessary below in the proof of formulae in section 1.2.3.
For example, we have the following representation for the coefficients of zeta-

function ζ (s) := ∑k≥1 k−s, and the inverse of it 1/ζ (s) = ∑k≥1 μ (k)k−s, Re s >
−1:

1 =
[
k−s](ζ (s)), k = 1,2, . . . , (1.16)

μ (k) =
[
k−s](1/ζ (s)), k = 1,2, . . . , (1.17)

where μ is the Möbius function.
There are several properties (inference rules) for the [q−s]-operator which imme-

diately follow from its definition and properties of operations on the formal Dirichlet
series over C. Let A(s) = ∑k akk−s and B(s) = ∑k bkk−s be the generating functions
for the sequences {ak} and {bk}from H.
Rule 1 (Removal).

[
k−s](A(s)) =

[
k−s](B(s)) for all k iff A(s) = B(s). (1.18)

Rule 2 (Shifting). For any d,n ∈ N

[(n/d)−s](A(s)) = [n−s](d−sA(s)). (1.19)

Rule 3 (Linearity). For any α , β from C

α
[
q−s](A(s))+β

[
q−s](B(s)) =

[
q−s](αA(s)+βB(s)). (1.20)

By induction from (1.20) follows, that operators ∑ and [q−s] commute.
Rule 4 (Substitution).

∑
k≥1

k−s [
k−t](A(t)) = (A(t))|t=s = A(s) . (1.21)
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Rule 5 (Differentiation).
[
k−s](A′(s)) = − lnk×

[
k−s](A(s)),k = 1,2, .... (1.22)

1.2.3 The problem of completeness

1.2.3.1 Statement of the problem

In solving analytic problems with the help of generating functions we usually en-
counter one of the following interconnected problems.

Problem A. Suppose that a series S(w) = ∑k skwk from L is expressed in terms
of the series A(w) = ∑k akwk, B(w) = ∑k bkwk,. . . , D(w) = ∑k dkwk from L with
the help of different operations on the formal Laurent power series over C, i.e. the
formula

S(w) = F(A(w),B(w), . . . ,D(w)) (1.23)

is given. For each k find the formula

sk = f ({ak} ,{bk} , . . . ,{dk}) (1.24)

for the terms of sequence {sk} as a function of the terms of sequences {ak} ,
{bk} , . . . , {dk}.

Definition. A sequence {sk} is called of A-type with respect to terms of sequences
{ak} , {bk} , . . . , {dk}, if it is determined by a formula of type (1.24).

Problem B. Let for each k the formula sk = f ({ak} ,{bk} , . . . ,{dk}) , ∀k =
0,1, · · · , with respect to terms of number sequences {ak} , {bk} , . . . , {dk} be given,
but a functional dependence (1.23) between its generating functions is unknown. It
is required to find out, whether the initial formula sk = f ({ak} ,{bk} , . . . ,{dk}) is a
formula of A-type, and if yes, then to find formula S(w) = F(A(w),B(w), . . . ,D(w)).

Definition. A set of rules for res operator ([q−s]-operator) is called complete, if
it allows one to solve problem B.

1.2.3.2 Completeness Lemma: Laurent and Dirichlet series

Completeness Lemma.
(a) The set of rules 1 – 6 for the res operator of the formal Laurent series is

complete [26].
(b) The set of rules 1 – 5 for the [q−s]-operator of the formal Dirichlet series of

usual type is complete.
Proof.
(a) In [25] (pp. 31–35) and [26] we use induction on the number of different

operations over sequences {ak}, {bk}, . . ., {dk} in (1.24) generating the given se-
quence {sk}. On the first step of induction a series S(w) is obtained with the help
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of series A(w) and B(w) from L by one operation over formal Laurent power series
(addition, multiplication, etc.).

(b) Below we perform analogous calculations for the formal Dirichlet series of
usual type. On the first step of induction a series S(s) is obtained with the help
of the formal Dirichlet series A(s) and B(s) from H and one of the operations of
addition and multiplication. We should give the solution to recursive relations that
corresponds to each of these operations.
Addition operation. If ck = ak + bk, k = 1,2, ..., then by formulae (1.15) for the
coefficients ck, ak and bk we obtain

[
k−s](C(s)) =

[
k−s](A(s))+

[
k−s](B(s)), k = 1,2, ...,

(by the linearity rule and the removal rule)

⇔
[
k−s](C(s)) =

[
k−s](A(s)+(B(s)) for all k ⇔C(s) = A(s)+B(s).

Multiplication operation. On one hand we have C (s) = A(s)×B(s) := ∑k ckk−s,
where

ck = ∑
d|k

adbk/d , k = 1,2, ..., (1.25)

where (and up to the end of the section) the summation is over all the divisors d of
natural number k. Conversely, if the identity (1.25) holds, then for k = 1,2, ..., we
get:

ck = ∑
d|k

adbk/d ,

(the change of coefficients ad and bk/d by formulae (1.15))

∑
d|k

[
d−t](A(t))×

[
(k/d)−s](B(s)) =

∞

∑
d=1

[
d−t](A(t))×

[
(k/d)−s](B(s))

(as added terms are equal to zero by the definition (1.14) of the [q−s]-operator, and
further the shifting rule over s)

=
∞

∑
d=1

[
d−t]{[

k−s](d−sA(t)B(s))
}

. . .

(interchanging the order of ∑ and [d−t ] [k−s] and splitting the sum over the index d)

=
[
k−s]

(

B(s)×
{

∞

∑
d=1

d−s [d−t](A(t))

})

(the substitution rule for an expression in braces and the change t = s)

=
[
k−s]{B(s)× (A(t))|t=s} =

[
k−s]{B(s)A(s)}.
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Now by (1.25) we have

ck :=
[
k−s](C(s)) =

[
k−s]{B(s)A(s)}, k = 1,2, ...,

and the removal rule of the [k−s]-operator gives us the required formula

C(s) = B(s)A(s).

If the hypothesis of Lemma holds for n−1 operations, then the next inductive step
is similar to the initial step.

In the following illustrative example we use only concepts and the inference rules
for the formal Dirichlet series.
Example. The celebrated Möbius inversion formula states that

f (n) = ∑
d|n

g(d) , n = 1,2, . . . ⇔ g(n) = ∑
d|n

μ (d) f (n/d) , n = 1,2, . . . . (1.26)

Proof. Let F (s) = ∑n≥1 f (n)n−s and G(s) = ∑n≥1 g(n)n−s from H be the gen-
erating functions for the sequences { f (n)} and {g(n)}. Repeating the same scheme
of calculations we get:

g(n) := [n−s](G(s)) = ∑
d|n

μ (d) f (n/d)

(the substitution using (1.17) and (1.15): f (n/d) = [(n/d)−s](F (s)) and μ (d) =
[d−t ] (1/ζ (t))

= ∑
d|n

[d−t ] (1/ζ (t))× [(n/d)−s](F (s)) = ∑
d|n

[
d−t](1/ζ (t))×

[
n−s](d−sF (s))

= ∑
d≥1

. . . =
[
n−s]

(

F (s)×
{

∞

∑
d=1

d−s [d−t](1/ζ (t))

})

=
[
n−s](F (s)× (1/ζ (t))|t=s) =

[
n−s](F (s)/ζ (s)).

Thus we obtain

[n−s](G(s)) =
[
n−s](F (s)/ζ (s)), for all n,

and the removal rule of the [n−s]-operator gives us

G(s) = F (s)/ζ (s) ⇔ F (s) = ζ (s)G(s) = ∑
k≥1

k−s × ∑
k≥1

gkk−s,

i.e.
f (n) = ∑

d|n
g(d) , n = 1,2, . . . .
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Remark. Completeness Lemma supports the possibility of finding with the help
of the method of coefficients an operational (integral) representation for those sums,
which admit the calculation with formal Laurent power series and Dirichlet formal
series with complex coefficients. Basic difficulty in the use of this method (the set of
inference rules and the Completeness Lemma) consists in the solution of problems
of classification and recognition of expressions of A-type, and in construction of
algorithms of induction search though these problems have found the successful
solution in many concrete cases of calculation of combinatorial sums [25].

1.2.4 Connection with the theory of analytic functions

If a formal power series A(w) ∈ L converges in a punctured neighborhood of zero,
then the definition of reswA(w) coincides with the usual definition of resw=0A(w),
used in the theory of analytic functions. The formula (1.6) is an analog of the well-
known integral Cauchy formula

ak =
1

2πi

∮

|w|=ρ
A(w)w−k−1dw

for the coefficients of the Taylor series in a punctured neighborhood of zero. The
substitution rule (1.10) of the res operator is a direct analog of the famous Cauchy
theorem. Similarly, it is possible to introduce the definition of formal residue at the
point of infinity, the logarithmic residue and the theorem of residues (all necessary
concepts and results in the theory of residues in one and several complex variables,
see [2, 25, 34, 76, 95, 107]). Moreover, it is easy to see that each rule of the res
operator can be simply proven by reduction to the known formula in the theory of
residues for corresponding rational function [25].

The theory of Dirichlet series of usual type can be found in many books on
the theory of holomorphic functions and analytical number theory (see, for exam-
ple, [63, 70]).

1.3 Several recent applications

1.3.1 The characteristic function of the stopping height for the
Collatz conjecture

The 3x+1 problem is known under different names. It is often called Collatz prob-
lem, Ulam problem, the Syracuse problem, Kakutani problem, and Hasse algorithm
[60]. Consider the sequence of iterations (n, f (n), f ( f (n)), . . .), where
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f (n) =

{
(3n+1)/2, for odd n,

n/2, for even n.
(1.27)

The 3x+1 conjecture states that for any natural number n this sequence will contain
the number 1. The index of the first element equal to 1 in this sequence is called
stopping height of the instance of Collatz problem and is denoted σ(n).

The following arithmetic reformulation of the Collatz problem is given in [71].
Theorem 1.1 The 3x + 1 conjecture is true iff for every positive integer a there

are natural numbers w and v such that a ≤ w and
(

2w+1
w

)(
4(w+1)v+1)

v

) ∞

∑
r=0

∞

∑
s=0

∞

∑
t=0

(
v
r

)(
w(v− r)

s

)(
wr
t

)
× (1.28)

(
2s+2t + r +(4w+3)v+1

3((4w+4)t +a)+2(4w+4)r +(4w+4)s

)
×

(
3((4w+4) t +a)+2(4w+4)r +(4w+4)s

2s+2t + r +(4w+3)v+1

)
≡ 1 (mod 2).

In [27, 31] one can find the following reformulation of (1.28) obtained with the
help of the method of coefficients and based on congruences (modulo 2)

(1+u)α ≡ 1+uα , (1+u)α−1 ≡
α−1

∑
s=0

us, (1−(α−1)2u)−1/(α−1) ≡
∞

∏
s=0

(
1+uαs

)
,

(1.29)
where α = 2x, x ∈ N:

Let a,v,w ∈ N and denote

S =
∞

∑
r=0

∞

∑
s=0

∞

∑
t=0

(
v
r

)(
w(v− r)

s

)(
wr
t

)(
2s+2t + r +(4w+3)v+1

3(4w+4) t +2(4w+4)r +(4w+4)s+a

)
×

(
3(4w+4) t +2(4w+4)r +(4w+4)s+a

2s+2t + r +(4w+3)v+1

)
. (1.30)

Then
S = resu{g(u)u−(4w+3)v+a−2}, (1.31)

where

g(u) =
((

1+u−2+(4w+4)
)w

+u−1+2(4w+4)
(

1+u−2+3(4w+4)
)w)v

. (1.32)

This leads to the following reformulation of 3x+1 conjecture.
Theorem 2 [27]. The 3x + 1 conjecture is true iff for every positive integer a

there are natural numbers r and α = 2x+2, where x ∈ N, such that a ≤ −1 + α/4,

1 Careful investigation of this result along with computer experiments shows that this formula and
analogous statements ([71], Theorem 1, Corollary 1 – 3) are not valid. The following correction is
required: the term a has to be replaced by a/3 in order to make it work. We shall use the corrected
version of (1.28) below.
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and the following congruence is true

resuu−αr+a−1
∞

∏
t=0

(
−1+α/4

∑
s=0

(
us(−2+α)αt

+u(−1+2α+s(−2+3α))αt
)
)

≡ 1 (mod 2),

(1.33)

1.3.1.1 Properties of the characteristic function of the stopping height

Definition. In accordance with (1.33) denote

Qα(u) := dα(u)
∞

∏
t=1

dα(uαt
), (1.34)

where the polynomial

dα(u) = 1+u−1+2α +
−1+α/4

∑
s=1

(
us(−2+α) +u−1+2α+s(−2+3α)

)
.

It is shown in [27], that the coefficients of this formal power series Qα(u) over
integers

Qα(u) = ∑
k

qk(α)uk (1.35)

are equal to either 0 or 1. Therefore, the congruence (1.33) is a theoretical-functional
reformulation of the Collatz conjecture. It was noted in [27, 28], that the parameter
r in Theorem 2 is equal to the stopping height σ(n). Thus under the assumptions of
Theorem 2, now the equivalent formulation of the Collatz conjecture can be given
by the equality

q−n+ασ(n) = 1. (1.36)

The last formulation is more attractive than (1.28), and these properties of the func-
tion Qα(u) allows us to call it the characteristic function of the stopping height in
the Collatz conjecture.

Lemma (Characteristic property) For any α the coefficients of the formal power
series Qα(u) ∈ H(Z) in (1.35) are equal to either 0 or 1.

Proof. The statement of Lemma was proven in [27] only for k = αq −n, n ∈ N.
However, that proof can be repeated for an arbitrary k.

Lemma (Functional equations) For any α , the function Qα(u) is uniquely de-
fined by the functional equation

Qα(0) = 1, Qα(u) = dα(u)Qα(uα). (1.37)

The following congruence holds

(dα(u))−1/(α−1) ≡ Qα(u)(mod 2), (1.38)


