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Foreword

I am pleased that Professor Ying Luo and Professor YangQuan Chen have com-
pleted their book, Fractional Order Motion Controls, and it will be published by John
Wiley & Sons Ltd. The mathematical backbone of fractional order control is fractional
order differential equations and fractional order transfer functions. Fractional order
transfer functions were proposed by Bode in the analysis and feedback amplifier
design as early as in the mid-1940s. Tustin applied Bode’s idea in the late 1950s to
motion control, and he suggested that the open loop transfer function of the motion
control system may be set G(s) = ( wc

s )k with k = 1.5 over a certain frequency range,
say, (0.2 1.2)wc It is easy to check that for this transfer function the phase margin is
45 degree, and the closed loop system remains robust if this phase margin can be
maintained over a finite frequency range. This example may be a strong motivation
for motion control engineers to perform fractional order design. In tracing references
on fractional order control, I noted that a number of interesting successful applica-
tions of fractional order control have been reported, and that excellent papers were
published by control practitioners in industry such as Dr. Manabe at Mitsubishi. We
may wonder then why fractional order control has not been more widely used as
yet. One reason may be that fractional order controllers must be approximated by a
combination of standard (integer order) differentiators and integrators for implemen-
tation and that implementable controllers may become high order. This is no longer
a major obstacle since high order controllers may be digitally implemented. I think
that fractional order control should not be regarded as a new control theory to replace
standard control such as PID control based on integer order transfer functions. Good
ideas that we learned in the standard (integer order) control theory all remain as
valid design guidelines. Fractional order control adds something more to what we
know and practice. It may be regarded as a means that allows us to design control
systems, for example perform loop shaping, in a wider design domain. When we are
freed from the constraint that each element of a controller must be of integer order,
we may move only in the direction to have better control systems. Thus, fractional
order control is of interest for those who design controllers for physical systems:
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for example motion control systems, automotive suspension systems, robots, and
so on. This book by Luo and Chen covers the range from fundamental fractional
calculus and early development of fractional order control to the most recent devel-
opments by the authors themselves as well as by others. It is a fun book to read, and
it will surely motivate more motion control engineers to plunge into the world of
fractional thinking.

Masayoshi Tomizuka
Cherly and John Neerhout, Jr. Distinguished Professor

University of California – Berkeley, USA



Preface

There is increasing interest in dynamic systems and controls of non-integer orders
or fractional orders. Traditional calculus is based on integer order differentiation and
integration. The concept of fractional calculus has tremendous potential to change the
way we model and control the world around us. Rejecting fractional derivatives is like
saying that zero, fractional, or irrational numbers do not exist. Fractional calculus has
a firm and enduring theoretical foundation. However, the fractional calculus concept
was not widely applied in control engineering for hundreds of years, because the
idea was unfamiliar and the fractional operators were limited in their realization. In
the past few decades, with the rapid development of computer technology and better
understanding of the potential of fractional calculus, the realization of fractional order
control systems became much easier and fractional calculus is becoming more and
more useful in various science and engineering areas. The present book focuses on
fractional order control of motion systems.

Motion control is a sub-field of automation, in which the velocity and position of
machines are controlled using certain types of actuation devices such as a hydraulic
actuator, a linear actuator, or an electric motor, generally called a servo. Motion con-
trol is an important part of robotics and Computerized Numerical Control (CNC)
machine tools, and is widely used in packaging, printing, textile, semiconductor pro-
duction, and the assembly industries. In motion control systems, the control strategies
should be stabilizing, fast and precise. In real-time applications, high performance
motion control systems must be immune to any kind of disturbance. Thus, motion
control research explores enhancement of both performance following command and
disturbance rejection. The aim of this book is to introduce fractional calculus-based
control methods in motion control applications and to illustrate the advantages and
importance of using fractional order controls.

In order to improve the performance following command of motion control, frac-
tional order PID controllers are proposed and designed in a systematic way for
integer/fractional order velocity and position systems in this work. With the “flat
phase” tuning constraint and other specifications, the motion control systems based
on fractional calculus can achieve better robust performances with respect to loop
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gain variations or time constant variations than using traditionally optimized integer
order controllers. From our extensive simulation and experimental efforts, we demon-
strated the desirable control performance with faster response and smaller overshoot
using properly designed fractional order controllers over those using optimized inte-
ger order controllers. In terms of systematic design schemes for fractional order PID
controllers satisfying the desired specifications, stability is the minimum requirement
for the controller design, and it is better to obtain a feasible region to check the com-
plete set of specifications before the controller is designed and tuned. Therefore, the
complete stability regions of the fractional order PID controller parameters, and the
achievable regions of the specifications to obtain stabilizing and the desired fractional
order PID controllers are discussed in detail in this book. Impressively, the achievable
regions of specifications using fractional order PID controllers are significantly larger
than those using an integer order PID controller for certain types of systems.

Motion control systems are usually influenced by various disturbances. In high
performance motion control systems, maintaining a stable and robust operation
by attenuating the influence of disturbances is required. A fractional order distur-
bance observer (DOB) based on the fractional order Q-filter is presented. A nice
feature of this is that the traditional DOB is extended to the fractional order DOB
(FO-DOB) with the advantage that the FO-DOB design will no longer be conserva-
tive nor aggressive. In addition, a fractional order adaptive feedforward cancellation
(FO-AFC) scheme is proposed to cancel periodic disturbances. This FO-AFC method
is much more flexible than the integer order AFC in preventing periodic distur-
bance and suppressing the harmonics or the noise. Meanwhile, a fractional order
robust control method is devised for cogging effect compensation on the permanent
magnetic synchronous motor position and the velocity systems. Also presented is a
fractional order periodic adaptive learning compensation method to reject general
state-dependent periodic disturbances.

In this book, nonlinear motion control systems are also considered for fractional
calculus applications. A fractional order PID controller design scheme is presented
for a DC motor control system with an elastic shaft. Under the same optimization
conditions, the best fractional order PID controller outperforms the best integer order
PID controller for the motion control system with nonlinearities of backlash and
dead zone. Applying the systematic design of fractional order PD (FOPD) controller
for ultra-low speed position tracking with a significant nonlinear friction effect, the
experimental tracking performance using the designed FOPD controller is much
better than that using the optimized integer order PI controller. This advantage of
the designed FOPD is explained by the describing function analysis. Furthermore,
an optimized fractional order conditional integrator (OFOCI) is proposed. By tuning
the fractional order and the other tuning parameter following the analytical optimal
design specifications, this proposed OFOCI can achieve an optimized performance
not achievable by integer order conditional integrators.

In order to further validate and demonstrate some of the presented fractional order
controller design schemes in this work, two real-world applications of fractional order
control are included: an unmanned aerial vehicle (UAV) flight control system and an
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industrial hard-disk-drive (HDD) servo system. These are really exciting real-world
applications that clearly show the advantages of using fractional calculus for motion
controls.

This book is organized as follows. Part I contains only Chapter 1, introducing fun-
damentals of fractional order systems and controls followed by research motivations
and book contributions. Part II is dedicated to the fractional order velocity controls,
which includes Chapters 2–5. Part III focuses on the fractional order position con-
trols, including Chapters 6–10. The feasible regions of the specifications for integer
and fractional order controller designs based on the stability analysis are studied
in Part IV, which includes Chapters 11 and 12. Part V explains how to design a frac-
tional order disturbance observer, a fractional order adaptive feed-forward controller,
a fractional order adaptive controller, and a fractional order periodic adaptive learn-
ing controller to compensate for the external disturbances in motion control systems,
shown in Chapters 13–16, respectively. Part VI is devoted to the fractional order con-
trols on nonlinear control systems in Chapters 17–19. Applications of fractional order
controls in UAV flight control system and the HDD servo system are presented in
Part VII including Chapters 20 and 21.

It is our sincere hope that this book can well serve two purposes. For motion control
researchers and engineers, this book offers some new schemes that can present further
improved performance not achievable before. For researchers and students interested
in fractional calculus, this book is a demonstration that fractional calculus is indeed
useful in real-world applications, not just a pure math game. Given the pervasive
and ubiquitous nature of fractional calculus, we do believe that, as demonstrated in
this book, even for simple motion control problems, there are ample opportunities to
apply fractional calculus-based control methods. For more complex engineering and
non-engineering systems, the opportunities and beneficial consequences of applying
fractional calculus are limited only by our imagination.

Ying Luo
YangQuan Chen
California, USA
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