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Preface

Book 1 of the CRC Press Comprehensive Dictionary of Mathematics covers analysis, calculus, and
differential equations broadly, with overlap into differential geometry, algebraic geometry, topology,
and other related fields. The authorship is by 15 mathematicians, active in teaching and research,
including the editor.

Because it is a dictionary and not an encyclopedia, definitions are only occasionally accompanied
by a discussion or example. Because it is a dictionary of mathematics, the primary goal has been to
define each term rigorously. The derivation of a term is almost never attempted.

The dictionary is written to be a useful reference for a readership which includes students, scien-
tists, and engineers with a wide range of backgrounds, as well as specialists in areas of analysis and
differential equations and mathematicians in related fields. Therefore, the definitions are intended
to be accessible, as well as rigorous. To be sure, the degree of accessibility may depend upon the
individual term, in a dictionary with terms ranging from Albanese variety to z intercept.

Occasionally a term must be omitted because it is archaic. Care was takenwhen such circumstances
arose because an archaic term may not be obsolete. An example of an archaic term deemed to be
obsolete, and hence not included, is right line. This term was used throughout a turn-of-the-century
analytic geometry textbook we needed to consult, but it was not defined there. Finally, reference to
a contemporary English language dictionary yielded straight line as a synonym for right line.

The authors are grateful to the series editor, Stanley Gibilisco, for dealing with our seemingly
endless procedural questions and to Nora Konopka, for always acting efficiently and cheerfully with 
CRC Press liaison matters.

Douglas N. Clark
Editor-in-Chief
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A
a.e. See almost everywhere.

Abel summability A series
∑∞

j=0 a j is
Abel summable to A if the power series

f (z) =
∞∑
j=0

a j z
j

converges for |z| < 1 and

lim
x→1−0

f (x) = A.

Abel’s Continuity Theorem See Abel’s
Theorem.

Abel’s integral equation The equation∫ x

a

u(t)

(x − t)α
dt = f (x),

where 0 < α < 1, a ≤ x ≤ b and the given
function f (x) is C1 with f (a) = 0. A con-
tinuous solution u(x) is sought.

Abel’s problem A wire is bent into a pla-
nar curve and a bead of mass m slides down
the wire from initial point (x, y). Let T (y)

denote the time of descent, as a function of the
initial height y. Abel’s mechanical problem
is to determine the shape of the wire, given
T (y). The problem leads to Abel’s integral
equation:

1√
2g

∫ y

0

f (v)√
y − v

dv = T (y).

The special case where T (y) is constant leads
to the tautochrone.

Abel’s Theorem Suppose the power se-
ries

∑∞
j=0 a j x j has radius of convergence R

and that
∑∞

j=0 a j R j < ∞, then the original
series converges uniformly on [0, R].

A consequence is that convergence of
the series

∑
a j to the limit L implies Abel

summability of the series to L .

Abelian differential An assignment of a
meromorphic function f to each local co-
ordinate z on a Riemann surface, such that
f (z)dz is invariantly defined. Also mero-
morphic differential.

Sometimes, analytic differentials are call-
ed Abelian differentials of the first kind,
meromorphic differentials with only singu-
larities of order ≥ 2 are called Abelian dif-
ferentials of the second kind, and the term
Abelian differential of the third kind is used
for all other Abelian differentials.

Abelian function An inverse function of
an Abelian integral. Abelian functions have
two variables and four periods. They are a
generalization of elliptic functions, and are
also called hyperelliptic functions. See also
Abelian integral, elliptic function.

Abelian integral (1.) An integral of the
form ∫ x

0

dt√
P(t)

,

where P(t) is a polynomial of degree > 4.
They are also called hyperelliptic integrals.

See also Abelian function, elliptic integral
of the first kind.
(2.) An integral of the form

∫
R(x, y)dx,

where R(x, y) is a rational function and
where y is one of the roots of the equation
F(x, y) = 0, of an algebraic curve.

Abelian theorems Any theorems stat-
ing that convergence of a series or integral
implies summability, with respect to some
summability method. See Abel’s Theorem,
for example.

abscissa The first or x-coordinate, when
a point in the plane is written in rectangu-
lar coordinates. The second or y-coordinate
is called the ordinate. Thus, for the point
(x, y), x is the abscissa and y is the ordinate.
The abscissa is the horizontal distance of a
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point from the y-axis and the ordinate is the
vertical distance from the x-axis.

abscissa of absolute convergence The
unique real number σa such that the Dirichlet
series

∞∑
j=1

a j e
−λ j s

(where 0 < λ1 < λ2 · · · → ∞) converges
absolutely for �s > σa , and fails to converge
absolutely for �s < σa . If the Dirichlet se-
ries converges for all s, then the abscissa of
absolute convergence σa = −∞ and if the
Dirichlet series never converges absolutely,
σa = ∞. The vertical line �s = σa is called
the axis of absolute convergence.

abscissa of boundedness The unique real
number σb such that the sum f (s) of the
Dirichlet series

f (s) =
∞∑
j=1

a j e
−λ j s

(where 0 < λ1 < λ2 · · · → ∞) is bounded
for �s ≥ σb + δ but not for �s ≥ σb − δ, for
every δ > 0.

abscissa of convergence (1.) The unique
real number σc such that the Dirichlet series

∞∑
j=1

a j e
−λ j s

(where 0 < λ1 < λ2 · · · → ∞) converges
for �s > σc and diverges for �s < σc. If the
Dirichlet series converges for all s, then the
abscissa of convergence σc = −∞, and if the
Dirichlet series never converges, σc = ∞.
The vertical line �s = σc is called the axis
of convergence.
(2.) A number σ such that the Laplace trans-
form of a measure converges for �z > σ and
does not converge in �z > σ − ε, for any
ε > 0. The line �z = σ is called the axis of
convergence.

abscissa of regularity The greatest lower
bound σr of the real numbers σ ′ such that

the function f (s) represented by the Dirichlet
series

f (s) =
∞∑
j=1

a j e
−λ j s

(where 0 < λ1 < λ2 · · · → ∞) is regu-
lar in the half plane �s > σ ′. Also called
abscissa of holomorphy. The vertical line
�s = σr is called the axis of regularity. It is
possible that the abscissa of regularity is ac-
tually less than the abscissa of convergence.
This is true, for example, for the Dirichlet se-
ries

∑
(−1) j j−s , which converges only for

�s > 0; but the corresponding function f (s)
is entire.

abscissa of uniform convergence The
unique real number σu such that the Dirichlet
series

∞∑
j=1

a j e
−λ j s

(where 0 < λ1 < λ2 · · · → ∞) converges
uniformly for �s ≥ σu + δ but not for �s ≥
σu − δ, for every δ > 0.

absolute continuity (1.) For a real val-
ued function f (x) on an interval [a, b], the
property that, for every ε > 0, there is a
δ > 0 such that, if {(a j , b j )} are intervals
contained in [a, b], with

∑
(b j − a j ) < δ

then
∑ | f (b j ) − f (a j )| < ε.

(2.) For two measures µ and ν, absolute
continuity of µ with respect to ν (written
µ << ν) means that whenever E is a ν-
measurable set with ν(E) = 0, E is µ-
measurable and µ(E) = 0.

absolute continuity in the restricted sense
Let E ⊂ R, let F(x) be a real-valued

function whose domain contains E . We say
that F is absolutely continuous in the re-
stricted sense on E if, for every ε > 0
there is a δ > 0 such that for every se-
quence {[an, bn]} of non-overlapping inter-
vals whose endpoints belong to E ,

∑
n(bn −

an) < δ implies that
∑

n O{F; [an, bn]} <

ε. Here, O{F; [an, bn]} denotes the oscil-
lation of the function F in [an, bn], i.e., the
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difference between the least upper bound and
the greatest lower bound of the values as-
sumed by F(x) on [an, bn].

absolute convergence (1.) For an infinite
series

∑∞
n=1 a j , the finiteness of

∑∞
j=1 |a j |.

(2.) For an integral∫
S

f (x)dx,

the finiteness of∫
S
| f (x)|dx .

absolute curvature The absolute value

|k| =
∣∣∣∣∣d2r

ds2

∣∣∣∣∣
= +

√∣∣∣∣gik
D

ds

(
dxi

ds

)
D

ds

(
dxk

ds

)∣∣∣∣
of the first curvature vector d2r

ds2 is the ab-
solute curvature (first, or absolute geodesic
curvature) of the regular arc C described by
n parametric equations

xi = xi (t) (t1 ≤ t ≤ t2)

at the point (x1, x2, . . . , xn).

absolute maximum A number M , in the
image of a function f (x) on a set S, such
that f (x) ≤ M, for all x ∈ S.

absolute minimum A number m, in the
image of a function f (x) on a set S, such that
f (x) ≥ m for all x ∈ S.

absolute value For a real number a, the
absolute value is |a| = a, if a ≥ 0 and |a| =
−a if a < 0. For a complex number ζ =
a + bi, |ζ | = √

a2 + b2. Geometrically, it
represents the distance from 0 ∈ C. Also
called amplitude, modulus.

absolutely continuous spectrum See
spectral theorem.

absolutely convex set A subset of a vector
space over R or C that is both convex and
balanced. See convex set, balanced set.

absolutely integrable function See abso-
lute convergence (for integrals).

absorb For two subsets A, B of a topolog-
ical vector space X , A is said to absorb B if,
for some nonzero scalar α,

B ⊂ αA = {αx : x ∈ A}.

absorbing A subset M of a topological
vector space X over R or C, such that, for
any x ∈ X, αx ∈ M , for some α > 0.

abstract Cauchy problem Given a closed
unbounded operator T and a vector v in the
domain of T , the abstract Cauchy problem
is to find a function f mapping [0, ∞) into
the domain of T such that f ′(t) = T f and
f (0) = v.

abstract space A formal system defined
in terms of geometric axioms. Objects in
the space, such as lines and points, are left
undefined. Examples include abstract vector
spaces, Euclidean and non-Euclidean spaces,
and topological spaces.

acceleration Let p(t) denote the position
of a particle in space, as a function of time.
Let

s(t) =
∫ t

0

(
(
dp

dt
,

dp

dt
)
) 1

2
dt

be the length of path from time t = 0 to t .
The speed of the particle is

ds

dt
=

(
(
dp

dt
,

dp

dt
)
)

= ‖dp

dt
‖,

the velocity v(t) is

v(t) = dp

dt
= dp

ds

ds

dt

and the acceleration a(t) is

a(t) = d2 p

dt2
= dT

ds

(ds

dt

)2 + T
d2s

dt2
,
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where T is the unit tangent vector.

accretive operator A linear operator T on
a domain D in a Hilbert space H such that
�(T x, x) ≥ 0, for x ∈ D. By definition, T
is accretive if and only if −T is dissipative.

accumulation point Let S be a subset of
a topological space X . A point x ∈ X is an
accumulation point of S if every neighbor-
hood of x contains infinitely many points of
E\{x}.

Sometimes the definition is modified, by
replacing “infinitely many points” by “a
point.”

addition formula A functional equation
involving the sum of functions or variables.
For example, the property of the exponential
function:

ea · eb = ea+b.

additivity for contours If an arc γ is
subdivided into finitely many subarcs, γ =
γ1 + . . . + γn , then the contour integral of a
function f (z) over γ satisfies∫

γ

f (z)dz =
∫

γ1

f (z)dz+ . . .+
∫

γn

f (z)dz.

adjoint differential equation Let

L = a0
dn

dtn
+ a1

dn−1

dtn−1
+ . . . + an

be a differential operator, where {a j } are con-
tinuous functions. The adjoint differential
operator is

L+ = (−1)n
( dn

dtn

)
Mā0 + (−1)n−1

( dn−1

dtn−1

)
Mā1 + . . . + Mān

where Mg is the operator of multiplication
by g. The adjoint differential equation of
L f = 0 is, therefore, L+ f = 0.

For a system of differential equations, the
functions {a j } are replaced by matrices of

functions and each ā j above is replaced by
the conjugate-transpose matrix.

adjoint operator For a linear operator T
on a domain D in a Hilbert space H , the ad-
joint domain is the set D∗ ⊂ H of all y ∈ H
such that there exists z ∈ H satisfying

(T x, y) = (x, z),

for all x ∈ D. The adjoint operator T ∗ of
T is the linear operator, with domain D∗,
defined by T ∗y = z, for y ∈ D∗, as above.

adjoint system See adjoint differential
equation.

admissible Baire function A function be-
longing to the class on which a functional is to
be minimized (in the calculus of variations).

AF algebra A C∗ algebra A which
has an increasing sequence {An} of finite-
dimensional C∗ subalgebras, such that the
union ∪n An is dense in A.

affine arc length (1.) For a plane curve
x = x(t), with

(dx
dt

,
d2x
dt2

) �= 0,

the quantity

s =
∫ (dx

dt
,

d2x
dt2

)
.

(2.) For a curve x(p) = {x1(p), x2(p),
x3(p)} in 3-dimensional affine space, the
quantity

s =
∫

det




x1 x2 x3

x ′
1 x ′

2 x ′
3

x ′′
1 x ′′

2 x ′′
3




1
6

dt.

affine connection Let B be the bundle of
frames on a differentiable manifold M of di-
mension n. An affine connection is a con-
nection on B, that is, a choice {Hb}b∈B , of
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subspaces Hb ⊂ Bb, for every b ∈ B, such
that
(i.) Bb = Hb + Vb (direct sum) where Vb is
the tangent space at b to the fiber through b;
(ii.) Hbg = g∗(Hb), for g ∈ GL(n, R); and
(iii.) Hb depends differentiably on b.

affine coordinates Projective space Pn

is the set of lines in Cn+1 passing through
the origin. Affine coordinates in Pn can be
chosen in each patch U j = {[(x0, x1, . . .,
xn)] : x j �= 0} (where [(x1, x2, . . . , xn)] de-
notes the line through 0, containing the point
(x0, x1, . . . , xn)). If z = [(z0, . . . , zn)],
with z j �= 0, the affine coordinates of z are
(z0/z j , . . . , z j−1/z j , z j+1/z j , . . . , zn/z j ).
Also called nonhomogeneous coordinates.

affine curvature (1.) For a plane curve
x = x(t), the quantity

κ = (x′′, x′′′)

where ′ = d
ds , (arc length derivative).

(2.) For a space curve x(p) = {x1(p), x2(p),
x3(p)}, the quantity

κ = det




x (4)
1 x (4)

2 x (4)
3

x ′
1 x ′

2 x ′
3

x ′′′
1 x ′′′

2 x ′′′
3


 ,

where derivatives are with respect to affine
arc length.

One also has the first and second affine
curvatures, given by

κ1 = −κ

4
, κ2 = κ ′

4
− τ,

where τ is the affine torsion. See affine tor-
sion.

affine diffeomorphism A diffeomorphism
q of n-dimensional manifolds induces maps
of their tangent spaces and, thereby, a
GL(n, R)-equivariant diffeomorphism of
their frame bundles. If each frame bundle
carries a connection and the induced map of
frame bundles carries one connection to the
other, then q is called an affine diffeomor-
phism, relative to the given connections.

affine differential geometry The study of
properties invariant under the group of affine
transformations. (The general linear group.)

affine length Let X be an affine space,
V a singular metric vector space and k a
field of characteristic different from 2. Then
(X, V, k) is a metric affine space with metric
defined as follows. If x and y are points in X ,
the unique vector A of V such that Ax = y

is denoted by
−→
x, y. The square affine length

(distance) between points x and y of X is the

scalar
−→
x, y 2.

If (X, V, R) is Euclidean space,
−→
x, y 2 ≥

0 and the Euclidean distance between the
points x and y is the nonnegative square root√

−→
x, y 2. In this case, the square distance is

the square of the Euclidean distance. One
always prefers to work with the distance it-
self rather than the square distance, but this is
rarely possible. For instance, in the Lorentz

plane
−→
x, y 2 may be negative and, there-

fore, there is no real number whose square

is
−→
x, y 2.

affine minimal surface The extremal sur-
face of the variational problem δ� = 0,

where � is affine surface area. It is charac-
terized by the condition that its affine mean
curvature should be identically 0.

affine normal (1.) For a plane curve x =
x(t), the vector x′ = dx

ds , where s is affine arc
length.
(2.) For a surface (x), the vector y = 1

2�x,
where � is the second Beltrami operator.

affine principal normal vector For a
plane curve x = x(t), the vector x′′ = d2x

ds2 ,
where s is affine arc length.

affine surface area Let (x1, x2, x3) denote
the points on a surface and set

L = ∂2x3

∂x2
1

, M = ∂2x3

∂x1∂x2
, N = ∂2x3

∂x2
2

.
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The affine surface area is

� =
∫ ∫

|L N − M2| 1
4 dudv.

affine symmetric space A complete, con-
nected, simply connected, n-dimensional
manifold M having a connection on the frame
bundle such that, for every x ∈ M , the
geodesic symmetry expx (Z) → expx (−Z)

is the restriction to expx (Mx ) of an affine
diffeomorphism of M . See affine diffeomor-
phism.

affine torsion For a space curve x(p) =
{x1(p), x2(p), x3(p)}, the quantity

τ = − det




x (4)
1 x (4)

2 x (4)
3

x ′′
1 x ′′

2 x ′′
3

x ′′′
1 x ′′′

2 x ′′′
3


 ,

where derivatives are with respect to affine
arc length.

affine transformation (1.) A function of
the form f (x) = ax + b, where a and b are
constants and x is a real or complex variable.
(2.) Members of the general linear group (in-
vertible transformations of the form (az +
b)/(cz + d)).

Ahlfors function See analytic capacity.

Ahlfors’ Five Disk Theorem Let f (z) be
a transcendental meromorphic function, and
let A1, A2, . . . , A5 be five simply connected
domains in C with disjoint closures. There
exists j ∈ {1, 2, . . . , 5} and, for any R > 0,
a simply connected domain D ⊂ {z ∈ C :
|z| > R} such that f (z) is a conformal map
of D onto A j . If f (z) has a finite number of
poles, then 5 may be replaced by 3.

See also meromorphic function, transcen-
dental function.

Albanese variety Let R be a Riemann sur-
face, H1,0 the holomorphic1, 0 forms on R,
H0,1∗ its complex dual, and let a curve γ in

R act on H0,1 by integration:

w → I (γ ) =
∫

γ

w.

The Albanese variety, Alb(R) of R is

Alb(R) = H0,1∗/I (H1(Z)).

See also Picard variety.

Alexandrov compactification For a topo-
logical space X , the set X̂ = X ∪ {x}, for
some point x /∈ X , topologized so that the
closed sets in X̂ are (i.) the compact sets in
X , and (ii.) all sets of the form E ∪ {x} where
E is closed in X .

X̂ is also called the one point compactifi-
cation of X .

algebra of differential forms Let M be
a differentiable manifold of class Cr (r ≥
1), Tp(M) its tangent space, T ∗

p (M) =
Tp(M)∗ the dual vector space (the linear
mappings from Tp(M) into R) and T ∗(M) =
∪p∈M T ∗

p (M). The bundle of i-forms is

∧i (T ∗(M)) = ∪p∈M ∧i (T ∗
p (M)),

where, for any linear map f : V → W ,
between two vector spaces, the linear map

∧i f : ∧i V → ∧i W

is defined by (∧i f )(v1 ∧·· ·∧vk) = f (v1)∧
· · ·∧ f (vk). The bundle projection is defined
by π(z) = p, for z ∈ ∧i (T ∗

p (M)).
A differential i-form or differential form of

degree i is a section of the bundle of i-forms;
that is, a continuous map

s : M → ∧i (T ∗(M))

with π(s(p)) = p. If Di (M) denotes the
vector space of differential forms of degree
i , the algebra of differential forms on M is

D∗(M) =
∑
i≥0

⊕Di (M).

It is a graded, anticommutative algebra over
R.
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algebra of sets A collection F of subsets
of a set S such that if E, F ∈ F , then (i.)
E ∪ F ∈ F , (ii.) E\F ∈ F , and (iii.)
S\F ∈ F . If F is also closed under the
taking of countable unions, then F is called
a σ -algebra. Algebras and σ -algebras of sets
are sometimes called fields and σ -fields of
sets.

algebraic analysis The study of mathe-
matical objects which, while of an analytic
nature, involve manipulations and character-
izations which are algebraic, as opposed to
inequalities and estimates. An example is
the study of algebras of operators on a Hilbert
space.

algebraic function A function y = f (z)
of a complex (or real) variable, which satis-
fies a polynomial equation

an(z)yn + an−1(z)yn−1 + . . . + a0(z) = 0,

where a0(z), . . . , an(z) are polynomials.

algebraic singularity See branch.

algebroidal function An analytic func-
tion f (z) satisfying the irreducible algebraic
equation

A0(z) f k + A1(z) f k−1 + · · · + Ak(z) = 0

with single-valued meromorphic functions
A j (z) in a complex domain G is called k-
algebroidal in G.

almost complex manifold A smooth man-
ifold M with a field of endomorphisms J on
T (M) such that J 2 = J ◦ J = −I , where
I is the identity endomorphism. The field of
endomorphisms is called an almost complex
structure on M .

almost complex structure See almost
complex manifold.

almost contact manifold An odd dimen-
sional differentiable manifold M which ad-
mits a tensor field φ of type (1, 1), a vector

field ζ and a 1-form ω such that

φ2 X = −X + ω(X)ζ, ω(ζ ) = 1,

for X an arbitrary vector field on M . The
triple (φ, ζ, ω) is called an almost contact
structure on M .

almost contact structure See almost con-
tact manifold.

almost everywhere Except on a set of
measure 0 (applying to the truth of a proposi-
tion about points in a measure space). For ex-
ample, a sequence of functions { fn(x)} con-
verges almost everywhere to f (x), provided
that fn(x) → f (x) for x ∈ E , where the
complement of E has measure 0. Abbrevi-
ations are a.e. and p.p. (from the French
presque partout).

almost periodic function in the sense of
Bohr A continuous function f (x) on
(−∞, ∞) such that, for every ε > 0, there is
a p = p(ε) > 0 such that, in every interval
of the form (t, t + p), there is at least one
number τ such that | f (x + τ) − f (x)| ≤ ε,
for −∞ < x < ∞.

almost periodic function on a group For
a complex-valued function f (g) on a group
G, let fs : G × G → C be defined by
fs(g, h) = f (gsh). Then f is said to be
almost periodic if the family of functions
{ fs(g, h) : s ∈ G} is totally bounded with
respect to the uniform norm on the complex-
valued functions on G × G.

almost periodic function on a topological
group On a (locally compact, Abelian)
group G, the uniform limit of trigonometric
polynomials on G. A trigonometric polyno-
mial is a finite linear combination of char-
acters (i.e., homomorphisms into the multi-
plicative group of complex numbers of mod-
ulus 1) on G.

alpha capacity A financial measure giving
the difference between a fund’s actual return
and its expected level of performance, given
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its level of risk (as measured by the beta ca-
pacity). A positive alpha capacity indicates
that the fund has performed better than ex-
pected based on its beta capacity whereas a
negative alpha indicates poorer performance.

alternating mapping The mapping A,
generally acting on the space of covariant ten-
sors on a vector space, and satisfying

A�(v1, . . . , vr )

= 1

r !

∑
σ

sgnσ�(vσ(1), . . . , vσ(r)),

where the sum is over all permutations σ of
{1, . . . , r}.

alternating multilinear mapping A map-
ping � : V ×·· ·×V → W, where V and W
are vector spaces, such that �(v1, . . . , vn) is
linear in each variable and satisfies

�(v1, . . . , vi , . . . , v j , . . . , vn)

= −�(v1, . . . , v j , . . . , vi , . . . , vn).

alternating series A formal sum
∑

a j

of real numbers, where (−1) j a j ≥ 0 or
(−1) j a j+1 ≥ 0; i.e., the terms alternate in
sign.

alternating tensor See antisymmetric ten-
sor.

alternizer See alternating mapping.

amenable group A locally compact group
G for which there is a left invariant mean on
L∞(G).

Ampere’s transformation A transforma-
tion of the surface z = f (x, y), defined by
coordinates X, Y, Z , given by

X = ∂ f

∂x
, Y = ∂ f

∂y
, Z = ∂ f

∂x
x + ∂ f

∂y
y − z.

amplitude function For a normal lattice,
let e1, e2, e3 denote the stationary values of
the Weierstrass ℘-function and, for i =

1, 2, 3, let fi (u) be the square root of ℘ − ei ,
whose leading term at the origin is u−1. Two
of the Jacobi-Glaisher functions are

csu = f1, snu = 1/f2,

which are labeled in analogy with the trigono-
metric functions, on account of the relation
sn2u+cs2u = 1. As a further part of the
analogy, the amplitude, am u, of u, is defined
to be the angle whose sine and cosine are snu
and csu.

amplitude in polar coordinates In polar
coordinates, a point in the plane R2 is written
(r, θ), where r is the distance from the origin
and θ ∈ [0, 2π) is the angle the line segment
(from the origin to the point) makes with the
positive real axis. The angle θ is called the
amplitude.

amplitude of complex number See argu-
ment of complex number.

amplitude of periodic function The abso-
lute maximum of the function. For example,
for the function f (x) = A sin(ωx − φ), the
number A is the amplitude.

analysis A branch of mathematics that
can be considered the foundation of calcu-
lus, arising out of the work of mathematicians
such as Cauchy and Riemann to formalize the
differential and integral calculus of Newton
and Leibniz. Analysis encompasses such top-
ics as limits, continuity, differentiation, inte-
gration, measure theory, and approximation
by sequences and series, in the context of
metric or more general topological spaces.
Branches of analysis include real analysis,
complex analysis, and functional analysis.

analysis on locally compact Abelian groups
The study of the properties (inversion, etc.)

of the Fourier transform, defined by

f̂ (γ ) =
∫

G
f (x)(−x, γ )dx,

with respect to Haar measure on a locally
compact, Abelian group G. Here f ∈ L1(G)
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and γ is a homomorphism from G to the
multiplicative group of complex numbers
of modulus 1. The classical theory of the
Fourier transform extends with elegance to
this setting.

analytic See analytic function.

analytic automorphism A mapping from
a field with absolute value to itself, that pre-
serves the absolute value.

See also analytic isomorphism.

analytic capacity For a compact planar set
K , let �(K ) = K1 ∪ {∞}, where K1 is the
unbounded component of the complement of
K . Let A(K ) denote the set of functions f,
analytic on �(K ), such that f (∞) = 0 and
‖ f ‖�(K ) ≤ 1. If K is not compact, A(K ) is
the union of A(E) for E compact and E ⊂
K . The analytic capacity of a planar set E is

γ (E) = sup
f ∈A(E)

| f ′(∞)|.

If K is compact, there is a unique function
f ∈ A(K ) such that f ′(∞) = γ (K ). This
function f is called the Ahlfors function of
K .

analytic continuation A function f (z),
analytic on an open disk A ⊂ C, is a di-
rect analytic continuation of a function g(z),
analytic on an open disk B, provided the
disks A and B have nonempty intersection
and f (z) = g(z) in A ∩ B.

We say f (z) is an analytic contin-
uation of g(z) if there is a finite se-
quence of functions f1, f2, . . . , fn , analytic
in disks A1, A2, . . . , An , respectively, such
that f1(z) = f (z) in A ∩ A1, fn(z) = g(z)
in An ∩ B and, for j = 1, . . . , n −1, f j+1(z)
is a direct analytic continuation of f j (z).

analytic continuation along a curve Sup-
pose f (z) is a function, analytic in a disk D,
centered at z0, g(z) is analytic in a disk E ,
centered at z1, and C is a curve with end-
points z0 and z1. We say that g is an analytic
continuation of f along C , provided there is

a sequence of disks D1, . . . , Dn , with centers
on C and an analytic function f j (z) analytic
in D j , j = 1, . . . , n, such that f1(z) = f (z)
in D = D1, fn(z) = g(z) in Dn = E and,
for j = 1, . . . , n − 1, f j+1(z) is a direct
analytic continuation of f j (z). See analytic
continuation.

analytic curve A curve α : I → M from
a real interval I into an analytic manifold M
such that, for any point p0 = α(t0), the chart
(Up0 , φp0) has the property that φp0(α(t)) is
an analytic function of t , in the sense that
φp0(α(t)) = ∑∞

j=0 a j (t −t0) j has a nonzero
radius of convergence, and a1 �= 0.

analytic disk A nonconstant, holomorphic
mapping φ : D → Cn , were D is the unit
disk in C1, or the image of such a map.

analytic function (1.) A real-valued func-
tion f (x) of a real variable, is (real) analytic
at a point x = a provided f (x) has an ex-
pansion in power series

f (x) =
∞∑
j=0

c j (x − a) j ,

convergent in some neighborhood (a−h, a+
h) of x = a.
(2.) A complex valued function f (z) of a
complex variable is analytic at z = z0 pro-
vided

f ′(w) = lim
z→w

f (w) − f (z)

w − z

exists in a neighborhood of z0. Analytic in a
domain D ⊆ C means analytic at each point
of D. Also holomorphic, regular, regular-
analytic.
(3.) For a complex-valued function f (z1, . . .,
zn) of n complex variables, analytic in each
variable separately.

analytic functional A bounded linear
functional on O(U ), the Fréchet space of
analytic functions on an open set U ⊂ Cn ,
with the topology of uniform convergence on
compact subsets of U .
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analytic geometry The study of shapes
and figures, in 2 or more dimensions, with
the aid of a coordinate system.

Analytic Implicit Function Theorem
Suppose F(x, y) is a function with a con-
vergent power series expansion

F(x, y) =
∞∑

j,k=0

a jk(x − x0)
j (y − y0)

k,

where a00 = 0 and a01 �= 0. Then there is a
unique function y = f (x) such that
(i.) F(x, f (x)) = 0 in a neighborhood of
x = x0;
(ii.) f (x0) = y0; and
(iii.) f (x) can be expanded in a power series

f (x) =
∞∑
j=0

b j (x − x0)
j ,

convergent in a neighborhood of x = x0.

analytic isomorphism A mapping be-
tween fields with absolute values that pre-
serves the absolute value.

See also analytic automorphism.

analytic manifold A topological mani-
fold with an atlas, where compatibility of
two charts (Up, φp), (Uq , φq) means that the
composition φp ◦ φ−1

q is analytic, whenever
Up ∩ Uq �= ∅. See atlas.

analytic neighborhood Let P be a poly-
hedron in the PL (piecewise linear) n-
manifold M . Then an analytic neighborhood
of P in M is a polyhedron N such that (1) N
is a closed neighborhood of P in M , (2) N is
a PL n-manifold, and (3) N ↓ P .

analytic polyhedron Let W be an open set
in Cn that is homeomorphic to a ball and let
f1, . . . , fk be holomorphic on W . If the set

� = {z ∈ W : | f j (z)| < 1, j = 1, . . . , k}

has its closure contained in W , then � is
called an analytic polyhedron.

analytic set A subset A of a Polish space X
such that A = f (Z), for some Polish space Z
and some continuous function f : Z → X .

Complements of analytic sets are called
co-analytic sets.

analytic space A topological space X (the
underlying space) together with a sheaf S,
where X is locally the zero set Z of a finite set
of analytic functions on an open set D ⊂ Cn

and where the sections of S are the analytic
functions on Z . Here analytic functions on
Z (if, for example, D is a polydisk) means
functions that extend to be analytic on D.

The term complex space is used by some
authors as a synonym for analytic space.
But sometimes, it allows a bigger class of
functions as the sections of S. Thus, while
the sections of S are H(Z) = H(D)/I(Z)

(the holomorphic functions on D modulo the
ideal of functions vanishing on Z ) for an
analytic space, H(Z) may be replaced by
Ĥ(Z) = H(D)/Î, for a complex space,
where Î is some other ideal of H(D) with
zero set Z .

angle between curves The angle between
the tangents of two curves. See tangent line.

angular derivative Let f (z) be analytic
in the unit disk D = {z : |z| < 1}. Then f
has an angular derivative f ′(ζ ) at ζ ∈ ∂ D
provided

f ′(ζ ) = lim
r→1−

f ′(rζ ).

antiderivative A function F(x) is an an-
tiderivative of f (x) on a set S ⊂ R, provided
F is differentiable and F ′(x) = f (x), on S.
Any two antiderivatives of f (x) must differ
by a constant (if S is connected) and so, if
F(x) is one antiderivative of f , then any an-
tiderivative has the form F(x)+C , for some
real constant C . The usual notation for the
most general antiderivative of f is∫

f (x)dx = F(x) + C.
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antiholomorphic mapping A mapping
whose complex conjugate, or adjoint, is ana-
lytic.

antisymmetric tensor A covariant tensor
� of order r is antisymmetric if, for each
i, j, 1 ≤ i, j ≤ r , we have

�(v1, . . . , vi, . . . , vj, . . . , vr)

= −�(v1, . . . , vj, . . . , vi, . . . , vr).

Also called an alternating, or skew tensor, or
an exterior form.

Appell hypergeometric function An ex-
tension of the hypergeometric function to two
variables, resulting in four kinds of functions
(Appell 1925):

G1(a; b, c; d; x, y)

=
∞∑

m=0

∞∑
n=0

(a)m+n(b)m(c)n

m!n!(d)m+n
xm yn

G2(a; b, c; d, d ′; x, y)

=
∞∑

m=0

∞∑
n=0

(a)m+n(b)m(c)n

m!n!(d)m(d ′)n
xm yn

G3(a, a′; b, c′; d; x, y)

=
∞∑

m=0

∞∑
n=0

(a)m(a′)n(b)m(c)n

m!n!(d)m+n
xm yn

G4(a; b; d, d ′; x, y)

=
∞∑

m=0

∞∑
n=0

(a)m+n(b)m+n

m!n!(d)m(d ′)n
xm yn .

Appell defined these functions in 1880, and
Picard showed in 1881 that they can be ex-
pressed by integrals of the form

∫ 1

0
ua(1 − u)b(1 − xu)d(1 − yu)q du.

approximate derivative See approxi-
mately differentiable function.

approximate identity On [−π, π ], a se-
quence of functions {e j } such that
(i.) e j ≥ 0, j = 1, 2, . . . ;

(ii.) 1/2π
∫ π

−π
e j (t)dt = 1;

(iii.) for every ε with π > ε > 0,

lim
j→∞

∫ ε

−ε

e j (t)dt = 0.

approximately differentiable function A
function F : [a, b] → R (at a point c ∈
[a, b]) such that there exists a measurable set
E ⊆ [a, b] such that c ∈ E and is a den-
sity point of E and F |E is differentiable at c.
The approximate derivative of F at c is the
derivative of F |E at c.

approximation (1.) An approximation
to a number x is a number that is close to
x . More precisely, given an ε > 0, an ap-
proximation to x is a number y such that
|x − y| < ε. We usually seek an approxi-
mation to x from a specific class of numbers.
For example, we may seek an approximation
of a real number from the class of rational
numbers.
(2.) An approximation to a function f is a
function that is close to f in some appropri-
ate measure. More precisely, given an ε > 0,
an approximation to f is a function g such
that ‖ f − g‖ < ε for some norm ‖ · ‖. We
usually seek an approximation to f from a
specific class of functions. For example, for
a continuous function f defined on a closed
interval I we may seek a polynomial g such
that supx∈I | f (x) − g(x)| < ε.

arc length (1.) For the graph of a differ-
entiable function y = f (x), from x = a to
x = b, in the plane, the integral

∫ b

a

√
1 + (dy

dy

)2
dx .

(2.) For a curve t → p(t), a ≤ t ≤ b,

of class C1, on a Riemannian manifold with
inner product �(X p, Yp) on its tangent space
at p, the integral∫ b

a

(
�

(dp

dt
,

dp

dt

)) 1
2
dt.
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Argand diagram The representation z =
reiθ of a complex number z.

argument function The function arg(z) =
θ , where z is a complex number with the rep-
resentation z = reiθ , with r real and non-
negative. The choice of θ is, of course, not
unique and so arg(z) is not a function without
further restrictions such as −π < arg(z) ≤ π

(principal argument) or the requirement that
it be continuous, together with a specification
of the value at some point.

argument of complex number The angle
θ in the representation z = reiθ of a complex
number z. Also amplitude.

argument of function The domain vari-
able; so that if y = f (x) is the function as-
signing the value y to a given x , then x is the
argument of the function f . Also indepen-
dent variable.

argument principle Let f (z) be analytic
on and inside a simple closed curve C ⊂ C,
except for a finite number of poles inside C ,
and suppose f (z) �= 0 on C . Then � arg f ,
the net change in the argument of f , as z
traverses C , satisfies � arg f = N − P , the
number of zeros minus the number of poles
of f inside C .

arithmetic mean For n real numbers,
a1, a2, . . . , an, the number a1+a2+...+an

n . For
a real number r , the arithmetic mean of order
r is∑n

j=1(r + 1) · · · (r + n − j)a j/(n − j)!∑n
j=1(r + 1) · · · (r + n − j)/(n − j)!

.

arithmetic progression A sequence {a j }
where a j is a linear function of j : a j =
cj + r , with c and r independent of j .

arithmetic-geometric mean The arithmet-
ic-geometric mean (AGM) M(a, b) of two
numbers a and b is defined by starting with
a0 ≡ a and b0 ≡ b, then iterating

an+1 = 1
2 (an + bn) bn+1 =

√
anbn

until an = bn . The sequences an and bn

converge toward each other, since

an+1 − bn+1 = 1
2 (an + bn) −

√
anbn

= an − 2
√

anbn + bn

2
.

But
√

bn <
√

an , so

2bn < 2
√

anbn .

Now, add an − bn − 2
√

anbn so each side

an + bn − 2
√

anbn < an − bn,

so
an+1 − bn+1 < 1

2 (an − bn).

The AGM is useful in computing the values
of complete elliptic integrals and can also be
used for finding the inverse tangent. The spe-
cial value 1/M(1,

√
2) is called Gauss’s con-

stant.
The AGM has the properties

λM(a, b) = M(λa, λb)

M(a, b) = M
(

1
2 (a + b),

√
ab

)
M(1,

√
1 − x2) = M(1 + x, 1 − x)

M(1, b) = 1 + b

2
M

(
1,

2
√

b

1 + b

)
.

The Legendre form is given by

M(1, x) =
∞∏

n=0

1
2 (1 + kn),

where k0 ≡ x and

kn+1 ≡ 2
√

kn

1 + kn
.

Solutions to the differential equation

(x3 − x)
d2 y

dx2
+ (3x2 − 1)

dy

dx
+ xy = 0

are given by [M(1 + x, 1 − x)]−1 and
[M(1, x)]−1.
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A generalization of the arithmetic-geometric
mean is

Ip(a, b)

=
∫ ∞

0

x p−2dx

(x p + a p)1/p(x p + bp)(p−1)/p
,

which is related to solutions of the differential
equation

x(1 − x p)Y ′′ + [1 − (p + 1)x p]Y ′

−(p − 1)x p−1Y = 0.

When p = 2 or p = 3, there is a modular
transformation for the solutions of the above
equation that are bounded as x → 0. Letting
Jp(x) be one of these solutions, the transfor-
mation takes the form

Jp(λ) = µJp(x),

where

λ = 1 − u

1 + (p − 1)u
µ = 1 + (p − 1)u

p

and
x p + u p = 1.

The case p = 2 gives the arithmetic-
geometric mean, and p = 3 gives a cubic
relative discussed by Borwein and Borwein
(1990, 1991) and Borwein (1996) in which,
for a, b > 0 and I (a, b) defined by

I (a, b) =
∫ ∞

0

t dt

[(a3 + t3)(b3 + t3)2]1/3
,

I (a, b) =
I

(
a + 2b

3
,

[
b

3
(a2 + ab + b2)

])
.

For iteration with a0 = a and b0 = b and

an+1 = an + 2bn

3

bn+1 = bn

3
(a2

n + anbn + b2
n),

lim
n→∞ an = lim

n→∞ bn = I (1, 1)

I (a, b)
.

Modular transformations are known when
p = 4 and p = 6, but they do not give iden-
tities for p = 6 (Borwein 1996).

See also arithmetic-harmonic mean.

arithmetic-harmonic mean For two given
numbers a, b, the number A(a, b), obtained
by setting a0 = a, b0 = b, and, for n ≥
0, an+1 = 1

2 (an + bn), bn+1 = 2anbn/(an +
bn) and A(a, b) = limn→∞ an . The se-
quences an and bn converge to a common
value, since an− bn ≤ 1

2 (an−1− bn−1), if a, b
are nonnegative, and we have A(a0, b0) =
limn→∞ an = lim bn = √

ab, which is just
the geometric mean.

Arzela-Ascoli Theorem The theorem
consists of two theorems:

Propagation Theorem. If { fn(x)} is an
equicontinuous sequence of functions on
[a, b] such that limn→∞ fn(x) exists on a
dense subset of [a, b], then { fn} is uniformly
convergent on [a, b].

Selection Theorem. If { fn(x)} is a uni-
formly bounded, equicontinuous sequence
on [a, b], then there is a subsequence which
is uniformly convergent on [a, b].

associated radii of convergence Con-
sider a power series in n complex vari-
ables:

∑
ai1i2...in zi1

1 zi2
2 . . . zin

n . Suppose
r1, r2, . . . , rn are such that the series con-
verges for |z1| < r1, |z2| < r2, . . . , |zn| <

rn and diverges for |z1| > r1, |z2| >

r2, . . . , |zn| > rn . Then r1, r2, . . . , rn are
called associated radii of convergence.

astroid A hypocycloid of four cusps, hav-
ing the parametric equations

x = 4a cos3 t, y = 4a sin3 t.

(−π ≤ t ≤ π). The Cartesian equation is

x
2
3 + y

2
3 = a

2
3 .

asymptote For the graph of a function y =
f (x), either (i.) a vertical asymptote: a ver-
tical line x = a, where limx→a f (x) = ∞;
(ii.) a horizontal asymptote: a horizontal line
y = a such that limx→∞ f (x) = a; or (iii.)
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an oblique asymptote: a line y = mx + b
such that limx→∞[ f (x) − mx − b] = 0.

asymptotic curve Given a regular surface
M , an asymptotic curve is formally defined
as a curve x(t) on M such that the normal
curvature is 0 in the direction x′(t) for all t
in the domain of x. The differential equa-
tion for the parametric representation of an
asymptotic curve is

eu
′2 + 2 f u′v′ + gv

′2 = 0,

where e, f , and g are second fundamental
forms. The differential equation for asymp-
totic curves on a Monge patch (u, v, h(u, v))

is

huuu
′2 + 2huuu′v′ + hvvv

′2 = 0,

and on a polar patch (r cos θ, 4 sin θ, h(r)) is

h′′(r)r
′2 + h′(r)rθ

′2 = 0.

asymptotic direction A unit vector X p in
the tangent space at a point p of a Rieman-
nian manifold M such that (S(X p), X p) = 0,
where S is the shape operator on Tp(M):
S(X p) = −(dN/dt)t=0.

asymptotic expansion A divergent series,
typically one of the form

∞∑
j=0

A j

z j
,

is an asymptotic expansion of a function f (z)
for a certain range of z, provided the remain-
der Rn(z) = zn[ f (z)−sn(z)], where sn(z) is
the sum of the first n + 1 terms of the above
divergent series, satisfies

lim
|z|→∞

Rn(z) = 0

(n fixed) although

lim
n→∞ |Rn(z)| = ∞

(z fixed).

asymptotic path A path is a continuous
curve. See also asymptotic curve.

asymptotic power series See asymptotic
series.

asymptotic rays Let M be a complete,
open Riemannian manifold of dimension ≥
2. A geodesic γ : [0, ∞) → M , em-
anating from p and parameterized by arc
length, is called a ray emanating from p
if d(γ (t), γ (s)) = |t − s|, for t, s ∈
[0, ∞). Two rays, γ, γ ′ are asymptotic if
d(γ (t), γ ′(t)) ≤ |t − s| for all t ≥ 0.

asymptotic sequence Let R be a subset of
R or C and c a limit point of R. A sequence
of functions { f j (z)}, defined on R, is called
an asymptotic sequence or scale provided

f j+1(z) = o( f j (z))

as z → c in R, in which case we write the
asymptotic series

f (z) ∼
∞∑
j=0

a j f j (z) (z → c, in R)

for a function f (z), whenever, for each n,

f (z) =
n−1∑
j=0

a j f j (z) + O( fn(z)),

as z → c in R.

asymptotic series See asymptotic se-
quence.

asymptotic stability Given an autonomous
differential system y′ = f (y), where f (y) is
defined on a set containing y = 0 and satis-
fies f (0) = 0, we say the solution y ≡ 0
is asymptotically stable, in the sense of Lya-
punov, if
(i.) for every ε > 0, there is a δε > 0 such
that, if |y0| < δε , then there is a solution
y(t) satisfying y(0) = y0 and |y(t)| < ε, for
t ≥ 0; and
(ii.) y(t) → 0, as t → ∞.
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Whenever (i.) is satisfied, the solution
y ≡ 0 is said to be stable, in the sense of
Lyapunov.

asymptotic tangent line A direction of the
tangent space Tp(S) (where S is a regular
surface and p ∈ S) for which the normal
curvature is zero.

See also asymptotic curve, asymptotic
path.

Atiyah-Singer Index Theorem A theo-
rem which states that the analytic and topo-
logical indices are equal for any elliptic dif-
ferential operator on an n-dimensional com-
pact differentiable C∞ boundaryless mani-
fold.

atlas By definition, a topological space M
is a differentiable [resp., C∞, analytic] man-
ifold if, for every point p ∈ M , there is
a neighborhood Up and a homeomorphism
φp from Up into Rn . The neighborhood Up

or, sometimes, the pair (Up, φp), is called a
chart. Two charts Up, Uq are required to be
compatible; i.e., if Up ∩ Uq �= ∅ then the
functions φp ◦ φ−1

q and φq ◦ φ−1
p are differ-

entiable [resp, C∞, analytic]. The set of all
charts is called an atlas. An atlas A is com-
plete if it is maximal in the sense that if a pair
U, φ is compatible with one of the Up, φp in
A, then U belongs to A.

In the case of a differentiable [resp., C∞,
analytic] manifold with boundary, the maps
φp may map from Up to either Rn or Rn+ =
{(x1, . . . , xn) : x j ≥ 0, for j = 1, . . . , n}.

atom For a measure µ on a set X , a point
x ∈ X such that µ(x) > 0.

automorphic form Let G be a Kleinian
group acting on a domain D ⊂ C and q a
positive integer. A measurable function σ :
D → C is a measurable automorphic form
of weight −2q for G if

(σ ◦ g)(g′)q = σ

almost everywhere on D, for all g ∈ G.

automorphic function A meromorphic
function f (z) satisfying f (T z) = f (z) for T
belonging to some group of linear fractional
transformations (that is, transformations of
the form T z = (az+b)/(cz+d)). When the
linear fractional transformations come from
a subgroup of the modular group, f is called
a modular function.

autonomous linear system See autono-
mous system.

autonomous system A system of differ-
ential equations dy

dt = f(y), where y and f
are column vectors, and f is independent of
t .

auxiliary circle Suppose a central conic
has center of symmetry P and foci F and
F ′, each at distance a from P . The circle of
radius a, centered at P , is called the auxiliary
circle.

axiom of continuity One of several
axioms defining the real number system
uniquely: Let{x j }be a sequence of real num-
bers such that x1 ≤ x2 ≤ . . . and x j ≤ M
for some M and all j . Then there is a num-
ber L ≤ M such that x j → L , j → ∞ and
x j ≤ L , j = 1, 2, . . . .

This axiom, together with axioms deter-
mining addition, multiplication, and ordering
serves to define the real numbers uniquely.

axis (1.) The Cartesian coordinates of a
point in a plane are the directed distances of
the point from a pair of intersecting lines,
each of which is referred to as an axis.
In three-dimensional space, the coordinates
are the directed distances from coordinate
planes; an axis is the intersection of a pair
of coordinate planes.
(2.) If a curve is symmetric about a line, then
that line is known as an axis of the curve. For
example, an ellipse has two axes: the major
axis, on which the foci lie, and a minor axis,
perpendicular to the major axis through the
center of the ellipse.
(3.) The axis of a surface is a line of sym-
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metry for that surface. For example, the axis
of a right circular conical surface is the line
through the vertex and the center of the base.
The axis of a circular cylinder is the line
through the centers of the two bases.
(4.) In polar coordinates (r, θ), the polar axis
is the ray that is the initial side of the angle
θ .

axis of absolute convergence See abscissa
of absolute convergence.

axis of convergence See abscissa of con-
vergence.

axis of regularity See abscissa of regular-
ity.

axis of rotation A surface of revolution
is obtained by rotating a curve in the plane
about a line in the plane that has the curve on
one side of it. This line is referred to as the
axis of rotation of the surface.
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B
Baire σ -algebra The smallest σ -algebra
on a compact Hausdorff space X making all
the functions in C(X) measurable. The sets
belonging to the Baire σ -algebra are called
the Baire subsets of X .

Baire Category Theorem A nonempty,
complete metric space is of the second cat-
egory. That is, it cannot be written as the
countable union of nowhere dense subsets.

Baire function A function that is measur-
able with respect to the ring of Baire sets.
Also Baire measurable function.

Baire measurable function See Baire
function.

Baire measure A measure on a Hausdorff
space X , for which all the Baire subsets of
X are measurable and which is finite on the
compact Gδ sets.

Baire property A subset A of a topolog-
ical space has the Baire property if there
is a set B of the first category such that
(A\B) ∪ (B\A) is open.

Baire set See Baire σ -algebra.

balanced set A subset M of a vector space
V over R or C such that αx ∈ M , whenever
x ∈ M and |α| ≤ 1.

Banach algebra A vector space B, over
the complex numbers, with a multiplication
defined and satisfying ( for x, y, z ∈ B)

(i.) x · y = y · x ;
(ii.) x · (y · z) = (x · y) · z;
(iii.) x · (y + z) = x · y + x · z;
and, in addition, with a norm ‖ · ‖ making B

into a Banach space and satisfying
(iv.) ‖x · y‖ ≤ ‖x‖‖y‖, for x, y ∈ B.

Banach analytic space A Banach space
of analytic functions. (See Banach space.)
Examples are the Hardy spaces. See Hardy
space.

Banach area Let T : A → R3 be a con-
tinuous mapping defining a surface in R3 and
let K be a polygonal domain in A. Let P0 be
the projection of R3 onto a plane E and let m
denote Lebesgue measure on PT (K ). The
Banach area of T (A) is

sup
S

∑
K∈S

[m2(A1) + m2(A2) + m2(A3)]

where A j are the projections of K onto coor-
dinate planes in R3 and S is a finite collection
of non-overlapping polygonal domains in A.

Banach manifold A topological space M
such that every point has a neighborhood
which is homeomorphic to the open unit ball
in a Banach space.

Banach space A complete normed vector
space. That is, a vector space X , over a scalar
field (R or C) with a nonnegative real valued
function ‖ · ‖ defined on X , satisfying (i.)
‖cx‖ = |c|‖x‖, for c a scalar and x ∈ X ;
(ii.) ‖x‖ = 0 only if x = 0, for x ∈ X ; and
(iii.) ‖x + y‖ ≤ ‖x‖ + ‖y‖, for x, y ∈ X .
In addition, with the metric d(x, y) = ‖x −
y‖, X is assumed to be complete.

Banach-Steinhaus Theorem Let X be a
Banach space, Y a normed linear space and
{�α : X → Y }, a family of bounded linear
mappings, for α ∈ A. Then, either there is a
constant M < ∞ such that ‖�α‖ ≤ M , for
all α ∈ A, or supα∈A ‖�αx‖ = ∞, for all x
in some subset S ⊂ X , which is a dense Gδ .

Barnes’s extended hypergeometric func-
tion Let G(a, b; c; z) denote the sum of
the hypergeometric series, convergent for
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|z| < 1:
∞∑
j=0

 (a + j) (b + j)

 (c + j) j!
z j ,

which is the usual hypergeometric func-
tion F(a, b; c; z) divided by the constant
 (c)/[ (a) (b)]. Barnes showed that, if
|arg(−z)| < π and the path of integration
is curved so as to lie on the right of the poles
of  (a + ζ ) (b + ζ ) and on the left of the
poles of  (−ζ ), then

G(a, b; c; z) =
1

2π i

∫ π i
−π i

 (a+ζ ) (b+ζ ) (−ζ )
 (c+ζ )

(−z)ζ dζ,

thus permitting an analytic continuation of
F(a, b; c; z) into |z| > 1, arg(−z) < π .

barrel A convex, balanced, absorbing sub-
set of a locally convex topological vector
space. See balanced set, absorbing.

barrel space A locally convex topologi-
cal vector space, in which every barrel is a
neighborhood of 0. See barrel.

barrier See branch.

barycentric coordinates Let p0, p1, . . .,
pn denote points in Rn , such that {p j − p0}
are linearly independent. Express a point
P = (a1, a2, . . . , an) in Rn as

P =
n∑

j=0

µ j p j

where
∑n

0 µ j = 1 (this can be done by
expressing P as a linear combination of
p1 − p0, p2 − p0, . . . , pn − p0). The num-
bers µ0, µ1, . . . , µn are called the barycen-
tric coordinates of the point P . The point
of the terminology is that, if {µ0, . . . , µn}
are nonnegative weights of total mass 1, as-
signed to the points {p0, . . . , pn}, then the
point P = ∑n

0 µ j p j is the center of mass or
barycenter of the {p j }.

basic vector field Let M, N be Rieman-
nian manifolds and π : M → N a Rieman-
nian submersion. A horizontal vector field X

on M is called basic if there exists a vector
field X̂ on N such that Dπ(p)X p = X̂π(p),
for p ∈ M .

basis A finite set {x1, . . . , xn}, in a vec-
tor space V such that (i.) {x j } is linearly
independent, that is,

∑n
j=1 c j x j = 0 only

if c1 = c2 = . . . = cn = 0, and (ii.) ev-
ery vector v ∈ V can be written as a linear
combination v = ∑n

j=1 c j x j .
An infinite set {x j } satisfying (i.) (for ev-

ery n) and (ii.) (for some n) is called a Hamel
basis.

BDF See Brown-Douglas-Fillmore Theo-
rem.

Bell numbers The number of ways a
set of n elements can be partitioned into
nonempty subsets, denoted Bn . For example,
there are five ways the numbers {1, 2, 3} can
be partitioned: {{1}, {2}, {3}}, {{1, 2}, {3}},
{{1, 3}, {2}}, {{1}, {2, 3}}, and {{1, 2, 3}}, so
B3 = 5. B0 = 1 and the first few Bell num-
bers for n = 1, 2, . . . are 1, 2, 5, 15, 52, 203,
877, 4140, 21147, 115975,. . .. Bell numbers
are closely related to Catalan numbers.

The integers Bn can be defined by the
sum

Bn =
n∑

k=1

S(n, k),

where S(n, k) is a Stirling number of the sec-
ond kind, or by the generating function

een−1 =
∞∑

n=0

Bn

n!
xn .

Beltrami equation The equation D! f =
0. See Beltrami operator.

Beltrami operator Given by

D! =
!∑

i=1

x2
i

∂2

∂x2
i

+
∑
i �= j

x2
j

xi − x j

∂

∂x j
.

The Beltrami operator appears in the expan-
sions in many distributions of statistics based
on normal populations.
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