

Docker in the Trenches Early
Release

Successful Production Deployment

Joe Johnston, Antoni Batchelli, Justin Cormace, John Fiedler, Milos Gajdos

Docker in the Trenches Early Release
Copyright (c) 2015 Bleeding Edge Press
All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

This book expresses the authors views and opinions. The information contained in this
book is provided without any express, statutory, or implied warranties. Neither the
authors, Bleeding Edge Press, nor its resellers, or distributors will be held liable for any
damages caused or alleged to be caused either directly or indirectly by this book.

ISBN 9781939902221
Published by: Bleeding Edge Press, Santa Rosa, CA 95404
Title: Docker in the Trenches
Authors: Joe Johnston, Antoni Batchelli, Justin Cormace, John Fiedler, Milos Gajdos
Editor: Troy Mott
Copy Editor: Christina Rudloff
Cover Design: Bob Herbstman
Website: bleedingedgepress.com

Table of Contents

Preface ix

CHAPTER 1: Getting Started 15

Terminology 15

Image vs. Container 15

Containers vs. Virtual Machines 15

CI/CD: Continuous Integration / Continuous Delivery 16

Host Management 16

Orchestration 16

Scheduling 16

Discovery 16

Configuration Management 16

Development to Production 17

Multiple Ways to Use Docker 17

What to Expect 18

CHAPTER 2: The Stack 19

Build System 20

Image Repository 20

Host Management 20

Configuration Management 20

Deployment 21

iii

Orchestration 21

CHAPTER 3: Example - Barebones Environment 23

Keeping the Pieces Simple 23

Keeping The Processes Simple 25

Systems in Detail 26

Leveraging systemd 28

Cluster-wide, common and local configurations 31

Deploying services 32

Support services 33

Discussion 33

Future 34

CHAPTER 4: Web Environment 35

Orchestration 36

Building the server for the container (aka getting Docker on the host) 37

Building the container (the listening web service) 37

Networking 37

Data storage 38

Logging 39

Monitoring 40

No worries about new dependencies 40

Zero downtime 40

Service rollbacks 41

Pros 41

Cons 41

Conclusion 41

CHAPTER 5: Beanstalk Environment 43

Process to build containers 44

Process to deploy/update containers 45

Logging 45

Monitoring 46

Security 46

Pros 46

Table of Contents

iv

Cons 46

Other notes 46

CHAPTER 6: Kubernetes Environment 47

OpenShift v3 47

Interview, Clayton Coleman, RedHat 47

CHAPTER 7: Security 51

Threat models 51

Containers and security 52

Kernel updates 52

Container updates 53

suid and guid binaries 53

root in containers 54

Capabilities 54

seccomp 55

Kernel security frameworks 55

Resource limits and cgroups 56

ulimit 56

User namespaces 57

Image verification 57

Running the docker daemon securely 58

Monitoring 58

Devices 58

Mount points 58

ssh 59

Secret distribution 59

Location 59

CHAPTER 8: Building Images 61

Not your father’s images 61

Copy on Write and Efficient Image Storage and Distribution 61

Image building fundamentals 63

Layered File Systems and Preserving Space 65

Keeping images small 68

Table of Contents

v

Making images reusable 69

Making an image configurable via environment variables when the process is not 70

Make images that reconfigure themselves when docker changes 73

Trust and Images 77

Make your images immutable 77

CHAPTER 9: Storing Docker Images 79

Getting up and running with storing Docker images 79

Automated builds 80

Private repository 81

Scaling the Private registry 81

S3 82

Load balancing the registry 82

Maintenance 82

Making your private repository secure 83

SSL 83

Authentication 83

Save/Load 83

Minimizing your image sizes 84

Other Image repository solutions 84

CHAPTER 10: CICD 87

Let everyone just build and push containers! 88

Integration testing with Docker 90

Conclusion 91

CHAPTER 11: Configuration Management 93

Configuration Management vs. Containers 93

Configuration management for containers 94

Chef 95

Ansible 96

Salt Stack 98

Puppet 99

Table of Contents

vi

Conclusion 100

CHAPTER 12: Docker storage drivers 101

AUFS 102

DeviceMapper 106

btrfs 110

overlay 113

vfs 117

Conclusion 118

CHAPTER 13: Docker networking 121

Networking Basics 122

IP address allocation 124

Port allocation 125

Domain name resolution 130

Service discovery 133

Advanced Docker networking 137

Network security 137

Multihost inter container communication 140

Network namespace sharing 142

IPv6 145

Conclusion 146

CHAPTER 14: Scheduling 149

CHAPTER 15: Service discovery 153

DNS service discovery 155

DNS servers reinvented 157

Zookeeper 158

Service discovery with Zookeeper 159

etcd 160

Service discovery with etcd 161

consul 163

Service discovery with consul 165

registrator 165

Table of Contents

vii

Eureka 169

Service discovery with Eureka 170

Smartstack 171

Service discovery with Smartstack 171

Summary 173

nsqlookupd 174

Summary 174

CHAPTER 16: Logging and Monitoring 175

Logging 175

Native Docker logging 176

Attaching to Docker containers 177

Exporting logs to host 178

Sending logs to a centralized logging system 179

Side mounting logs from another container 180

Monitoring 180

Host based monitoring 181

Docker deamon based monitoring 182

Container based monitoring 184

References 186

CHAPTER 17: Reference 187

Blogs and Articles 187

Production Examples 187

Security 187

Table of Contents

viii

Preface

Docker is the new sliced bread of infrastructure. Few emerging technologies compare to
how fast it swept the DevOps and infrastructure scenes. In less than two years, Google, Am-
azon, Microsoft, IBM, and nearly every cloud provider announced support for running
Docker containers. Dozens of Docker related startups were funded by venture capital in
2014 and early 2015. Docker, Inc., the company behind the namesake open source technol-
ogy, was valued at about $1 billion USD during their Series D funding round in Q1 2015.

Companies large and small are converting their apps to run inside containers with an
eye towards service oriented architectures (SOA) and microservices. Attend any DevOps
meet-up from San Francisco to Berlin or peruse the hottest company engineering blogs,
and it appears the ops leaders of the world now run on Docker in the cloud.

No doubt, containers are here to stay as crucial building blocks for application packag-
ing and infrastructure automation. But there is one thorny question that nagged this
book’s authors and colleagues to the point of motivating another Docker book:

Who is actually using Docker in production?

Or more poignantly, how does one navigate the hype to successfully address real world
production issues with Docker? This book sets out to answer these questions through a mix
of interviews, end-to-end production examples from real companies, and referable topic
chapters from leading DevOps experts. Although this book contains useful examples, it is
not a copy-and-paste “how-to” reference. Rather, it focuses on the practical theories and
experience necessary to evaluate, derisk and operate bleeding-edge technology in produc-
tion environments.

As authors, we hope the knowledge contained in this book will outlive the code snippets
by providing a solid decision tree for teams evaluating how and when to adopt Docker re-
lated technologies into their DevOps stacks.

Running Docker in production gives companies several new options to run and manage
server-side software. There are many readily available use cases on how to use Docker, but
few companies have publicly shared their full-stack production experiences. This book is a
compilation of several examples of how the authors run Docker in production as well as a
select group of companies kind enough to contribute their experience.

ix

Who is this book for?

Readers with intermediate to advanced DevOps and ops backgrounds will likely gain the
most from this book. Previous experience with both the basics of running servers in pro-
duction as well as the basics of creating and managing containers is highly recommended.
Many books and blog posts already cover individual topics related to installing and running
Docker, but few resources exist to weave together the myriad and sometimes forehead-to-
wall-thumping concerns of running Docker in production. But fear not, if you enjoyed the
movie Inception, you will feel right at home running containers in VMs on servers in the
cloud.

Why Docker?

The underlying container technology used by Docker has been around for many years be-
fore dotcloud, the Platform-as-a-Service startup, pivoted to become Docker as we now
know it. Before dotCloud, many notable companies like Heroku and Iron.io were running
large scale container clusters in production for added performance benefits over virtual
machines. Running software in containers instead of virtual machines gave these compa-
nies the ability to spin up and down instances in seconds instead of minutes, as well as run
more instances on fewer machines.

So why did Docker take off if the technology wasn’t new? Mainly, ease of use. Docker
created a unified way to package, run, and maintain containers from convenient CLI and
HTTP API tools. This simplification lowered the barrier to entry to the point where it be-
came feasible--and fun--to package applications and their runtime environments into self-
contained images rather than into configuration management and deployment systems
like Chef, Puppet, Capistrano, etc.

Fundamentally, Docker changed the interface between developer and DevOps teams by
providing a unified means of packaging the application and runtime environment into one
simple Dockerfile. This radically simplified the communication requirements and boundary
of responsibilities between devs and DevOps.

Before Docker, epic battles raged within companies between devs and ops. Devs wanted
to move fast, integrate the latest software and dependencies, and deploy continuously.
Ops were on call and needed to ensure things remained stable. They were the gatekeepers
of what ran in production. If ops was not comfortable with a new dependency or require-
ment, they often ended up in the obstinate position of restricting developers to older soft-
ware to ensure bad code didn’t take down an entire server.

In one fell swoop, Docker changed the roll of DevOps from a “mostly say no” to a “yes, if
it runs in Docker” position where bad code only crashes the container, leaving other serv-
ices unaffected on the same server. In this paradigm, DevOps are effectively responsible for
providing a PaaS to developers, and developers are responsible for making sure their code

x

Preface

https://www.dotcloud.com/
https://www.heroku.com/
http://www.iron.io/

runs as expected. Many teams are now adding developers to PagerDuty to monitor their
own code in production, leaving DevOps and ops to focus on platform uptime and security.

Development vs. production

For most teams, the adoption of Docker is being driven by developers wanting faster itera-
tions and release cycles. This is great for development, but for production, running multi-
ple Docker containers per host can pose security challenges covered in the [Security chap-
ter](10 Security.md). In fact, almost all conversations about running Docker in production
are dominated by two concerns that separate development environments from produc-
tion: 1) orchestration and 2) security.

Some teams try to mirror development and production environments as much as possi-
ble. This approach is ideal but often not practical due to the amount of custom tooling re-
quired or the complexity of simulating cloud services (like AWS) in development.

To simplify the scope of this book, we cover use cases for deploying code but leave the
exercise of determining the best development setup to the reader. As a general rule, always
try to keep production and development environments as similar as possible and use a
continuous integration / continuous deliver (CI/CD) system for best results.

What we mean by Production

Production means different things to different teams. In this book, we refer to production
as the environment that runs code for real customers. This is in contrast to development,
staging, and testing environments where downtime is not noticed by customers.

Sometimes Docker is used in production for containers that receive public network traf-
ffic, and sometimes it is used for asynchronous, background jobs that process workloads
from a queue. Either way, the primary difference between running Docker in production vs.
any other environment is the additional attention that must be given to security and stabil-
ity.

A motivating driver for writing this book was the lack of clear distinction between actual
production and other envs in Docker documentation and blog posts. We wagered that four
out of five Docker blog posts would recant (or at least revise) their recommendations after
attempting to run in production for six months. Why? Because most blog posts start with
idealistic examples powered by the latest, greatest tools that often get abandoned (or
postponed) in favor of simpler methods once the first edge case turns into a showstopper.
This is a reflection on the state of the Docker technology ecosystem more than it is a flaw of
tech bloggers.

Bottom line, production is hard. Docker makes the work flow from development to pro-
duction much easier to manage, but it also complicates security and orchestration.

To save you time, here are the cliff notes of this book.

xi

Preface

All teams running Docker in production are making one or more concessions on tradi-
tional security best practices. If code running inside a container can not be fully trusted, a
one-to-one container to virtual machine topology is used. The benefits of running Docker
in production outweigh security and orchestration issues for many teams. If you run into a
tooling issue, wait a month or two for the Docker community to fix it rather than wasting
time patching someone else’s tool. Keep your Docker setup as minimal as possible. Auto-
mate everything. Lastly, you probably need full-blown orchestration (Mesos, Kubernetes,
etc.) a lot less than you think.

Batteries included vs. composable tools

A common mantra in the Docker community is “batteries included but removable.” This
refers to monolithic binaries with many features bundled in as opposed to the traditional
Unix philosophy of smaller, single purpose, pipeable binaries.

The monolithic approach is driven by two main factors: 1) desire to make Docker easy to
use out of the box, 2) golang’s lack of dynamic linking. Docker and most related tools are
written in Google’s Go programming language, which was designed to ease writing and
deploying highly concurrent code. While Go is a fantastic language, its use in the Docker
ecosystem has caused delays in arriving at a pluggable architecture where tools can be
easily swapped out for alternatives.

If you are coming from a Unix sysadmin background, your best bet is to get comfortable
compiling your own stripped down version of the `docker` daemon to meet your produc-
tion requirements. If you are coming from a dev background, expect to wait until Q3/Q4 of
2015 before Docker plugins are a reality. In the meantime, expect tools within the Docker
ecosystem to have significant overlap and be mutually exclusive in some cases.

In other words, half of your job of getting Docker to run in production will be deciding
on which tools make the most sense for your stack. As with all things DevOps, start with
the simplest solution and add complexity only when absolutely required.

As of May, 2015, Docker, Inc., released Compose, Machine, and Swarm that compete
with similar tools within the Docker ecosystem. All of these tools are optional and should
be evaluated on merit rather than assumption that the tools provided by Docker, Inc., are
the best solution.

Another key piece of advice in navigating the Docker ecosystem is to evaluate each open
source tool’s funding source and business objective. Docker, Inc., and CoreOS are frequent-
ly releasing tools at the moment to compete for mind and market share. It is best to wait a
few months after a new tool is released to see how the community responds rather than
switch to the latest, greatest tool just because it seems cool.

xii

Preface

https://golang.org/
https://docs.docker.com/compose/
https://docs.docker.com/machine/
https://docs.docker.com/swarm/
https://coreos.com/

What not to dockerize

Last but not least, expect to not run everything inside a Docker container. Heroku-style 12
factor apps are the easiest to Dockerize since they do not maintain state. In an ideal micro-
services environment, containers can start and stop within milliseconds without impacting
the health of the cluster or state of the application.

There are startups like ClusterHQ working on Dockerizing databases and stateful apps,
but for the time being, you will likely want to continue running databases directly in VMs or
bare metal due to orchestration and performance reasons.

Any app that requires dynamic resizing of CPU and memory requirements is not yet a
good fit for Docker. There is work being done to allow for dynamic resizing, but it is unclear
when this will become available for general production use. At the moment, resizing a con-
tainer’s CPU and memory limitations requires stopping and restarting the container.

Also, apps that require high network throughput are best optimized without Docker due
to Docker’s use of iptables to provide NAT from the host IP to container IPs. It is possible to
disable Docker’s NAT and improve network performance, but this is an advanced use case
with few examples of teams doing this in production.

Authors

Joe Johnston is a full-stack developer, entrepreneur, and advisor to various startups and
enterprises in San Francisco, and is focused on Docker, microservices, and HTML5 apps.

Justin Cormack is a consultant especially interested in the opportunities for innovation
made available by open source software, the web development model, and the cloud, and
is a NETBSD committer.

John Fiedler is the Director of Engineering at RelateIQ.
Antoni Batchelli is the Vice President of Engineering at PeerSpace and Founder of Pal-

letOps.
Milos Gajdos is a consultant, UK Ministry of Justice, and is an Infrastructure Tsar at In-

frahackers Ltd.

xiii

Preface

http://12factor.net/
http://12factor.net/
https://clusterhq.com/

Getting Started

The first task of setting up a Docker production system is to understand the terminology in
a way that helps visualize how components fit together. As with any rapidly evolving tech-
nology ecosystem, it’s safe to expect over ambitious marketing, incomplete documenta-
tion, and outdated blog posts that lead to a bit of confusion about what tools do what job.

Rather than attempting to provide a unified thesaurus for all things Docker, we’ll in-
stead define terms and concepts in this chapter that remain consistent throughout the
book. Often, our definitions are compatible with the ecosystem at large, but don’t be too
surprised if you come across a blog post that uses terms differently.

In this chapter, we’ll introduce the core concepts of running Docker, and containers in
general, in production without actually picking specific technologies. In subsequent chap-
ters, we’ll cover real-world production use cases with details on specific components and
vendors.

Terminology

Image vs. Container

• Image is the filesystem snapshot or tarball.
• Container is what we call an image when it is run.

Containers vs. Virtual Machines

• VMs hold complete OS and application snapshots.
• VMs run their own kernel.
• VMs can run OSs other than Linux.
• Containers only hold the application, although the concept of an application can ex-

tend to an entire Linux distro.
• Containers share the host kernel.
• Containers can only run Linux, but each container can contain a different distro and

still run on the same host.

15

1

CI/CD: Continuous Integration / Continuous Delivery

System for automatically building new images and deploying them whenever application
new code is committed or upon some other trigger.

Host Management

The process for setting up--provisioning--a physical server or virtual machine so that it’s
ready to run Docker containers.

Orchestration

This term means many different things in the Docker ecosystem. Typically, it encompasses
scheduling and cluster management but sometimes also includes host management.

In this book we use orchestration as a loose umbrella term that encompasses the pro-
cess of scheduling containers, managing clusters, linking containers (discovery), and rout-
ing network traffic. Or in other words, orchestration is the controller process that decides
where containers should run and how to let the cluster know about the available services.

Scheduling

Deciding which containers can run on which hosts given resource constraints like CPU,
memory, and IO.

Discovery

The process of how a container exposes a service to the cluster and discovers how to find
and communicate with other services. A simple use case is a web app container discover-
ing how to connect to the database service.

Docker documentation refers to linking containers, but production grade systems often
utilize a more sophisticated discovery mechanism.

Configuration Management

Configuration management is often used to refer to pre-Docker automation tools like Chef
and Puppet. Most DevOps teams are moving to Docker to eliminate many of the complica-
tions of configuration management systems.

In many of the examples in this book, configuration management tools are only used to
provision hosts with Docker and very little else.

CHAPTER 1: Getting Started

16

Development to Production

This book focuses on Docker in production--non-development environments, which means
we will spend very little time on configuring and running Docker in development. But since
all servers run code, it is worth a brief discussion on how to think about application code in
a Docker vs non-Docker system.

Unlike traditional configuration management systems like Chef, Puppet, Ansible, etc.,
Docker is best utilized when application code is pre-packaged into a Docker image. The im-
age typically contains all the application code as well as any runtime dependencies and
system requirements. Configuration files containing database credentials and other se-
crets are often added to the image at runtime rather than being built into the image.

Some teams choose to manually build Docker images on dev machines and push them
to image repositories that are used to pull images down onto production hosts. This is the
simple use case. It works, but is not ideal due to workflow and security concerns.

A more common production example is to use a CI/CD system to automatically build
new images whenever application code or Dockerfiles change.

Multiple Ways to Use Docker

Over the years, technology has changed significantly from physical servers to virtual
servers to clouds with platform-as-a-service (PaaS) environments. Docker images can be
used in current environments without heavy lifting or with completely new architectures. It
is not necessary to immediately migrate from a monolithic application to a service orient-
ed architecture to use Docker. There are many use cases which allow for Docker to be inte-
grated at different levels.

A few common Docker uses:

• Replacing code deployment systems like Capistrano with image-based deployment.
• Safely running legacy and new apps on the same server.
• Migrating to service oriented architecture over time with one toolchain.
• Managing horizontal scalability and elasticity in the cloud or on bare metal.
• Ensuring consistency across multiple environments from development to staging to

production.
• Simplifying developer machine setup and consistency.

Migrating an app’s background workers to a Docker cluster while leaving the web
servers and database servers alone is a common example of how to get started with Dock-
er. Another example is migrating parts of an app’s REST API to run in Docker with a Nginx
proxy in front to route traffic between legacy and Docker clusters. Using techniques like
these allows teams to seamlessly migrate from a monolithic to a service oriented architec-
ture over time.

Development to Production

17

Today’s applications often require dozens of third-party libraries to accelerate feature
development or connect to third-party SaaS and database services. Each of these libraries
introduces the possibility of bugs or dependency versioning hell. Then add in frequent li-
brary changes and it all creates substantial pressure to deploy working code consistently
without failure on infrastructure.

Docker’s golden image mentality allows teams to deploy working code--either mono-
lithic, service oriented, or hybrid---in a way that is testable, repeatable, documented, and
consistent for every deployment due to bundling code and dependencies in the same im-
age. Once an image is built, it can be deployed to any number of servers running the Dock-
er daemon.

Another common Docker use case is deploying a single container across multiple envi-
ronments, following a typical code path from development to staging to production. A con-
tainer allows for a consistent, testable environment throughout this code path.

As a developer, the Docker model allows for debugging the exact same code in produc-
tion on a developer laptop. A developer can easily download, run, and debug the problem-
atic production image without needing to first modify the local development environment.

What to Expect

Running Docker containers in production is difficult but achievable. More and more com-
panies are starting to run Docker in production everyday. As with all infrastructure, start
small and migrate over time.

Why is Docker in production difficult?
A production environment will need bulletproof deployment, health checks, minimal or

zero downtime, the ability to recover from failure (rollback), a way to centrally store logs, a
way to profile or instrument the app, and a way to aggregate metrics for monitoring. Newer
technologies like Docker are fun to use but will take time to perfect.

Docker is extremely useful for portability, consistency, and packaging services that re-
quire many dependencies. Most teams are forging ahead with Docker due to one or more
pain points:

• Lots of different dependencies for different parts of an app.
• Support of legacy applications with old dependencies.
• Workflow issues between devs and DevOps.

Out of the teams we interviewed for this book, there was a common tale of caution
around trying to adopt Docker in one fell swoop within an organization. Even if the ops
team is fully ready to adopt Docker, keep in mind that transitioning to Docker often means
pushing the burden of managing dependencies to developers. While many developers are
begging for this self-reliance since it allows them to iterate faster, not every developer is
capable or interested in adding this to their list of responsibilities. It takes time to migrate
company culture to support a good Docker workflow.

CHAPTER 1: Getting Started

18

The Stack

Every production Docker setup includes a few basic architectural components that are uni-
versal to running server clusters--both containerized and traditional. In many ways, it is
easiest to initially think about building and running containers in the same way you are
currently building and running virtual machines but with a new set of tools and techni-
ques.

1. Build and snapshot an image.
2. Upload image to repository.
3. Download image to a host.
4. Run the image as a container.
5. Connect container to other services.
6. Route traffic to the container.
7. Ship container logs somewhere.
8. Monitor container.

Unlike VMs, containers provide more flexibility by separating hosts (bare metal or VM)
from applications services. This allows for intuitive improvements in building and provi-
sioning flows, but it comes with a bit of added overhead due to the additional nested layer
of containers.

The typical Docker stack will include components to address each of the following con-
cerns:

• Build system
• Image repository
• Host management
• Configuration management
• Deployment
• Orchestration
• Logging
• Monitoring

19

2

Build System

• How do images get built and pushed to the image repo?
• Where do Dockerfiles live?

There are two common ways to build Docker images:

1. Manually build on a developer laptop and push to a repo.
2. Automatically build with a CI/CD system upon a code push.

The ideal production Docker environments will use a CI/CD (Configuration Integration /
Continuous Deployment) system like Jenkins, Codeship, etc. to automatically build images
when code is pushed. Once the container is built, it is sent to an image repo where the au-
tomated test system can download and run it.

Image Repository

• Where are Docker images stored?

The current state of Docker image repos is less than reliable, but getting better every
month. Docker’s hosted image repo hub is notoriously unreliable, requiring additional re-
tries and failsafe measures. Most teams will likely want to run their own image repo on
their own infrastructure to minimize network transfer costs and latencies.

Host Management

• How are hosts provisioned?
• How are hosts upgraded?

Since Docker images contain the app and dependencies, host management systems
typically just need to spin up new servers, configure access and firewalls, and install the
Docker daemon.

Services like Amazon’s EC2 Container Service eliminate the need for traditional host
managment.

Configuration Management

• How do you define clusters of containers?
• How do you handle run time configuration for hosts and containers?
• How do you manage keys and secrets?

As a general rule, avoid traditional configuration management as much as possible. It is
added complexity that often breaks. Use tools like Ansible, SaltStack, Chef, Puppet, etc.

CHAPTER 2: The Stack

20

https://registry.hub.docker.com/
http://aws.amazon.com/ecs/
http://www.ansible.com/
http://saltstack.com/
https://www.chef.io/chef/
https://puppetlabs.com/

only to provision hosts with the Docker daemon. Try to get rid of reliance on your old con-
figuration management systems as much as possible and move towards self-configured
containers using the discovery and clustering techniques in this book.

Deployment

• How do you get the container onto the host?

There are two basic methods of image deployment:

1. Push - deployment or orchestration system pushes an image to the relevant hosts.
2. Pull - image is pulled from image repo in advance or on demand.

Orchestration

• How do you organize containers into clusters?
• What servers do you run the containers on?
• How do you schedule server resources?
• How do you run containers?
• How do you route traffic to containers?
• How do you enable containers to expose and discover services?

Orchestration = duct tape. At least most of the time.
There are many early stage, full-featured container orchestration systems like Docker

Swarm, Kubernetes, Mesos, Flynn, etc. These are often overkill for most teams due to the
added complexity of debugging when something goes wrong in production. Deciding on
what tools to use for orchestration is often the hardest part of getting up and running with
Docker.

Deployment

21

https://docs.docker.com/swarm/
https://docs.docker.com/swarm/
http://kubernetes.io/
http://mesos.apache.org/
http://flynn.io

