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Preface

The development of renewable energy has attracted a great deal 
of interest not only because of the steady rise in oil prices, but 
also because of the limit of fossil fuel reserves. One day not 

very far into the future, refineries and coal-fire power plants may be 
closed forever because their reserves have been depleted. It took 
nature a very long time to create gas, oil, and coal, but it takes us just 
a blink of an eye within the geological time scale to burn them all.

There are many sources of renewable energy. Biofuels are just one 
source, but a very important one. Biofuels can be defined as fuels that 
are derived from biological sources. Among them, methane produced 
by anaerobic digestion has been used by the human race for hundreds, 
if not thousands, of years. More recently, ethanol produced from sugar- 
and starch-based feedstocks has become another important biofuel. 
Other biofuels such as lignocellulosic ethanol, biodiesel, biohydrogen, 
and bioelectricity have been the focus of vigorous research, and the 
technologies for their production are being developed, although most 
of these are not quite ready for commercialization.

This book is written with two objectives. First, it may be a refer-
ence book for those who are interested in biofuels. Second, it may be 
used as a textbook to teach biofuel technologies to science and engi-
neering students who want to contribute to the development and 
implementation of processes for production of these important 
renewable energy sources. In this book, readers will find the funda-
mental concepts of important biofuels and the current state-of-the-
art technology for their production.  

We hope our book will serve our readers well. We will be very 
grateful to receive comments and suggestions for improvement from 
our colleagues in this field and also from the students who will use 
this book in their educational endeavors. 

Caye M. Drapcho, Ph.D.
 Nghiem Phu Nhuan, Ph.D.
 Terry H. Walker, Ph.D.
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CHAPTER 1
Introduction

1.1 Biorefinery
Renewable energy deriving from solar, wind, and biomass sources 
has great potential for growth to meet our future energy needs. 
Fuels such as ethanol, methane, and hydrogen are characterized as 
biofuels because they can be produced by the activity of biological 
organisms. Which of these fuels will play a major role in our future? 
The answer is not clear, as factors such as land availability, future 
technical innovation, environmental policy regulating greenhouse 
gas emissions, governmental subsidies for fossil fuel extraction/
processing, implementation of net metering, and public support for 
alternative fuels will all affect the outcome. A critical point is that as 
research and development continue to improve the efficiency of 
biofuel production processes, economic feasibility will continue to 
improve.  

Biofuel production is best evaluated in the context of a biorefinery 
(Fig. 1.1). In a biorefinery, agricultural feedstocks and by-products are 
processed through a series of biological, chemical, and physical 
processes to recover biofuels, biomaterials, nutraceuticals, polymers, 
and specialty chemical compounds.2,3 This concept can be compared 
to a petroleum refinery in which oil is processed to produce fuels, 
plastics, and petrochemicals. The recoverable products in a biorefinery 
range from basic food ingredients to complex pharmaceutical 
compounds and from simple building materials to complex industrial 
composites and polymers. Biofuels, such as ethanol, hydrogen, or 
biodiesel, and biochemicals, such as xylitol, glycerol, citric acid, lactic 
acid, isopropanol, or vitamins, can be produced for use in the energy, 
food, and nutraceutical/pharmaceutical industries. Fibers, adhesives, 
biodegradable plastics such as polylactic acid, degradable surfactants, 
detergents, and enzymes can be recovered for industrial use. Many 
biofuel compounds may only be economically feasible to produce 
when valuable coproducts are also recovered and when energy-
efficient processing is employed. One advantage of microbial 
conversion processes over chemical processes is that microbes are 

3
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able to select their substrate among a complex mixture of compounds, 
minimizing the need for isolation and purification of substrate prior 
to processing. This can translate to more complete use of substrate 
and lower chemical requirements for processing. 

Early proponents of the biorefinery concept emphasized the zero-
emissions goal inherent in the plan—waste streams, water, and heat 
from one process are utilized as feed streams or energy to another, to 
fully recover all possible products and reduce waste with maximized 
efficiency.2,3 Ethanol and biodiesel production can be linked effectively 
in this way. In ethanol fermentation, 0.96 kg of CO2 is produced per 
kilogram of ethanol formed. The CO2 can be fed to algal bioreactors 
to produce oils used for biodiesel production. Approximately 1.3 kg 
CO2 is consumed per kilogram of algae grown, or 0.5 kg algal oil 
produced by oleaginous strains. Another example is the potential 
application of microbial fuel cells to generate electricity by utilizing 
waste organic compounds in spent fermentation media from biofuel 
production processes.

Also encompassed in a sustainable biorefinery is the use of 
“green” processing technologies to replace traditional chemical 
processing. For example, supercritical CO2 can be used to extract oils 
and nutraceutical compounds from biomass instead of using toxic 
organic solvents such as hexane.4 Ethanol can be used in biodiesel 
production from biological oils in place of toxic petroleum-based 
methanol traditionally used. Widespread application of biorefineries 

Biomass
Feedstock

Solar Energy

Pharmaceuticals

Utilities

Bioenergy
• Biodiesel
• Ethanol
• Hydrogen
• MFC electricity

Biomaterials

CO2

Biomanufacturing-Biorefinery Facility

Photobioreactors
algal oils and H2
production

Biochemicals

FIGURE 1.1 Integrated biorefi nery showing example bioprocesses of 
monoclonal antibody and ethanol production. (Adapted from Walker, 2005.)
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would allow for replacement of petroleum-derived products with 
sustainable, carbon-neutral, low-polluting alternatives.

In addition to environmental benefits of biorefining, there are 
economic benefits as new industries grow in response to need.2,3 A 
thorough economic analysis, including ecosystem and environmental 
impact, harvest, transport, processing, and storage costs must be 
considered. The R&D Act of 2000 and the Energy Policy Act of 2005 
recommend increasing biofuel production from 0.5 to 20 percent and 
biobased chemicals and materials from 5 to 25 percent,5 a goal that 
may best be reached through a biorefinery model.

1.2 Description of Biofuels
The origin of all fuel and biofuel compounds is ultimately the sun, as 
solar energy is captured and stored as organic compounds through 
photosynthetic processes. Certain biofuels, such as oils produced by 
plants and algae, are direct products of photosynthesis. These oils can 
be used directly as fuel or chemically transesterified to biodiesel. 
Other biofuels such as ethanol and methane are produced as organic 
substrates are fermented by microbes under anaerobic conditions. 
Hydrogen gas can be produced by both routes, that is, by 
photosynthetic algae and cyanobacteria under certain nutrient- or 
oxygen-depleted conditions, and by bacteria and archae utilizing 
organic substrates under anaerobic conditions. Electrical energy 
produced by microbial fuel cells—specialized biological reactors that 
intercept electron flow from microbial metabolism—can fall into 
either category, depending on whether electron harvest occurs from 
organic substrates oxidized by organotrophic cultures or from 
photosynthetic cultures.  

A comparison of biofuel energy contents reveals that hydrogen 
gas has the highest energy density of common fuels expressed on a 
mass basis (Table 1.1). For liquid fuels, biodiesel, gasoline, and diesel 
have energy densities in the 40 to 46 kJ/g range. Biodiesel fuel 
contains 13 percent lower energy density than petroleum diesel fuel, 
but combusts more completely and has greater lubricity.7 The 
infrastructure for transportation, storage, and distribution of 
hydrogen is lacking, which is a significant advantage for adoption of 
biodiesel.

Another measure of energy content is energy yield (YE), the 
energy produced per unit of fossil fuel energy consumed. YE for 
biodiesel from soybean oil is 3.2 compared to 1.5 for ethanol from 
corn and 0.84 and 0.81 for petroleum diesel and gasoline, respectively.8

Even greater YE values are achievable for biodiesel created from algal 
sources or for ethanol from cellulosic sources.9 The high net energy 
gain for biofuels is attributed to the solar energy captured compared 
to an overall net energy loss for fossil fuels. 
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1.3 Energy Use 
The motivation for development and use of alternative fuels include 
(1) diminishing reserves of readily recoverable oil, (2) concern over 
global climate change,10 (3) increasing fuel prices, and (4) the desire 
for energy independence and security. The U.S. Energy Information 
Administration determined that total world energy consumption 
in 2005 was 488 EJ (exajoule, 1018 J) or 463 Quad (quadrillion Btu, 
1015 Btu), with U.S. consumption of 106 EJ (100.6 Quad) or 22 percent 
of the world total.11 World consumption is expected to surpass 650 
EJ by 2025.11 The rates of increase in energy usage vary greatly by 
nation. Between 1985 and 2005, annual energy consumption 
increased 31 percent in the United States, while only 18 percent in 
Europe, and an overwhelming 250 percent in China and India, 

Fuel source
Energy density 
(kJ/g)

Density
(kg/m3)

Energy content 
(GJ/m3)

Hydrogen 143.0       0.0898   0.0128

Methane (natural 
gas)

  54.0       0.7167   0.0387

No. 2 diesel   46.0   850 39.1

Gasoline   44.0   740 32.6

Soybean oil   42.0   914 38.3

Soybean biodiesel   40.2   885 35.6

Coal   35.0   800 28.0

Ethanol   29.6   794 23.5

Methanol   22.3   790 17.6

Softwood   20.4   270   5.5

Hardwood   18.4   380   7.0

Rapeseed oil   18.0   912 16.4

Bagasse   17.5   160   2.8

Rice hulls   16.2   130   2.1

Pyrolysis oil     8.3 1280 10.6

*Values reported at standard temperature and pressure
Source: Adapted from Brown, 2003.

TABLE 1.1 Energy Density Values* for Common Fuels 
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although India’s total consumption is small at only 3 percent of the 
world total (Fig. 1.2). These values reflect a host of factors, includ-
ing degree of industrialization, gross domestic product, relative 
efficiency of primary energy source used, and energy conservation. 
In the United States, fossil fuels accounted for 86 percent of our 
total energy consumption in 2004. Petroleum fuels, natural gas, and 
coal accounted for 40, 23, and 23 percent, respectively, with an 
additional 8 percent from nuclear power and only 6 percent from 
renewable sources, including hydroelectric (2.7 percent), biomass/
biofuels (2.7 percent), and 0.6 percent from solar, wind, and geo-
thermal energy sources combined.11,12 Currently available fossil fuel 
sources are estimated to become nearly depleted within the next 
century, with petroleum fuel reserves depleted within 40 years.11,13

The United States imports 10 million barrels of oil per day of the 
existing world reserves (1.3 trillion barrels) (Table 1.2). Peak oil, the 
maximum rate of oil production, is expected to occur between 2010 
and 2020.11 Even with increasing attention on hydrogen as an 
alternative fuel, 95 percent of worldwide production of hydrogen 
gas is from fossil fuel sources, primarily the thermocatalytic reforma- 
tion of natural gas.14

Approximately 50 percent of the U.S. trade deficit is attributed to 
the import of crude oil. Crude oil prices have risen from less than 
$20/barrel in the 1990s to nearly $100/barrel in 2007. Accounting for 
military aid and subsidies to protect and maintain an uninterrupted 
flow of crude oil from unstable regions of the world, the true cost of 
oil15 has been estimated as greater than $100/barrel since 2004.  
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FIGURE 1.2 Annual energy consumption values for selected countries. 
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1.4 Efficiency of Energy Use
The main fossil fuels (coal, natural gas, and oil) are about 33 percent 
efficient when used for energy generation, and emit high levels of 
CO2 (Fig. 1.3) and nitrogen oxides. Geothermal and solar energy are 
less than 20 percent efficient with current technology, but are nearly 
zero-emission energy sources. Wind power has both high efficiency 
and zero-emissions, but is restricted to certain regions. Home heating 
by natural gas has a high efficiency, with lower emissions than other 
fossil fuels.

Spark-ignition (SI) gasoline engines, the most commonly used for 
transportation in the United States, are the most inefficient of current 
technologies, with an average efficiency of 16 percent (Fig. 1.4) 
compared to biodiesel in diesel engines (29 percent efficiency).15 The 
most efficient engines—hybrid diesel and hybrid hydrogen fuel 
cell—achieve nearly 50 percent efficiency. Further, emissions for 
hybrid hydrogen fuel cell (390 g CO2/mile) are substantially less than 
diesel (475 g CO2/mile) and SI gasoline engines (525 g CO2/mile).16

Country
Oil reserves
(billion barrels)

U.S. oil imports
(million barrels/day)

Saudi Arabia   267   1.50

Canada   179   1.62

Iran   132 —

Iraq   115   0.66

Kuwait   104   0.24

United Arab Emirates     98 —

Venezuela     80   1.30

Russia     60 —

Libya     39 —

Nigeria     36   1.08

United States     21 —

China     18 —

Qatar     15 —

Mexico     13   1.60

Algeria     11   0.22

Brazil     11 —

Other     91   1.84

Total 1290 10.06 (60%)

Source: Adapted from Energy Information Agency, 2007.

TABLE 1.2 World Oil Reserves and U.S. Imports Based on Leading Producers
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