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Clinical MR Neuroimaging
Diffusion, Perfusion and Spectroscopy

The physiological magnetic resonance (MR) techniques of
diffusion imaging, perfusion imaging and spectroscopy offer
insights into brain structure, function and metabolism. Until
recently, these were mainly applied within the realm of medi-
cal research but, with their increasing availability on clinical
MR imaging (MRI) machines, they are now entering clinical
practice for the evaluation of neuropathology. This book pro-
vides the reader with a thorough review of the underlying
physical principles of each of these methods, as well as
comprehensive coverage of their clinical applications. Topics
covered include single- and multiple-voxel MRS techniques;
MR perfusion based on both arterial spin labeling and dynamic
bolus tracking approaches; and diffusion-weighted imaging,
including techniques for mapping brain white-matter fiber
bundles. Clinical applications are reviewed in depth for each
technique, with case reports included throughout the book.
Attention is also drawn to possible artifacts and pitfalls.
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Foreword

The advent of clinical MR imaging (MRI) in the
1980s heralded a new era in the ability to image the
brain in vivo. MRI allows the detailed depiction of
brain anatomy and pathology with unprecedented
spatial resolution and soft-tissue contrast. It is also
relatively safe and completely non-invasive. Never-
theless, the sensitivity and specificity with which
structural MRI alone can define the wide range of
neurological disease is limited.

The last decade has also seen the development of
physiological MR techniques, whereby information
concerning tissue function as well as structure
is obtained. These techniques include diffusion,
perfusion, and MR spectroscopy, which provide
information on tissue ultra-structure, blood flow, and
biochemistry, respectively. Information of this type
supplements and complements that from clinical or
structural imaging investigations, often providing
important surrogate markers of disease pathophysi-
ology or therapeutic response.

These techniques, previously only available in a
research environment, are now accessible on most
MR systems and can readily be incorporated into
clinical imaging examinations. To date, however,
there has been a paucity of literature in a single vol-
ume to support those wishing to apply physiological
imaging studies in a clinical context. The aim of this
book is to address the appropriate clinical applica-
tion and interpretation of diffusion, perfusion, and
spectroscopy.

The first section of the book describes the physical
principles underlying each technique, as well as
the potential associated artifacts and pitfalls.

XXiii
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Foreword

The second section addresses applications in the
different branches of clinical neuroscience. Chapters
are grouped according to pathology, and are pre-
ceded by overviews that aim to place these method-
ologies in a broader clinical perspective. Illustrative
case reports are included throughout the book.

We recognize that the term “functional MRI” (fMRI)
has become synonymous with studies of localized
brain activation, mostly using “blood oxygen level-
dependent” (BOLD) contrast. This approach, which
continues to contribute to the understanding of the
relationship between brain structure and function,
is well covered in other texts and is not addressed in
this volume. Likewise, magnetization transfer imag-
ing, and methods for post-processing structural
data, for example volumetric analysis, or MRI relax-
ometry, are not included. While these techniques are
the subject of much research effort, they are not

widely available at the time of writing, and have yet
to find a definitive clinical role.

The aim of this book is to create a reference work
for those techniques that can be widely applied, not
just at academic medical centers. Currently, diffu-
sion, perfusion, and spectroscopy are the physiolog-
ical techniques most likely to be used routinely. Our
hope is that this book will provide a balanced refer-
ence work for physiological MRI in real clinical prac-
tice. The overall aim is to optimize the use of these
techniques to increase the sensitivity and specificity
of the MR imaging examination, and thereby improve
the management of individual patients.

Jonathan H. Gillard, Cambridge
Adam D. Waldman, London
Peter B. Barker, Baltimore
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The last several decades have seen remarkable
advances in the clinical neurosciences with some of
the most remarkable achievements related to neuro-
imaging. Given the current depth of knowledge
about the brain, it is difficult to appreciate that barely
300 years ago this organ was almost a complete mys-
tery, particularly as to its function. While the brain
has been recognized as an “organ” since antiquity, no
functional role was ascribed to it until the early 1600s
when Descartes placed the “soul” in one of its small
parts, the pineal gland (Marshall and Magoun, 1998).
Prior to this intriguing, but erroneous concept,
much more functional importance had been attrib-
uted to the fluid in the ventricles than the brain itself.
Descartes’ non-scientific attribution was, fortu-
nately, quickly followed by the much more rigorous
description of the structure of the brain by Thomas
Willis (1664). While Willis’ application of the scien-
tific method to the brain was seminal, the primitive
scientific tools available at the time limited his direct
observations to anatomy, which in and of itself does
not convey function. Despite little direct evidence,
Willis began to argue that mental functions reside in
the brain, as do certain diseases such as epilepsy. The
scientific tools necessary to prove his assertions by
actual observation of physiology, molecular biology,
and other “functional” aspects of the brain were still
several centuries away.

However, the brain was found to have a peculiarly
strong correlation between structure (anatomy) and
function (behavior). This intimate relationship pro-
vided the basis for the still robust field of “experi-
mental” neuroanatomy. Experimental neuroanatomy;,
such as the destruction of a portion of the brain in
an animal followed by observations of its behavior

allowed 18th and early 19th Century scientists such
as Gall and Rolando to make structure/function
correlations that documented the brain as a central
control organ (Marshall and Magoun, 1998). Since it
has never been appropriate to perform debilitating
experiments on human beings, many fundamental
questions pertaining to human brain function per-
sisted until the “natural science” version of experi-
mental neuroanatomy was introduced by clinicians
such as Morgagni, who attributed neurological
deficits such as hemiparesis to grossly destructive
lesions of patients’ brains found at autopsy (Morgagni,
1760). Broca, in 1860, applied such lesion/deficit
correlation to a patient who had suffered the acute
onset of aphasia and whose brain at autopsy revealed
an infarct in the right frontal operculum, thus local-
izing a component of speech to a particular cortical
region (Broca, 1861). Such “dysfunctional” imaging
was subsequently employed by many clinical scien-
tists, particularly those 19th and early 20th Century
neurologists whose names are attached to so many
neurological syndromes. While lesion/deficit corre-
lation has been a very informative means of study-
ing the brain, it is limited by its anatomic basis that
does not provide any direct information about the
brain’s physiology or molecular makeup.

Note that all of these early methods of studying
the brain involved some form of imaging. Given the
spatially heterogeneous nature of the brain (both
structurally and functionally), imaging of the brain
is an absolute necessity in order to document the
location of an experimental or natural lesion. Only
with this anatomic information could the observed
neurological, psychological, or cognitive dysfunc-
tion be linked to its physical source. In human
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beings these types of investigations were severely
restricted by the unfortunate necessity of a patient
having to suffer an insult to the brain and the addi-
tional burden that the patient either die and have per-
mitted an autopsy or submit to a craniotomy. These
were until very recently the only means of directly
documenting the presence and extent of a brain lesion.

Despite the many drawbacks, experimental
anatomy and clinical lesion/deficit research in the
first half of the 20th Century provided the basis of
much of our current understanding of functional
localization in the brain. During the second half of
the 20th Century, these early, primitive, but inform-
ative techniques were increasingly supplemented by
sophisticated histological, neurophysiological, and
molecular biological techniques that have com-
bined to yield the great depth of knowledge about
the brain that we now have; knowledge that extends
from single cell events to highly integrated cognitive
functions. However, many of these newer techniques
also have restrictions to their applications in human
beings, particularly intact, functioning human beings.
Histological techniques require tissue, never easily
obtained from human brain and almost never from
multiple or large regions. Many neurophysiological
techniques require intrusion into the brain, as for
electrode recordings or cortical stimulation. Mole-
cular techniques are seldom feasible in intact func-
tioning brain. While these powerful techniques
provide extraordinarily detailed information about
small parts of the brain, none provide data from the
entire, functioning brain. This is a significant limita-
tion as many functions of the brain involve compos-
ite actions of its many spatially, physiologically, and
biochemically disparate components. This is particu-
larly true of complex behavioral tasks and cognition.
The spatial heterogeneity of the brain has always
begged for imaging of the whole organ, preferably in
the intact, functioning state. This has not been feasi-
ble until very recently.

In 1974 clinical neuroscience experienced a
profound change with the invention of the X-ray
computed tomography (CT) scanner, an instrument
that for the first time could non-invasively produce
images of the whole, living human brain (Hounsfield,
1973). CT scans are based on electron density and
there are only subtle differences of this parameter in

the brain. For instance, the electron density of gray
matter (GM) and white matter (WM) differ by only
0.5%. Hence, clinical CT scans yield relatively crude
images of the brain. While CT scanners can only image
anatomy at a relatively low resolution it has allowed
the traditional lesion/deficit methodology to be
applied to living subjects contemporaneously with
functional examinations. Autopsy and craniotomy
are no longer necessary to demonstrate the anatom-
ical correlates of functional deficits and the litera-
ture has become replete with lesion/deficit studies
expanding our knowledge of how the function of the
human brain is spatially distributed. Investigators such
as the Damasio’s have used clinical CT, and later mag-
netic resonance (MR) scans of hundreds of neuro-
logically, psychologically, and cognitively impaired
subjects to better demonstrate the anatomic sub-
strate of higher order mental tasks (Damasio and
Damasio, 1989). However these images still show
only static anatomy and do not reflect any physio-
logical or molecular aspect of the brain. Indeed it
can be difficult to tell a conventional CT or MR scan
of a cadaver’s brain from that of a normal person.
While we now understand many strong relationships
between the gross structure and function of the brain,
there remains the overpowering need to be able to
directly “see” physiological and molecular function
of the brain. After all, it is more important to know
what the brain is doing than what it looks like!

This need was initially met by the combination of
positron emission tomography (PET) and metabolic
radio tracers such as F'®DG, H,0'°, and CO' (Fox
et al., 1988). PET methodology allows non-invasive
imaging of the whole brain under resting as well
as task conditions. Physiological parameters, such
as cerebral blood flow (CBF) can be imaged non-
invasively in the clinical environment, as can
responses of these parameters to activation of the
brain by a task - direct imaging of dynamic brain
physiology. In addition, radio ligands have been
developed that produce images of the distribution
of specific molecules in the brain, such as compo-
nents of neurotransmitter systems. This methodology
remains a powerful research tool, albeit expensive
and logistically challenging.

As a result of these advances, the 20th Century
progressed from very limited, invasive anatomic



imaging of a poorly understood human brain to
widely applied, non-invasive, dynamic physiologi-
cal and biochemical imaging of a richly appreciated
organ. Continuing advances in neuroimaging will
offer ever more information about the brain and its
function.

This book focuses on the important evolving
methodology of MR imaging (MRI), specifically
physiological MRI of the brain. MRI derived from
nuclear MR (NMR), a physical phenomenon related to
the behavior of nuclei in the presence of a magnetic
field that was described by Felix Bloch, Hansen and
Packard (1946). During the 1940s and 1950s many
investigators developed techniques that allowed this
physical phenomenon to be exploited for the study
of chemical structure. Since the introduction of the
Fourier transform (FT) technique by Ernst in 1966
and the development of high-field superconducting
magnets, NMR has been able to elucidate the detailed
chemical structure of even large molecules such as
proteins (Ernst and Anderson, 1966). The addition
of magnetic field gradients to the requisite static
magnetic field of NMR can spatially define a sample,
allowing MRI. This concept of the use of magnetic field
gradients to generate images was first demonstrated
in the landmark 1973 paper by Lauterbur; in 1976,
Ernst introduced the principle of two-dimensional FT
NMR which is now almost universally used for all MRI
(Lauterbur, 1973; Aue et al., 1976).

Conventional MRI relies on radio signals emitted
by nuclei of molecules, particularly H,O, of relatively
stationary tissue. Because of their different water
content and relaxation times, there is typically more
than 20% difference in this signal between GM
and WM. Similar differences can be found between
certain pathological tissues and normal brain. This
accounts for the exquisite images of normal neuro-
anatomy or multiple sclerosis (MS) plaques produced
by contemporary MRI. The first decade of clinical
MRI was characterized by steady improvements in
the morphological imaging capabilities of this quite
remarkable and completely non-invasive and safe
technology. However, there is little useful physiologi-
cal information in conventional MRI signal, except
for that related to fast-flowing fluids such as blood.
Recent MRI advances have focused on the develop-
ment and application of molecular and physiological
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imaging capabilities. These new MRI methods are
the subject of this volume and reflect the continuing
evolution from purely anatomic to physiological
and molecular imaging of the brain.

The three main physiological MR methods to be
presented are MR spectroscopy (MRS), diffusion,
and perfusion MRI. MRS yields images of the distri-
bution and concentration of naturally occurring
molecules such as N-acetyl aspartate (NAA) (one of
the most abundant amino acids in the brain, and
believed to be localized predominantly in neurons
and their processes), choline (Cho) (a key constituent
of cell membranes) and lactate (Lac) (a reflection of
anaerobic metabolism). Diffusion MRI demon-
strates regions of normal and pathological micro-
molecular motion. Under appropriate conditions,
these images can reflect patterns of axonal anatomy
and when applied as “fiber tracking” this technique
can turn the large homogeneously bland regions
of WM of conventional MRI into dramatic three-
dimensional displays of the major axonal pathways.
Using extrinsic contrast agents or intrinsic contrast
agents, such as blood, perfusion MRI cannot only
create qualitative, but quantitative maps of various
perfusion parameters, including CBE cerebral blood
volume (CBV), and vascular permeability. With these
techniques, at last, neuroscientists can painlessly,
non-invasively, and safely study important physio-
logical properties of a whole, living, functioning
human brain. One can now actually see what the
brain is doing, not just what it looks like.

The clinical value of these physiological and
molecular tools is becoming increasingly appreciated
and can be illustrated by their applications to one
disease — cerebral ischemia and stroke. Lac is an
important metabolic molecule of which little is pro-
duced by the brain under aerobic conditions. How-
ever, under anaerobic conditions, such as ischemia,
abundant Lac may be produced and is easily detected
by proton MRS (Barker et al., 1994). The imaging of
Lac by MRS is one of the most sensitive means of
detecting even mild cerebral ischemia, its presence
temporally preceding irreversible ischemia and
stroke. Diffusion MRI is also very sensitive to
ischemia, presumably because there is a shift of
extracellular water molecules into the intracellular
compartment where molecular diffusion is more
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restricted (Le Bihan et al., 1986). Even if this theory is
not correct, empirically it is well established that dif-
fusion weighted images show some of the earliest
changes of stroke and severe ischemia. It almost goes
without saying that perfusion imaging is a powerful
tool for evaluating cerebral ischemia. Perfusion MRI
can easily, directly, and accurately document the
reduction of CBF secondary to obstructive or non-
obstructive cerebral ischemia as well as demonstrate
changes in CBV that often provide additional infor-
mation as to the physiological severity of the insult
(Rempp et al., 1994). Such physiological tools are
increasingly necessary for the management of acute
cerebral ischemia when the traditional anatomic
diagnosis of “live brain/dead brain” is not adequate
for directing vascular or neuroprotective treatment.

The authors of the chapters of this book describe
the latest physiological MRI methodologies in detail
and then illustrate their applications to major
diseases of the brain, including cerebrovascular
and degenerative diseases, neoplasia, inflammation,
trauma, and even psychiatric disorders. These new
techniques of the early 21st Century foreshadow
even more remarkable advances in neuroimaging,
but first, please appreciate the robust functional
imaging capabilities so well described and illustrated
in this volume.
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Physiological MR techniques






Fundamentals of MR spectroscopy

Peter B. Barker

Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, USA

Introduction

Nuclear MR (NMR) spectroscopy in bulk matter
was demonstrated for the first time in 1945 when
Bloch and Purcell independently demonstrated that
a strong magnetic field induced splitting of the
energy levels and detected the resonance phenom-
ena (Bloch, 1946; Purcell et al., 1946). The method
was originally of interest only to physicists for the
measurement of gyromagnetic ratios (y) of different
nuclei, a constant specific to a particular nucleus,
but applications of NMR to chemistry became appar-
ent after the discovery of chemical shift and spin-
spin coupling effects in 1950 and 1951, respectively
(Proctor and Yu, 1950; Gutowsky et al., 1951). The
spectra of high-resolution liquid NMR contain fine
structure information because the nuclear reso-
nance frequency is influenced by both neighboring
nuclei and the chemical environment which allows
information on the structure of the molecule to be
deduced. Hence, NMR spectroscopy rapidly became
an important, and widely used, technique for chem-
ical analysis and structure elucidation of chemical
and biological compounds.

Major technical advances in the 1960s included
the introduction of superconducting magnets (1965),
which were very stable and allowed higher field
strengths than with conventional electromagnets to
be attained, and in 1966 the use of the Fourier trans-
form (FT) for signal processing. In nearly all con-
temporary spectrometers, the sample is subjected
to periodic radio frequency (RF) pulses directed
perpendicular to the external field and the signal
is Fourier transformed to give a spectrum in the
frequency domain. FT NMR provides increased

sensitivity compared to previous techniques, and
also led to the development of a huge variety of
pulsed NMR methods, including multi-dimensional
NMR techniques.

Biological and medical applications of MR were
developed in the early 1970s with the introduction
of MR imaging (MRI) and MR spectroscopy (MRS) of
biological tissue. In vivo MRS of humans became
possible in the early 1980s with the advent of whole
body magnets with sufficiently high field strength
and homogeneity (Radda, 1986). Early studies
focused on the phosphorus nucleus, since this was
the most technically feasible at that time. Methods
were developed for spatially localized 3P MRS
(Luyten et al., 1989), and studies of major neuro-
pathology (such as stroke or brain tumors) were per-
formed (Arnold et al., 1989; Cadoux et al., 1989;
Levine et al, 1992). A significant problem with
3Ip MRS, however, is its low sensitivity (mainly
because of the relatively low vy of 3P, and low con-
centrations of phosphorus containing compounds).
Since the spatial resolution in in vivo spectroscopy is
largely limited by the signal-to-noise ratio (SNR) the
minimum voxel size for 3'P spectroscopy of the
human brain is typically 30 cm?® using conventional
techniques and 1.5T magnets. The technique can
therefore only be applied to either very large lesions,
diffuse or global diseases.

In recent years, there has been more interest in
proton MRS, particularly after it was demonstrated
that it was possible to obtain high-resolution spectra
from small, well-defined regions in reasonably short
scan times (Frahm et al., 1989). The higher sensitivity
of the proton is due to several factors, including
higher v, higher metabolite concentrations, and
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Fig. 1.1 Proton spectra of the human brain recorded at both (a, b) long (TE 272) and (c) short (TE 35ms) TEs, in the long TE
spectra from a patient with an acute right middle cerebral artery (MCA) stroke, the normal spectrum (a) from the left hemisphere

shows signals from Choline (Cho), Creatine (Cr) and N-acetyl aspartate (NAA). In the ischemic left hemisphere (b) an additional

signal due to Lactate (Lac) is apparent as well as a moderate decrease in NAA. In the short TE spectrum of normal frontal WM (c),

in addition to NAA, Cr and Cho, signals can be detected from myo-inositol (ml), Glutamate and Glutamine (Glx), and lipids. (a)

and (b) are from a multi-slice MR spectroscopic imaging (MRSI) data set (nominal voxel size 0.8 cm?), while (c) is recorded from

an 8 cm?® single voxel using the Point resolved spectroscopy (PRESS) sequence.

more favorable relaxation times. Although proton
spectroscopy has been demonstrated in a number
of organ systems (in particular, recent studies show
promise for the use of proton spectroscopy in the
diagnosis of prostate and breast cancer), the over-
whelming number of applications have been in the
brain, because of the absence of free lipid signals in
normal cerebrum, relative ease of shimming, and
lack of motion artifacts. The proton is also a widely
used nucleus because it is the same nucleus used for
conventional MRI, and therefore it is usually possi-
ble to perform proton MRS on most 1.5T or higher
clinical MRI machines without the need to purchase
additional scanner hardware or modifications.
NMR spectroscopy can in fact be performed with
many different nuclei, and in the brain, in addition
to 'H and 3'P, there have been reports of spectros-
copy of deuterium (°D), carbon-13, nitrogen-15,
lithium-7, sodium-23, and fluorine-19, using either

signals from endogenous nuclei and/or compounds,
or via the administration of (sometimes isotopically
enriched) exogenous substances. All of these studies
fall into the context of advanced research at the cur-
rent time, and therefore will not be considered fur-
ther here. This chapter focuses on the information
content of proton MR spectra of the brain, technical
issues such as choice of localization technique, and
normal age-related and anatomical variations.

Information content of proton MR spectra of
the brain

Figure 1.1 shows examples of proton spectra
recorded at long and short echo times (TEs). The
assignment and significance of each the resonances
in the spectrum is discussed below, and summa-
rized in Table 1.1.
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N-acetyl aspartate

The largest metabolite signal, resonating at 2.02 ppm,
occurs from the N-acetyl group of N-acetyl aspartate
(NAA), with perhaps a small contribution from
N-acetyl aspartyl-glutamate (NAAG) (Frahm et al,
1991). Despite being one of the most abundant
amino acids in the central nervous system (CNS),
NAA was not discovered until 1956 and its function
has been the subject of considerable debate. It has
been speculated to be a source of acetyl groups for
lipid synthesis, a regulator of protein synthesis, a
storage form of acetyl-CoA or aspartate, a break-
down product of NAAG, a “molecular water pump”,
or an osmolyte (Barker, 2001). Using immunocyto-
chemical techniques, NAA has been shown to be
predominantly localized to neurons, axons, and den-
drites within the central nervous system (Simmons
etal., 1991), and studies of diseases known to involve
neuronal and/or axonal loss (e.g. infarcts, brain
tumors, seizure foci, multiple sclerosis (MS) plaques)
have uniformly shown NAA to be decreased. In
pathologies, such as MS, correlations between brain
levels and clinical measures of disability have been
shown (De Stefano et al., 2001). Animal models of
chronic neuronal injury have also been shown to give
good correlations between NAA levels (as measured
by MRS) and in vitro measures of neuronal survival
(Simmons et al., 1991; Guimaraes et al., 1995).

For all these reasons, it has been tempting to “label”
NAA as a neuronal marker, and to equate levels of NAA
with neuronal density. However, there is increasing
evidence that this may not be the case. NAA has been
detected in non-neuronal cell types, such as mast cells
or isolated oligodendrocyte preparations, suggesting
that NAA may not be specific for neuronal processes
(Urenjak et al., 1992; Burlina et al., 1997, Bhakoo and
Pearce, 2000), although it is not completely clear if
these cells are present in the brain or high concentra-
tions, or if their metabolism is identical, in vivo. It is
also well known that there are exceptions to the
correlation between neuronal density and NAA levels.
For instance, the pediatric leukoencephalopathy
(Canavan’s disease) is associated with a large elevation
of intracellular NAA, owing to deficiency of asparto-
acylase (ASPA), the enzyme that degrades NAA to
acetate and aspartate (Figure 1.2) (Barker et al., 1992).

(a) | Glucose, acetate, pyruvate, etc |

Glycolysis, TCA cycle l

|Aspartate + acetyl CoA|

L-aspartate N-acetyl
transferase “ANAT’,

EC 2.3.1.17
A4
|EA NAAG
“ASPA” | “NAALADase”
EC 3.5.1.16 | EC 3.4.17.21

A 4
| Acetate + aspartate |

(b) NAA

ppm 4.0 3.0 2.0 1.0
(c)

ppm 4.0 3.0 2.0 1.0

Fig.1.2 (a) Some biochemical pathways involving NAA, and

(b, ¢) pathological processes involving NAA metabolism. (b) Long
TE (270 ms) proton spectra of the frontal WM in a child with
Canavan’s disease, showing a high ratio of NAA/Cr (and NAA to
other metabolites) due to the lack of the enzyme ASPA which
degrades NAA. T,-weighted MRI shows a near complete lack of
myelination. (c) A 3-year old boy with mental retardation and
complete absence of NAA on brain MRS (short TE). MRI is only
mildly abnormal, while other metabolites in the spectrum are
also in the normal range. A deficit in the NAA synthetic
pathway was suspected, but not proven. Reproduced with
permission from Martin et al. (2001).
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Fig. 1.3 An example of a reversible reduction in NAA in a 6-year old child with ADEM. (a) 36 days after symptom onset, FLAIR MRI
shows multiple, bilateral lesions which are characterized by reduced levels of NAA and increased Lac. Cho and Cr are within the

normal range. (b) At day 137 after steroid treatment, the lesions have nearly resolved, and the spectra are more normal, in

particular NAA has partially recovered and Lac is now undetectable.

In addition, there has been one remarkable case report
of a young boy with mental retardation with an appar-
ently global complete absence of NAA (Figure 1.2)
(Martin et al., 2001). Clearly, in these subjects, the high
levels or absent of NAA do not reflect changes in neu-
ronal density, but rather a perturbation of the synthetic
and degradation pathways of NAA metabolism (Figure
1.2). Further examples of the lack of direct correlation
of NAA and neuronal density are various pathologies
which have shown either spontaneous or treatment-
related reversals of NAA decreases. Some examples
include MS, mitochondrial diseases, acquired immuno
deficiency syndrome (AIDS), temporal lobe epilepsy
(TLE), amyotrophic lateral sclerosis (ALS) or acute
disseminated encephalomyelitis (ADEM) (Bizzi et al.,
2001; Barker, 2001) (Figure 1.3). Evidently, NAA does
not appear to be essential for neuronal function.

How should changes (in most instances, decreases)
in NAA be interpreted? It should be recognized that
the macroscopic concentration of NAA (like that of
any neurochemical) depends on the fluxes of syn-
thetic and degradation pathways, cellular density,
and brain water content and distribution. Sometimes,
a decrease in NAA may be solely or largely attributa-
ble simply to increased extracellular water or cere-
brospinal fluid (CSF) content within the localized
MRS volume, although these factors can be cor-
rected with appropriate analysis techniques (cf.
Chapter 2). Neuronal and axonal dysfunction or loss
should be considered when the tissue NAA content
is reduced, because the balance of evidence sug-
gests that the majority of NAA is located within neu-
ronal processes. Whether the reduction represents
an irreversible loss of cells or a potentially reversible
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metabolic process will in large part depend on the
individual pathology in which it is encountered, and
the prognosis for recovery of brain function is pre-
sumably also variable. In certain types of lesions
(e.g. chronic infarction, brain tumors), it appears
likely that in NAA do indeed correspond to irre-
versible neuronal loss. Overall, non-invasive MRS
measurements of NAA appear to be one of the best
surrogate markers currently available for neuronal
integrity. However, it should be kept in mind that in
some pathologies, NAA levels may vary independent
of the state of the health and number of neurons.

Choline

The “choline” signal (Cho, 3.24 ppm) arises from
the —N(CHj3); groups of glycerophosphocholine
(GPC), phosphocholine (PC), and a small amount of
free Cho, compounds which are involved in mem-
brane synthesis and degradation. Both increases and
decreases in Cho have been reported in pathological
conditions: processes leading to elevation of Cho
signal include active demyelination (Davie et al.,
1993), resulting from the degradation of myelin
phospholipids primarily to GPC, or increased num-
bers of glial cells (Gill et al., 1989, 1990). Low Cho has
been observed in hepatic encephalopathy (Kreis
etal., 1992a), and there is also some evidence to sug-
gest that dietary intake of Cho can modulate cere-
bral Cho levels (Stoll et al., 1995). Elevated Cho levels
seem to be a characteristic of many types of neo-
plasms, including high-grade brain tumors (provided
that they are not necrotic), prostate, breast, head and
neck, and others.

Creatine

The “creatine” signal (Cr, 3.02 ppm) is a composite
peak consisting of Cr and phosphocreatine, com-
pounds which are involved in energy metabolism
via the Cr kinase reaction generating ATP. Since Cr
is synthesized in liver, chronic liver disease leads
to lower cerebral Cr concentration (Ross and
Michaelis, 1994a). There is also a rare group of dis-
eases which involve total Cr deficiency in the
brain, resulting from either lack of synthesis in the
liver (guanidinoacetate methyl transferase (GAMT)

deficiency) or defective transport to the brain
(Stockler et al., 1994; Cecil et al., 2001; Bizzi et al.,
2002). In vitro, glial cells contain a two- to four-fold
higher concentration of Cr than do neurons
(Urenjak et al., 1993), although curiously white
matter (WM) Cr levels are lower than those of gray
matter (GM) in the normal brain.

It has been suggested that the sum of Cr and phos-
phocreatine is relatively constant in the human
brain, and for this reason Cr is often used as a refer-
ence signal, and it is a common practice for metabo-
lite ratios to be expressed as a ratio relative to Cr.
However, with the development of quantitative
analysis techniques, it is clear that total Cr is not
constant, both in different brain regions and in
pathological processes, so the assumption of Cr as
an invariate reference signal should be used with
caution. Absolute metabolite quantification tech-
niques are discussed in detail in Chapter 2.

Lactate

In normal human brain, lactate (Lac, 1.33 ppm) is
below (or at the limit of) detectability in most stud-
ies. Any detectable increase in Lac can therefore be
considered abnormal, except perhaps in CSF where
it may be detectable at alow level in normal subjects
with prominent ventricles. Increased Lac is usually
the result of deranged energy metabolism, and has
been observed in ischemia (both acute (highest) and
chronic (Petroff et al., 1992; Barker et al., 1994)),
brain tumors (Alger et al., 1990), mitochondrial dis-
eases (Mathews et al., 1993), and other conditions.
Small elevations of Lac have also been reported
in the visual cortex (VC) during photic stimulation
(Prichard et al., 1991), believed to be due to
increased non-oxidative glycolysis, but this effect
does not appear to be particularly reproducible
(Merboldt et al., 1992).

Myo-inositol

At short TEs, additional compounds are detected
which are not visible at long TEs, either because of
short T, relaxation times and/or the dephasing
effects of J-coupling (Figure 1.1(c)). One of the
largest signals occurs from myo-inositol (ml) at



3.56 ppm. ml is a pentose sugar, which is part of the
inositol triphosphate intracellular second messen-
ger system. Levels have been found to be reduced in
hepatic encephalopathy (Ross et al., 1994b), and
increased in Alzheimer’s dementia (Shonk et al.,
1995) and demyelinating diseases (Kruse et al.,
1993). The exact pathophysiological significance of
alterations in ml is uncertain. A leading hypothesis
is that elevated ml reflects increased populations of
glial cells which are known to express higher levels
of this metabolite than neurons (Brand et al., 1993;
Flogel et al., 1994); this may be related to differences
in mI/Na co-transporter activity which appears to
play a key role in astrocyte osmoregulation (Strange
et al., 1994). This would explain chronic disturbance
in mlI both in degenerative and inflammatory dis-
ease, and transiently in hypo- and hyper-osmolar
states.

Glutamate and glutamine

Glutamate (Glu) and glutamine (GlIn) are difficult to
separate in proton spectra at 1.5T (and are often
labeled as a composite peak glutamine and gluta-
mate Glx), although some authors have attempted to
distinguish them (Kreis et al., 1992b). At very high
fields (at 4 T or above), the C4 resonances of Glu and
GIn start to become resolved. Increased cerebral Gln
has been found in patients with liver failure (hepatic
encephalopathy (Ross et al., 1994b), and Reye’s syn-
drome (Kreis et al., 1995a)) as the result of increased
blood ammonia levels, which increases Gln synthesis.

Less commonly detected compounds

A survey of the literature reveals some 25 additional
compounds that have been assigned in proton spec-
tra of the human brain. Some of these compounds
are present in normal circumstances, but because
they are very small and/or overlapping peaks it
is usually difficult to detect them. Some examples
of these include NAAG, aspartate, taurine, scyllo-
inositol, betaine, ethanolamine, purine nucleotides,
histidine, glucose, and glycogen (van Zijl and Barker,
1997). Other compounds are yet more difficult to
detect and require the use of special spectral editing
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pulses (beyond the scope of the current chapter) to
detect; example of these include y-amino-butyric
acid (GABA), glutathione, and certain macromole-
cules (Rothman et al., 1993; Terpstra et al., 2003).

Under disease conditions, other compounds may
become detectable because their concentration is
pathologically increased. Examples of compounds
that have been detected under pathological condi-
tions include the ketone bodies B-hydroxy-butyrate
and acetone (Seymour et al., 1999; Pan et al., 2001),
and other compounds such as phenylalanine (Phe)
(in phenylketoneuria (PKU) (Kreis et al., 1995b)),
galactitol, ribitol, arabitol in “polyol disease” (van
der Knaap et al., 1999), succinate, pyruvate, alanine,
glycine, and threonine. Finally, exogenous compounds
which are able to cross the blood-brain barrier (BBB)
may also reach sufficiently high concentrations
to be detected by proton MRS. Examples of exogen-
ous compounds, sometimes termed “xenobiotics’,
include the drug delivery vehicle propan-1,2-diol
(Cady et al., 1994), mannitol (used to reduce
swelling and edema in neurosurgical procedures
and intensive care), ethanol (Meyerhoff et al., 1996),
and the health food supplement methylsulfonyl-
methane (MSM) (Lin et al., 2001).

In order for a compound to be detectable by
proton MRS in vivo, a rule of thumb is that its con-
centration should be 1 mM or greater, and it should
be a small, mobile molecule. Hence large and/or
membrane-associated molecules will not be detected.
The ability to detect and quantify compounds should
increase with increasing magnetic field strength; for
instance, a recent study of the normal human brain
at 7T was able to detect more than 14 different
compounds (Figure 1.4).

Recently, measurements of brain temperature have
also been made using the water-NAA chemical shift
difference (the water chemical shift has a 0.01 ppm/°C
temperature dependence) (Cady et al., 1995).

Technical issues: spatial localization

Single-voxel techniques

Generally, two different approaches are used for pro-
ton spectroscopy of the brain: single-voxel methods
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Fig. 1.4 Proton MR spectrum from parietal WM measured at 7 T in the normal human brain. STEAM, TE 56 ms, TM 5 32 ms,

TR 55, voxel size 5.8 ml, 160 averages (scan time approximately 13 min), resolution enhancement by a shifted Gaussian function.

Inset: gradient echo (GE) transverse MRI with the voxel location. Reproduced with permission from Tkac et al. (2001).

based on the stimulated echo acquisition mode
(STEAM) (Frahm et al., 1989) or point resolved spec-
troscopy (PRESS) (Bottomley, 1984) pulse sequences,
or spectroscopic imaging (SI) (also known as chemi-
cal shift imaging (CSI)) studies usually done in two
dimensions using a variety of different pulse
sequences (spin-echo (SE), PRESS) (Brown et al., 1982;
Luyten et al., 1990; Duyn et al., 1993).

The basic principle underlying single-voxel local-
ization techniques is to use (usually) three mutually
orthogonal slice selective pulses and design the
pulse sequence to collect only the echo signal from
the point (voxel) in space where all three slices inter-
sect (Figure 1.5). The two most commonly used
sequence are called STEAM (Frahm et al., 1989) and
PRESS. In STEAM (Figure 1.5(b)), three 90° pulses
are used, and the stimulated echo is collected. All
other signals (echoes) should be dephased by the large
crusher gradient applied during the so-called mixing
time (TM, from analogy with the two-dimensional

(2D) NMR nuclear overhauser efffect (NOESY) pulse
sequence (Ernst et al., 1987)). Crusher gradients
applied during TE on selected gradient channels are
necessary for consistent formation of the stimulated
echo and removal of unwanted coherences. In
PRESS, the second and third pulses are refocusing

(180°) pulses, and crusher gradients are applied

around these pulses to select the desired SE signal

arising from all three RF pulses, and dephasing
unwanted coherences. STEAM and PRESS have
been the subject of a detailed comparison (Moonen

et al., 1989); they are generally similar but differ in a

few key respects:

1. Slice profile (i.e. sharpness of edges of voxel):
STEAM is somewhat better because it is easier to
produce a 90° pulse with a sharp slice profile than
a 180° pulse.

2. SNR: Provided that equal volumes of tissue are
observed and using the same parameters (repeti-
tion time (TR), TE, number of averages, etc.),
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Fig. 1.5 Single-voxel pulse sequences: (a) schematic illustration

of three orthogonal slice selective pulses. The size and position
of the voxel is controlled by the frequency and bandwidth of the
slice selective pulses, as well as by the amplitude of the asso-
ciated slice selective field gradients, (b) STEAM and (c) PRESS.
Note that simplified diagrams are presented which do not show
all crusher gradients, gradient lobes and RF pulse shapes.

PRESS should have approximately a factor of two
better SNR than STEAM, because the stimulated
echo is formed from only half the available equi-
librium magnetization.

3. Minimum TE: STEAM should have a shorter min-
imum TE than PRESS, since it uses a TM time

Fundamentals of MR spectroscopy

15

period, and shorter 90° than 180° pulses may be
possible.

4. Water suppression: STEAM may have slightly bet-
ter water suppression factors, because water sup-
pression (cf. below) pulses can be added during
the TM period (this period does not occur in
PRESS). Also, STEAM may have less spurious
water signal from the 90° slice selective pulses
than the 180° pulses in PRESS.

5. Coupled spin systems and zero-quantum interfer-
ence: The complex phenomena that can occur in
coupled spin systems (e.g. Lac, Glu, etc.), namely
modulation of the echo signal by scalar couplings,
and/or the creation of zero- or multiple-quantum
coherences, may occur with both sequences.
However, the detailed dependence of these com-
pounds’ signals on TE and other experimental
parameters will be different for STEAM and
PRESS. STEAM is more susceptible for the creation
of (usually unwanted) zero-quantum coherence
because it uses 90° pulses.

It should be recognized that the differences listed

above are fairly subtle, and generally STEAM or

PRESS are essentially interchangeable in clinical

brain spectroscopy, and the choice of sequence in

practice often mainly depends on the particular
availability from the MRI vendor.

It is important to recognize the importance of
accurate spatial localization and suppression of sig-
nal from outside the desired voxel. The volume of
the human head is two to three orders of magnitude
larger than that of the volume of interest (VOI). Even
a few percent outer-volume contamination can
have a disastrous effect on spectral quality, particu-
larly if field homogeneity is poor in remote regions,
and if they contain large water and lipid signals.
Methods for maximizing out-of-volume suppression
(saturation pulses, optimal use of crusher gradients)
are discussed in Chapter 3.

Multiple-voxel (SI) techniques

While single-voxel techniques are popular in clinical
practice for several reasons (they have short scan
times, are widely available, can be done at short TE,
and are relatively easy to use and interpret), they do
also suffer some limitations. Probably the greatest
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single limitation is the lack of ability to determine
spatial heterogeneity of spectral patterns (often very
important in brain tumors, for instance), and the
fact that only a small number of brain regions can be
covered within the time constraints of a normal
clinical MR examination.

Therefore, there has been considerable effort
over the last decade and a half to develop clinically
feasible MR spectroscopic (MRSI) techniques. Early
attempts at MRSI in the human brain used one-
dimensional (1D)-MRSI (i.e. phase encoding in a
single direction) (Petroff et al., 1992), and while these
demonstrated proof-of-principle, generally 1D local-
ization is insufficient for detailed studies of focal
brain pathology. Therefore, MRSI techniques were
extended to two dimensions by using phase-encod-
ing gradients in two directions (Luyten et al., 1990;
Duyn et al., 1993) (Figure 1.6), or, subsequently, with
full three-dimensional (3D) encoding (Nelson et al.,
1999).

One widely used 2D-MRSI pulse sequence com-
bines multi-slice capability with full-slice coverage
using a combination of spin-echoes and outer-
volume suppression (OVS) pulses (Duyn et al,
1993). The sequence is illustrated schematically in
Figure 1.7. Compared to PRESS-MRS], this sequence
can cover the whole slice out to the edge of the cor-
tex, and also record multiple slices. Also, by inter-
leaving multiple slices within one TR, the sequence
is very efficient in terms of data collection, and gen-
erally, can acquire data at higher spatial resolution
and brain coverage than comparable sequences
using 3D-MRSI. One potential caveat when attempt-
ing wide coverage of brain regions, however, is the
difficulty of obtaining sufficient magnetic field
homogeneity over the full volume of the brain
(simultaneously). For this reason, the sequence of
Figure 1.7 is usually performed at long TE (e.g. 140 or
280ms). These are optimum TEs for detecting the
Lac signal (modulation due to scaler coupling
causes the Lac signal to be inverted at TE 140 ms).
Generally, field homogeneity requirements are less
stringent for long TE spectra than short TE, because
the spectra are simpler with less overlapping reso-
nances (cf. Chapter 3). Recent technical advances to
address this issue include slice-by-slice shimming
(i.e. dynamic adjustment of the shim currents
within the TR time period for each slice) and the

development of high-order shimming in vivo. An
excellent approach for localized shimming in vivo is
the fast automatic shimming technique by mapping
along projections (FASTMAP) method of Gruetter
(1993).

An example of a representative multi-slice MRSI
data set performed at long TE is given in Figure 1.8.
Generally, good quality spectra can be obtained
from most parts of the brain, with insufficient field
homogeneity only present in regions adjacent to
air-tissue interfaces inside the head (e.g. artifacts
can be seen in the anterior, mesial temporal lobes
and inferior frontal lobe).

MRSI experiments are relatively time consuming,
because there are usually a large number of phase-
encoding gradient steps to collect. This is particu-
larly true for 2D- or 3D-MRSI experiments that
require both high spatial resolution and full (or large)
brain coverage. Therefore, there have been various
methods proposed to decrease scan time (Duyn and
Moonen, 1994; Posse et al., 1995). The discussion of
these methods is beyond the scope of this chapter,
however increasingly it is expected that fast MRSI
techniques will become used for human spectro-
scopy, such that ultimately MRSI sequences may
have similar scan times to single-voxel methods (e.g.
5-10min, cf. Table 1.2).

Comparison of single-voxel vs. Sl techniques

Usually, but not exclusively, single-voxel scans are
recorded at short TEs (35 ms) while MRSI studies are
done at long TEs (e.g. TE > 135-140 ms). Short TE
spectra contain signals from more compounds and
have better SNRs, but also have worse water and
lipid contamination. Long TE spectra have lower
SNR, fewer detectable compounds, and variable
amount of T,-weighting, but are usually better
resolved spectra with flatter baselines. Lac is usually
best detected at long TEs (e.g. TE = 140 or 280 ms,
so that the J-modulation is rephased) to distinguish
it from lipid signals. The relative advantages and dis-
advantages of single-voxel vs. SI techniques are
listed in Table 1.1.

The choice of method depends (in addition
to availability) on the information required in the
particular medical or research application. For
instance, if spectroscopy is being used to search for
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Fig. 1.6 Pulse sequence for 2D PRESS-MRSI. (a) PRESS sequence (red) is used to select a large region of interest (ROI) within the
brain (but avoiding unwanted lipid signals in the skull and scalp on this coronal example), and then phase-encoding gradients

(green) are applied in two dimensions to encode spatial information inside the excited volume. Data is processed by 3D Fourier

transformation (two spatial and one time domains). Full crusher gradients are shown, including those associated with the initial

(black) water suppression pulse. Slice selective gradients are indicated in blue. Adapted with permission from (Moonen et al.,

1992). (b) An example of the 2D PRESS MRSI pulse sequence in a 14-year old female presenting with seizures with a lesion in the

left mesial temporal lobe. Data are presented as metabolic images of NAA and Cho, as well as selected spectra from the left and

right hippocampi (voxel positions indicated on Cho images). The lesion has elevated Cho and Cr, and low NAA, typical of a glioma

(and atypical for mesial temporal sclerosis which usually shows a selective reduction in NAA only).

the location of a stroke or a seizure focus, SI would
be preferable since this generates maps of metab-
olite levels which can be screened for abnormalities
in different locations. Alternatively, if the issue is to
observe changes in compounds such as Gln/Glu or
ml, which can only be detected in short TE spectra,

in global or diffuse diseases such as hepatic
encephalopathy, then short TE single-voxel spec-
troscopy would be the method of choice. Other
factors include the length of time available, and
whether or not the required voxel location would be
better viewed using localized shimming (i.e. single
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Fig. 1.7 (a) Schematic illustration of pulse sequence for multi-slice MRSI pulse with CHESS water suppression and outer-volume

saturation bands for lipid suppression (Duyn et al., 1993) (for clarity, not all crusher gradients are illustrated). A slice selective

spin-echo sequence is used, with interleaved acquisition (in this example) or four slices within one TR period. (b) The orientation

and locations of the eight OVS pulses are schematically illustrated on sagittal and axial views; an octagonal pattern is prescribed

in order to saturated as much peri-cranial lipid as possible while signal from brain is un-perturbed. Ideally, sharp profile, high
bandwidth pulses (to minimize chemical shift effects) should be used for OVS.

voxel) or not. Short TE SI is becoming available in
commercial sequences and as the techniques
become more refined, will provide spatial maps of a
greater range of metabolites.

Water and lipid suppression

Brain metabolite levels are on the order of 10 mM or
less, whereas protons in brain water are approx-
imately 80 M, and lipids in peri-cranial fat are also
present in very high concentrations. Therefore,
water and lipid suppression techniques are essential
in proton spectroscopy in order to observe reliably
the much smaller metabolite signals. Numerous
methods for solvent (water) suppression have
been developed in high-resolution NMR spec-
troscopy, and some of these methods have been
applied to in vivo spectroscopy. The most common
approach is to pre-saturate the water signal using

frequency-selective, 90° pulses (chemical shift-
selective water suppression (CHESS) pulses (Haase
et al., 1985)) prior to localization pulse sequence
(Figure 1.7). By using more than one pulse, and with
correct choice of flip angles (Moonen and van Zijl,
1990; Ogg, 1994), very good suppression factors can
be attained (>1000).

Lipid suppression can be performed in several dif-
ferent ways. One approach is to avoid exciting the lipid
signal using, e.g. STEAM or PRESS localization to
avoid exciting lipid-containing regions (Figure 1.5).
Alternatively (or in addition), OVS pulses can be used
to pre-saturate the lipid signal (Duyn et al., 1993)
(Figure 1.7). An inversion pulse can also be used for
lipid suppression, exploiting the difference in T;s
between lipid (typically 300ms) and metabolites
(typically 1000-2000 ms) (Spielman et al., 1992).
Choice of a short inversion time (TI) of around 200 ms
(= Ty X In[2]) will selectively null the lipid signal,
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Table 1.2. Comparison of single-voxel and multi-voxel MRSI methodologies

Single voxel

MRSI

Typical voxel sizes (cm?®)
Typical scan times (min)
Shimming

Water/lipid suppression
Processing/quantitation

Short or long

4-20

5-10

Localized

Better

Simple processing, can be

Usually long, can be short if field
homogeneity is good (e.g. small
region of coverage)

1-4

6-30

Global

Worse

Processing and quantification more

quantified time consuming
Multiple voxels 3 or 4 at most Many voxels
1 4
Cho NAA
Cr

2 5

3 6 7

— T — T T
ppm 4.0 3.0 2.0 1.0 ppm 4.0 3.0 2.0 1.0 ppm 4.0 3.0 2.0 1.0

Fig. 1.8 MRSI data recorded using the pulse sequence of Figure 1.7. Metabolic images of Cho, Cr, NAA and lactate from one-slice

at the level of the lateral ventricles in a normal 49 year adult are presented, as well as representative spectra from different brain
regions. Scan parameters were TR 2300 ms, TE 272 ms, 15 mm slice thickness, field of view (FOV) 24 cm, matrix size 32 X 32, scan
time 30 min with circular k-space encoding. The nominal voxel size is 0.8 cm®. NAA is fairly evenly distributed at this level, while

Cho shows an increase from posterior to anterior brain regions (e.g. cf. posterior (6) to anterior (4) WM, and splenium

(3) to genu (2) of corpus callosum). Cho is also lower in the lateral GM region (7) compared to WM voxels.
No lactate is detectable above the noise floor of the data set.
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while most of the metabolite signal remains
inverted. In MRS], it is also possible to reduce lipid
artifacts by post-processing methods (Haupt et al.,
1996).

Since both water and lipid resonances have
shorter T, relaxation times than many metabolites,
suppression factors are also usually better in long TE
compared to short TE spectra.

Data analysis and quantification

Peak area measurements in in vivo spectroscopy are
complicated by resonance overlap, baseline distor-
tions, and non-Lorentzian lineshapes. Various
methods have been used to measure peak areas,
ranging from simple integration to fitting algorithms
in the time or frequency domains (Raphael, 1991;
de Beer and van Ormondt, 1992). One of the more
widely used methods for spectral quantitation in
recent years is the linear combination model (LC
model) method developed by Provencher ef al. The
LC model fits the in vivo spectrum as a combination
of pure, model spectra from each of the expected
compounds in the brain (Provencher, 1993). The
model also includes automatic phase correction and
baseline correction, or the baseline may also be
modeled as a combination of macromolecular
resonances. Provided that each scanner is properly
calibrated with the appropriate model solutions,
the program returns metabolite concentrations as
well as estimates of uncertainty (e.g. Cramer-Rao
lower bounds).

Quantification of in vivo spectra is discussed in
detail in Chapter 2. Quantification is important for
several reasons, but particularly so in clinical cases
where all metabolites (or all regions of the brain)
may be abnormal. Quantification methods based on
internal or external standards have been extensively
developed and tested for single-voxel spectroscopy
(Henriksen, 1995) and can be used routinely. With
care, it is also possible to quantify MR spectroscopic
imaging data (Soher et al., 1996). Occasionally, ratios
of peak areas may also be useful, for instance to
account for partial volume effects (PVE) or to
enhance spectroscopic “contrast” in conditions
where metabolites may change in opposite direc-
tions (e.g. Cho increases, NAA decreases).

Anatomical variations in brain spectra:
changes associated with brain development
and aging

Evidently, it is important to establish normal spec-
tral variations associated with age and anatomical
location in the healthy control population. Numerous
studies have looked at anatomical variations in
brain spectra, usually in young adult subjects. At the
level of the lateral ventricles and above, brain spec-
tra appear to be fairly homogeneous, with spectra
which are characteristic of GM and WM (Kreis et al.,
1993a; Michaelis et al., 1993; Hetherington et al., 1994;
Soher et al., 1996). Depending on the quantification
technique used (and if partial volume correction is
applied or not), generally the Cho and NAA signals
are found to be marginally higher in WM than corti-
cal GM, with WM showing a lower Cr level than GM.
At the level of the third ventricle and below, signifi-
cant anatomical variations exist in brain spectra.
High levels of Cho are found in the insular cortex,
and in the region of the hypothalamus. Occipital
Cho in the region of the visual cortex is generally low.
The pons has high levels of NAA and Cho, and low lev-
els of Cr, perhaps due to its high density of fiber bun-
dles. Cerebellar levels of Cr and Cho are significantly
higher than supratentorial values (Michaelis et al.,
1993), and temporal lobe has been reported to
have lower NAA values (Breiter et al., 1994). Signi-
ficant anterior—posterior differences have also been
reported in normal hippocampal metabolite concen-
trations, with low NAA and high Cho in the anterior
regions of the hippocampus (Vermathen et al,
1997). Relatively fewer papers have addressed the
issue of gender differences or metabolic asymmetries
in normal brain. However, it appears that there are
minimal spectral differences (Charles et al., 1994)
with regard to these variables, at least in young
adults (Figure 1.9).

Several papers have been published on the
changes that occur in proton spectra in the develop-
ing brain, and most of the results are in good agree-
ment (van der Knaap et al., 1990; Huppi et al., 1991;
Kreis et al., 1993b; Kimura et al., 1995). At birth, NAA
is low, while Cho and mI are high, and over the first
1-2 years there is a gradual normalization towards
adult values (Figure 1.10) (Kreis et al., 1993b).
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Fig. 1.9 Multi-slice MRSI of (a) temporal lobe and (b) posterior fossa brain regions recorded using the sequence of Figure 1.7.

(a) MRSI in an oblique-axial plane parallel to the long axis of the temporal lobe. NAA levels decrease and Cho levels increase in the
anterior mesial temporal lobe relative to posterior. Note also the severe field inhomogeneity caused by the sinuses in the frontal
region on the B field map. Field homogeneity is also perturbed superior to the auditory canals. (b) MRSI of the posterior fossa.
Note the high Cho and Cr levels in the cerebellar vermis and hemispheres. The pons also shows high levels of Cho, but low Cr.
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Parietal WM Occipital GM
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ppm
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Fig. 1.10 Developmental changes in the human brain. Spectra recorded at short TE (TE 35 ms) are shown in posterior white

and GM regions as a function of post-partum age; 4 days, 5 months, 4 years and adult. Note the high levels of Cho and mI at

the earliest time point, which decline over the first 2 years of life. Also, NAA is low at birth and increases rapidly. By 4 years of

age (in these brain regions), spectra are indistinguishable from those in adults. Reproduced and adapted with permission from

(Kreis et al., 1993b).

Similar patterns are seen for both GM and WM,
although regional developmental changes have yet
to be studied in detail (e.g. using SI). Recent studies
have suggested that although the major changes
occur within the first year of life, slower changes
occur thereafter, with full adult values not being
reached until about 20 years of age (Pouwels
etal., 1997), and that some regions (e.g. frontal lobe)
may develop more slowly than posterior regions
(cf. also Chapter 40).

In contrast to studies of developing brain, fewer
studies of normal aging have been reported, and the
results are less concordant. Some groups find lower

NAA with increasing age (Christiansen et al., 1993;
Lim and Spielman, 1997), which may reflect neu-
ronal loss, while others find no changes (Chang
et al., 1996; Soher et al., 1996). In one study, NAA
was only reduced in subjects who also had cerebral
atrophy as identified by MRI (Lundbom ez al., 1997).
Some groups have also found increased levels of
Cr or Cho in older subjects, perhaps reflecting
increased gliosis (Chang et al., 1996; Soher et al.,
1996). This area is discussed further in Chapter 34.
The discrepancies between different studies could
be due to many different technical factors in data
collection and analysis, but may also reflect the wide



physiological variations of normal human aging.
More studies are required to definitively establish
the spectroscopic characteristics of normal aging,
but it is apparent that the changes associated with
normal aging are appreciably more subtle than
those associated with brain development.

Due to significant technique-related, regional,
or age-related changes, it is advisable that spec-
troscopic studies should have carefully age- and
anatomically-matched spectra from control sub-
jects for comparison. In addition, spectroscopic
scans of focal brain lesions (for instance) are often
much easier to interpret if spectra from normal
brain in the contralateral hemisphere are available
for comparison.

summary

Proton MRS and MRSI are now mature method-
ologies that can be applied routinely on 1.5T
(and higher) imaging systems for the study of
neurological disease. The subsequent chapters of
this book cover spectral quantification techniques,
artifacts and pitfalls, and the clinical applications
of these techniques. It is expected that advances
in pulse sequence design, analysis methods, and the
use of high magnetic fields will continue to occur.
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Key points

e Spectral quantification allows detection of
metabolite abnormalities that are not appre-
ciated from visual inspection alone.

e Metabolite ratio determination is robust and
reproducible in a clinical environment, but
prone to changes in the denominator metabo-
lite concentration (commonly creatine).

¢ Spectra may be fitted in the time or frequency
domain.

e Absolute metabolite quantification requires
internal or external reference standards, and
correction for tissue volumes (e.g. cerebro-
spinal fluid) within the voxel. Water is a com-
monly used internal reference signal.

e Chemical shift imaging allows calculation of
metabolite levels within different tissues, e.g.
gray and white matter.

Introduction

Why quantification and not visual interpretation?

The quantification of spectral peaks plays an import-
ant role in MR spectroscopy (MRS), and pure visual
readings of spectra are less common compared to
MR imaging (MRI). The reason for this difference
is that MRI relies on the detection of spatial or sig-
nal abnormalities as a result of disease conditions,
whereas MRS interpretation commonly relies on the
interpretation of differences in relative proportions
of metabolite peaks at a given location. Furthermore,

spectroscopic peaks reflect the concentrations of
metabolites in the tissue; however, it is impossible to
determine these concentrations visually.

These points are illustrated in Figure 2.1, which
shows proton spectra from a lymphoma lesion and a
contralateral voxel in a patient with acquired immuno
deficiency syndrome (AIDS). Since the spectra can be
plotted with arbitrary vertical scaling, it is unclear if a
given metabolite peak, and its associated concentra-
tion, in the lesion is higher or lower compared to the
healthy brain tissue. It is even difficult to estimate the
relative heights of the metabolite peaks within each
voxel. Therefore, the ultimate goal of spectral analysis
is to determine accurate estimates of metabolite peak
areas that reflect metabolite concentrations.

Spectral analysis

Overview

The first major step in determining metabolite con-
centrations is to obtain the signal strength S,,, of each
metabolite in a given spectrum. Typically, sophisti-
cated computer algorithms are used for this pur-
pose. We will describe the major techniques and
discuss major advantages and problems. However,
the exact details of the analysis often will be com-
pletely hidden from the user, especially with some of
the more recent automated programs, and most
likely will have only minor influence on the quality
of the analyses.

Spectral analysis can be performed in the “time
domain”, using the so-called “free-induction decay”
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Fig.2.1 Localized 'H MR spectra from a lymphoma in the left frontal lobe and from a contralateral control region in normal-

appearing white matter (WM). While visual inspection shows clear differences between the two spectra, it does not allow an accurate,

quantitative assessment of the metabolite abnormalities. Spectral quantification, using the water signal as a reference, makes it

possible to calculate millimolar (mM) metabolite concentrations, and demonstrates that the lymphoma lesion has reduced

concentrations of N-acetyl aspartate (NAA) compounds, total creatine (Cr), and myo-inositol (ml), whereas the concentration of

Choline (Cho) compounds is increased in the lesion. Glx, glutamate (Glu) + glutamine (Gln).

(or FID), or the “frequency domain”, using “spectra”
after Fourier transformation of the time-domain data.
Of these two, analysis in the frequency domain
(Mierisova and Ala-Korpela, 2001), i.e. the use of spec-
tra, is more intuitive and will be discussed first. The
steps involved in frequency-domain spectral analysis
are exemplified in Figure 2.2 and outlined below.
Historically, the steps were performed sequentially and
manually by a spectroscopist; however, more recent
spectral analysis programs are completely automatic.

Time domain pre-processing

Spectral analysis typically involves several pre-
processing steps in the time domain that are sum-
marized in Figure 2.2 (top row). First, the digital time
domain spectral data (FIDs) are corrected to remove
phase variations due to residual gradient-induced
eddy currents (Klose, 1990; Lin et al., 1994). Next, a
digital filter is commonly applied that removes the

potentially very large residual water signal (Coron
et al., 2001). The resulting data are multiplied with a
decaying function, such as a decaying exponential,
to artenuate signals on the right side of the FID. This
step is called “low-pass filtering” or “apodization,”
and reduces noise in the spectrum (cf. Figure 2.2),
but at the expense of increasing spectral linewidths.
Finally, the apodized are padded with zeroes on the
right side (cf. Figure 2.2); for instance, the total num-
ber of data points may be increased from 1024 to
2048 or 4096. This step is called “zero-filling” and
improves the digital resolution of spectra.

Fourier transformation

The zero-filled, low-pass filtered, and eddy-current
corrected time-domain data are then Fourier trans-
formed, which yields frequency-domain data (spec-
tra). The remaining processing steps are applied in
the frequency domain (cf. Figure 2.2, bottom row).
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Fig. 2.2 Overview of the major processing steps for spectral analysis. The graphs show the typical appearance of MR signals

(top row) and spectra (bottom row) after each step. Several pre-processing steps are performed in the time domain. Correction for
gradient-induced eddy currents and removal of residual water signal yields the signal shown in the top left graph. This signal is
multiplied with a decaying function (“apodization” or “low-pass filtering”) and padded with zeroes on the right side of the graph
(“zero-filling”; result shown in top right box). For frequency-domain processing, the pre-processed signal is Fourier transformed.
The resulting spectrum typically has distorted line shapes (bottom left), which can be adjusted with a phase-correction algorithm
(bottom center). Next, baseline correction (manual or automatic) yields a spectrum with a well-defined, horizontal baseline
(bottom right). This pre-processed, phase- and baseline-corrected spectrum is then used to estimate metabolite peak areas with
integration or iterative peak fitting algorithms.

Phase correction The computer then fits and subtracts a smooth curve
through these points. The result is a spectrum with a
flat baseline, which is better suited for determina-
tion of metabolite peak areas (cf. next step).

The phase of the raw spectrum after Fourier trans-
formation is usually incorrect, i.e. metabolite peaks
may be inverted or have distorted line shapes
(Figure 2.2, bottom left), and requires manual or

automatic adjustment. Determination of metabolite peak areas

The final step in spectral processing is the determi-
nation of the metabolite peak areas. The signal

Baseline correction . .
strength §,,, of each metabolite relates to the size of

After phase correction, the baseline of the resulting the metabolite signal in the time domain (e.g. in
spectrum is typically distorted or slanted, and has millivolts). In the frequency domain, the correspon-
to be corrected. For manual baseline correction, ding measure is the area of the metabolite peak. Of
the user defines several spectral points, typically note, the peak height alone does not represent the

between the major metabolite peaks, as “baseline”. metabolite concentrations.
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Manual or automatic integration
One of the most intuitive and earliest methods to
determine peak areas is by means of numerical inte-
gration, either manually or automatically. The user or
a computer program selects two frequency points,
one to the left and one to the right of a metabolite
peak. The amplitude at these two points is assumed
to define the spectral “baseline” and set to zero. The
computer then proceeds to integrate the area under
the peak, using a numerical integration algorithm.
While peak integration is very intuitive, it has
substantial limitations, especially when applied
to in vivo spectra. First, because in vivo spectra are
commonly crowded and contain many overlapping
metabolite peaks, it may be difficult to define the
exact boundary between adjacent peaks. For
instance, the choline (Cho) and creatine (Cr) peaks
in proton spectra are separated by only 0.2 ppm, and
there is often no clear boundary between the two.
Of even greater concern is the overlap between some
of the singlet resonances with broader multiplets or
macromolecule resonances, such as that of the
N-acetyl aspartate (NAA) peak at 2 ppm with the broad
multiplet from glutamate (Glu) and glutamine (GIn)
(between 2.0 and 2.4 ppm; visible at short echo times
(TE)). In this situation, it is virtually impossible to
separate the contributions from the different meta-
bolites with simple peak integration algorithms.

Peak fitting

To resolve the problems of numerical peak integra-
tion, sophisticated computer algorithms have been
developed that rely on the iterative fitting of ideal or
experimental model spectra to in vivo spectra. Early
algorithms commonly modeled in vivo spectra as a
superposition of multiple individual peaks of a cer-
tain “ideal” line shape. For instance, one may assume
that a given in vivo spectrum comprises multiple
resonances of a Lorentzian line shape, and model it
accordingly. Other common line shapes include
Gaussian or variable mixtures of Lorentzian with
Gaussian lines, which resemble Voigt functions.

Incorporation of prior knowledge in

fitting algorithms

An important feature of the fitting algorithms is
the inclusion of prior knowledge. The simplest

algorithms fit each spectral peak separately. Such an
approach may be sufficient for analyzing spectra
that contain only a few well-separated resonances,
such as long TE proton spectra of the brain. How-
ever, it is generally advantageous to incorporate
“prior knowledge” into fitting algorithms. “Prior
knowledge” characterizes known information about
spectral characteristics that are not variable among
subjects, such as relative peak positions, relative
intensity or phase of peaks for multiplets, etc. The
use of prior knowledge reduces the number of free
parameters that need to be determined by the fitting
algorithm, and generally improves the quality of the
fit and reduces fitting errors.

Time-domain fitting

While less intuitive than spectral fitting in the fre-
quency domain, the actual fitting procedure may also
be performed in the time domain. In fact, mathe-
matically there is no substantial difference between
frequency- and time-domain fitting. However, in the
time domain, it is essentially impossible to perform
manual phase or baseline correction.

Fitting of model spectra

A more recent program named linear combination
model (“LC model”) (Provencher, 1993) fits in vivo
spectra as a linear superposition of high-resolution
“basis” spectra that are acquired from model solu-
tions of metabolites that are present in the organ
of interest. For instance, to model brain 'H MR spec-
tra, an LC model basis set may include high-resolution
spectra of the major metabolites NAA, Cr and
phosphocreatine, Cho, myo-inositol (ml), and Glu,
as well as those of minor metabolites, such as Gln,
gamma-amino-butyric acid (GABA), glucose, NAA-
Glu (NAAG), etc. The fitting program determines the
contribution of each basis spectrum to a given in
vivo spectrum, and thus determines the relative
concentration of the various metabolites in the basis
set. Advantages of LC model are that all pre-processing
steps, automatic phase correction as well as model-
ing of a smooth baseline are included. The initial
acquisition of the basis spectra requires substantial
expertise and effort; however, standardized basis
sets are available for the most common clinical MR
machines (both 1.5 and 37T).



Common problems

Most difficulties with spectral analysis are related to
the fact that in vivo spectra contain multiple over-
lapping peaks including those from macromole-
cules, have relatively low signal-to-noise ratio (SNR)
and ill-defined or slanted spectral baselines. While
the resonances of metabolites at high concen-
tration, such as Cr, are generally sufficiently well
defined to allow accurate peak area determination,
it may be difficult or impossible to obtain reliable
peak areas for minor resonances. For instance, it is
essentially impossible to obtain a reliable estimate
of the amount of GABA from a regular in vivo
'H brain spectrum, since the major GABA signals
co-resonate with the NAA and Cr resonances, which
have 5-10 times higher concentration than GABA. In
fact, some analysis programs determine a fitting
error for each metabolite. An error of 20% or greater
generally indicates that the peak area determination
is unreliable; errors of 50% or greater imply that the
area measure is entirely meaningless.

Quantification

Theoretical considerations

After metabolite peak areas have been determined
with one of the methods described above, the sec-
ond major step is to convert the peak areas, which
are in arbitrary units, into metabolite concentra-
tions. This quantification step relies on the fact that
the strength of the MR signal S, for a given metabo-
lite “m” (or water) is proportional to the number of
observed spins in the volume V of interest (VOI or
voxel), which in turn is proportional to the concen-
tration ¢, of the metabolite and the number 7 of
spins contributing to the resonance (e.g. 2 for
water, which has 2 hydrogen nuclei). Formally, we
can write for the signal of subject i at time ¢:

S..(0,) = Bli,1) X ¢,y X VX g
X Ey (Tyn» Toms Jn» TR, TE, B,(£)) @2.1)

where B(i,1) is a scaling factor and F,, is a “modula-
tion” factor; both of these are discussed in detail
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below. Eq. (2.1) yields the following solution for the
metabolite concentration cy,:

Cm = S, 11BG, 1) X VX n
X Fy (T Tomy Jiy TR, TE, B (2))] (2.2)

This equation shows that the metabolite concentra-
tion is proportional to the MR signal strength S,;, and
inverse to the volume, the number of spins, and the
scaling and modulation factors.

The modulation function F,, describes how the
signal is modulated by the TE, recovery time (TR),
the longitudinal and transverse relaxation times of
the metabolite (T, and T,,,), the radio-frequency
(RF) field strength B, (i.e. flip angles), as well as the
coupling constant J;,, of the metabolite (if present).
Some metabolites have simple, singlet spectra
which do not contain couplings, whereas other have
complicated spectral patterns with multiple cou-
pling constants among the different protons in the
molecule. The detailed dependence of F,, on these
parameters may be very complicated, depends on
the pulse sequence being used, and requires quan-
tum mechanical calculations for coupled (.e.
Jm > 0) spin systems (Ernst et al., 1990). However,
the overall dependence of F;, on flip angles, relaxation
times, and sequence timing (TE and TR) resembles
that of MR imaging sequences in that shorter TR val-
ues or longer TE values generally attenuate metabo-
lite signals, and act similarly to “T; weighting” or “T,
weighting” in MRI. Likewise, the signal amplitude is
dependent on the strength of the RF field (i.e. flip
angles); maximum signal is only achieved when the
RF field is adjusted correctly. Of note, since the
relaxation times and J-coupling constants differ
among metabolites, the factor F, may vary from one
metabolite to another.

Another important parameter in Eq. (2.1) is the
scaling factor B(i,#). The scaling factor describes how
the amplitude of the observed nuclear MR (NMR)
signal relates to tissue-specific “internal” variables,
such as metabolite concentrations, volume, etc. 8
depends on the parameters such as the size of the
object to be imaged, the RF coil tuning and match-
ing, and the gain of the RF receiver chain, all of
which are difficult to control. Therefore, 8(i,f) may
vary from subject to subject (index i), as well as
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within a subject from one study to another (i.e. over
time 7).

The goal of quantification is to derive the concen-
tration c,, of a metabolite of interest from its signal
strength S, for a given subject and study. Therefore,
according to Eq. (2.1), it is necessary to determine
the scaling factor B(i,#). Essentially all techniques
rely on measuring the signal of a substance with
known concentration (a “reference”) to determine
B(i,1). Several authors have reviewed quantification
techniques (Tofts and Wray, 1988; Buchli et al., 1994).
The subsequent paragraphs briefly describe the
different choices for the “reference”, and how the
calibration is performed. For simplicity, we assume
that a single-voxel proton MRS experiment is per-
formed; the principles described can, however, be
extended to multi-voxel methods, such as spectro-
scopic imaging (SI), or other nuclei.

Techniques for quantifying metabolite
concentrations

“Metabolite ratios”: use of a metabolite as a
reference

The most common approach to spectral quantifica-
tion is to express metabolite levels relative to a “ref-
erence metabolite” in the same spectrum. This
approach is referred to as the use of “metabolite
ratios”. For 'H MRS, the most common reference
metabolite is total Cr, and for *'P MRS, phosphocre-
atine is the most common reference. For example,
'H MRS studies of the brain frequently report results
as ratios between a metabolite peak and Cr, such as
the ratio of the NAA resonance to total Cr, or the
“NAA/Cr ratio”. Of note, “metabolite ratios” do not
reflect true concentrations, unless the concentra-
tion of the reference metabolite is known.

The use of metabolite ratios has several advan-
tages. First, because the reference signal is acquired
simultaneously with the metabolite of interest,
many potential sources of systematic errors in Eq.
(2.2), such as the scaling factor B, the exact volume,
partial volume with cerebrospinal fluid (CSF), or the
flip angles (B,), are removed. Consequently, metabo-
lite ratios are probably the most robust of all spectral
quantitation techniques. For example, the intra-
subject variability of metabolite ratios in 'H MR

spectra of the human brain may be below 10%
within a single-site, and below 15% across sites (Webb
et al., 1994) using similar, automated methodology.
An added advantage of “metabolite ratios” is that
their measurement does not require modifications
to existing MRS sequences or additional series.
Therefore, “metabolite ratios” may provide reliable
markers of tissue biochemistry and be useful for
clinical diagnosis.

However, “metabolite ratios” are associated with a
significant shortcoming: it is impossible to deter-
mine whether an abnormality in a ratio is due to a
change in the numerator metabolite (e.g. NAA) or in
the denominator metabolite (e.g. Cr), or both. There-
fore, metabolite ratios are intrinsically ambiguous
and prone to misinterpretation. Nonetheless, it is a
frequent implicit assumption that the concentration
of the reference metabolite is constant over time or
across subjects and disease conditions. For example,
reduced NAA/Cr ratio in brain tissue is commonly
interpreted as decreased NAA concentration due to
neuronal loss. However, reduced NAA/Cr may also
be a result of increased Cr. In the brain, for instance,
increased Cr concentrations (measured with one of
the techniques described below) have been observed
in multiple sclerosis (MS) (Inglese et al., 2003), HIV
dementia (Chang et al., 1999), in myotonic dystrophy
where the Cr concentration shows a dramatic and
linear increase with the number of CTG repeats
(a genetic marker of disease severity) (Chang et al.,
1998) and in other brain diseases. Conversely,
decreased Cr concentrations are common in condi-
tions that are associated with the destruction of nor-
mal brain tissue, such as strokes (Saunders, 2000),
abscesses (Chang et al., 1995), or neoplasms (Chang
etal., 1995; Negendank et al., 1996; Preul et al., 1996).
Furthermore, the cerebral Cr concentration also
changes during neurodevelopment (Kreis et al., 1993a;
Pouwels et al., 1999; Horska et al., 2002). Finally,
Figure 2.3 demonstrates that the Cr concentration in
the brain also increases during normal aging, at a
rate of approximately 2.5% per decade in the white
matter (WM) (Christiansen et al., 1993b; Chang
et al., 1996; Pfefferbaum et al., 1999; Suhy et al., 2000).

In summary, metabolite ratios provide robust in
vivo markers of biochemistry. However, metabolite
ratios have to be interpreted with caution since it is
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Fig. 2.3 Dependence of the total Cr concentration [Cr] in the
healthy brain on age. The [Cr] in the WM increases by
approximately 2.5% per decade throughout the adult life.
Consequently, it is incorrect to assume that [Cr] is constant
when interpreting metabolite ratios. For instance, the
NAA/Cr ratio in a 65-year-old subject would be 10% lower
relative to a 25-year-old subject as a result of the changes in
[Cr], even without changes in the NAA concentration.

generally incorrect to assume that the concentration
of the reference metabolite is unchanged across
subjects and disease conditions.

Use of spectrum from control region as a reference
One clinically useful method to assess metabolite
levels may be to express metabolite levels in a region
of interest (ROI) relative to those in another region,
for instance, a contralateral region (cf. Figure 2.1).
This may be particularly useful for studies of focal
abnormalities, and is commonly employed with
chemical shift imaging (CSI). However, this approach
provides little value in the evaluation of diseases
that have a diffuse or global spatial distribution.

Use of water as a reference signal

To resolve the ambiguities associated with the use of
metabolite ratios, the water signal from brain paren-
chyma is commonly used as a reference to determine
the scaling factor 8 (Barker et al., 1993; Christiansen
et al., 1993a; Ernst et al., 1993). Since the water con-
tent in a unit volume of brain tissue is almost a con-
stant, the water signal is a good internal reference
for measuring metabolite concentrations. Since the
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water concentration in tissues are known accurately,
the signal strength of the water signal can then be
used to determine the scaling factor 8 for each sub-
ject and study, according to Eq. (2.1). The concentra-
tion of pure water is approximately 55M, and
since there are 2 protons per water molecule, the
proton concentration is 110 M. In brain, the water
content varies from 70% to 80% for WM and gray
matter (GM), respectively, and therefore the proton
concentration in brain is typically in the range of
77-88 M. Furthermore, because the water and
metabolite signals are acquired from an identical
VOI, and with the same pulse sequence and flip
angles, many potential error sources are eliminated
and the metabolite concentration measurement
becomes relatively robust. An added benefit is that
the time to acquire the water signal is negligible, and
that it requires no substantial modifications to the
MRS sequence.

One of the potential drawbacks of this approach is
that the water signal is invariably acquired at an TE
greater than zero, typically >20 ms. As a result, the
water signal always has some degree of “T, weight-
ing”, and changes in the transverse relaxation time
of tissue water (T,) may lead to erroneous changes
in the apparent water signal amplitude, and thus the
scaling factor B. Despite this drawback, the robust-
ness of using a single unsuppressed water FID as a
reference signal has been demonstrated in a multi-
site study that involved identical MR machines;
typical variations in metabolite concentrations were
approximately 15% (Soher et al., 1996).

However, the use of the water signal as a concen-
tration reference is more complex as it may appear.
Relatively large size of MRS voxels (typically cm?)
makes it likely that each voxel contains a mixture of
several compartments. For instance, a typical MRS
voxel in the human brain may contain GM, WM, as
well as CSF; cf. basal-ganglia voxel in Figure 2.4.
Each of these macroscopic compartments may
contain a different concentration of each metabolite.
This effect is particularly pronounced for CSE which
has markedly lower concentrations of the major
brain metabolites (NAA, Cr, Cho, and ml) than
brain tissue. As a result, significant amounts of CSF
in a given MRS voxel may lead to an apparent reduc-
tion in metabolite concentrations, even if the





