Fractional Order Motion Controls

Fractional Order Motion Controls

Ying Luo

Department of Automation Science and Engineering South China University of Technology Guangzhou, China

YangQuan Chen

School of Engineering, University of California – Merced California, USA

This edition first published 2013 © 2013, John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

MATLAB[®] is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB[®] software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB[®] software.

Library of Congress Cataloging-in-Publication Data

Luo, Ying, 1973–
Fractional order motion controls / Ying Luo, YangQuan Chen.
pages cm
Includes bibliographical references and index.
ISBN 978-1-119-94455-3 (cloth)
1. Motion control devices. 2. Incremental motion control. I. Chen, YangQuan, 1966– II. Title.
TJ214.5.L86 2012
629.8–dc23

2012020586

A catalogue record for this book is available from the British Library.

Print ISBN: 9781119944553

Typeset in 10/12.5 Palatino by Aptara DELHI, India

To my father XianShu Luo and my mother Gui'E Xiong – Ying Luo

> To my family, my mentors and my colleagues – YangQuan Chen

Contents

Foreword	xvii
Preface	xix
Acknowledgments	xxiii
Acronyms	xxvii

PART I FUNDAMENTALS OF FRACTIONAL ORDER CONTROLS

1	Intro	ductior	n	3
	1.1	Fractic	onal Calculus	3
		1.1.1	Definitions and Properties	4
		1.1.2	Laplace Transform	6
		1.1.3	Fractional Order Dynamic Systems	6
		1.1.4	Stability of LTI Fractional Order Systems	8
	1.2	Fractio	onal Order Controls	9
		1.2.1	Why Fractional Order Control?	9
		1.2.2	Basic Fractional Order Control Actions	10
		1.2.3	A Historical Review of Fractional Order Controls	10
	1.3	Fractic	onal Order Motion Controls	21
	1.4	Contri	ibutions	23
	1.5	Organ	lization	24
PAI	RT II	FRAC	TIONAL ORDER VELOCITY CONTROLS	

2	Fract	ional Order PI Controller Designs for Velocity Systems	27
	2.1	Introduction	27
	2.2	The FOPTD System and Three Controllers Considered	28
	2.3	Design Specifications	29

	2.4	Fractio	onal Order PI and [PI] Controller Designs	30
		2.4.1	Integer Order PID Controller Design	30
		2.4.2	Fractional Order PI Controller Design	32
		2.4.3	Fractional Order [PI] Controller Design	38
	2.5	Simul	ation	42
	2.6	Chapt	ter Summary	43
3	Tuni	ng Frac	tional Order PI Controllers for Fractional Order Velocity	
			th Experimental Validation	45
	3.1	Introd	luction	45
	3.2	Three	Controllers to be Designed and Tuning Specifications	46
	3.3	Tunin	g Three Controllers for FOVS	46
	3.4	Illustr	ative Examples and Design Procedure Summaries	48
		3.4.1	Fractional Order [PI] Controller Design Procedures	48
		3.4.2	Fractional Order PI Controller Design Procedures	49
		3.4.3	Integer Order PID Controller Design Procedures	49
	3.5	Simul	ation Illustration	50
		3.5.1	Case-1s Simulation Tests for the Designed FOPI and	
			FO[PI] Controllers with $\omega_c = 10 \text{ rad/s}$ and $\phi_m = 50^{\circ}$	51
		3.5.2	Case-2s Simulation Tests for the Designed IOPID and FOPI	
			and FO[PI] Controllers with $\omega_c = 15 \text{ rad/s}$ and $\phi_m = 65^{\circ}$	52
	3.6	Exper	imental Validation	54
		3.6.1	Experimental Setup	55
		3.6.2	HIL Emulation of the FOVS	56
		3.6.3	Experimental Results	57
	3.7	Chapt	ter Summary	61
4	Rela	y Feedt	pack Tuning of Robust PID Controllers	63
	4.1	Introd	luction	63
	4.2	Slope	Adjustment of the Phase Bode Plot	66
	4.3	The N	lew PID Controller Design Formulae	70
	4.4	Phase	and Magnitude Measurement via Relay Feedback Tests	70
	4.5	Illustr	ative Examples	71
		4.5.1	High-order Plant $P_2(s)$	72
		4.5.2	Plant with an Integrator $P_5(s)$	73
		4.5.3	Plant with a Time Delay $P_6(s)$	74
		4.5.4	Plant with an Integrator and a Time Delay $P_7(s)$	75
	4.6	Chapt	ter Summary	77
5	Auto	-Tunin	g of Fractional Order Controllers with Iso-Damping	79
	5.1	Introd	luction	79
	5.2	FOPI	and FO[PI] Controller Design Formulae	81
		5.2.1	FOPI Controller Auto-Tuning	81
		5.2.2	FO[PI] Controller Auto-Tuning	84

5.3	Measu	rements for Auto-Tuning	86
5.4	Simula	ation Illustration	87
	5.4.1	High-Order Plant $P_2(s)$	87
	5.4.2	Plant with an Integrator $P_5(s)$	90
	5.4.3	Plant with a Time Delay $P_6(s)$	91
5.5	Chapte	er Summary	96

PART III FRACTIONAL ORDER POSITION CONTROLS

6	Fract	ional C	Order PD Controller Tuning for Position Systems	99
	6.1	Introd	luction	99
	6.2	Fractio	onal Order PD Controller Design for Position Systems	100
		6.2.1	Integer Order PD Controller Design	100
		6.2.2	Fractional Order PD Controller Design	101
	6.3	Desig	n Procedures	102
	6.4	Simul	ation Illustration	103
		6.4.1	Step Response Comparison	104
		6.4.2	Ramp Response Comparison	106
	6.5	Exper	imental Validation	106
		6.5.1	Introduction of the Experimental Platform	106
		6.5.2	Experimental Model Simulation	107
		6.5.3	Experiments on the Dynamometer	109
	6.6	Chapt	er Summary	111
7	Fract	ional C	Order [PD] Controller Synthesis for Position Systems	113
	7.1	Introd	luction	113
	7.2	Positio	on Systems and Design Specifications	114
	7.3		onal Order [PD] Controller Design	114
			oller Design Examples and Bode Plot Validations	117
		7.4.1		117
		7.4.2	FOPD Controller Design	117
			IOPID Controller Design	117

7.5 Implementation of Two Fractional Order Operators

7.5.1

7.5.2

7.6.1

7.6.2

7.6.3

7.6.4

7.6 Simulation Illustration

Implementation of s^{λ} for FOPD

Implementation of $(1 + \tau s)^{\mu}$ for FO[PD]

Case-I: Step Response Comparison with T = 0.4s

Step Response Comparison with Time Delay

Case-II: Step Response Comparison with T = 0.04s

Step Response Comparison with Backlash Nonlinearity

119

119

119

120

120

123

127

128

X			Contents
	7.7	Experimental Validation	129
	1.1	7.7.1 Introduction to the Experimental Platform	129
		7.7.2 Experiments on the Dynamometer Platform	129
	7.8		129
		1 5	
8		e-Constant Robust Analysis and Design of Fractional	100
		er [PD] Controller	133
		Introduction	133
		Problem Statement	134
	8.3	FO[PD] Tuning Specifications and Rules	135
		8.3.1 FO[PD] Robustness to Time-Constant Variations	136
		8.3.2 Numerical Computation	137
	8.4	0 1	1.00
		Method	138
		8.4.1 The Solution Existence Range	138
		8.4.2 Numerical Computation Example and Simulation Tests	
		8.4.3 Simulation Comparison	141
		8.4.4 Online Computation	142
		Experimental Validation	145
	8.6	Chapter Summary	149
9	Expe	erimental Study of Fractional Order PD Controller Design for	
		ional Order Position Systems	151
	9.1	Introduction	151
	9.2	Fractional Order Systems and Fractional Order Controller	
		Considered	152
	9.3	FOPD Controller Design Procedure for the Fractional Order	
		Position Systems	153
		9.3.1 Preliminary and Design Specifications	153
		9.3.2 Numerical Computation Process	154
		9.3.3 Summary of Design Procedure	156
	9.4	Simulation Illustration	156
		9.4.1 Case-1: IOS-Based Design for IOS	158
		9.4.2 Case-2: IOS-Based Design for FOS	158
		9.4.3 Case-3: FOS-Based Design for FOS	159
	9.5	Experimental Validation	160
	2.0	9.5.1 HIL Experimental Setup	161
		9.5.2 HIL Emulation of the FOS	161
		9.5.3 Experimental Results	161
	9.6	Chapter Summary	165
	2.0	Simples summary	100
10		tional Order [PD] Controller Design and Comparison for	
		ional Order Position Systems	167
	10.1	Introduction	167

1	0.2	Fractional Order Position Systems and Fractional Order	
		Controllers	167
1	0.3	Fractional Order [PD] Controller Design	168
		10.3.1 Numerical Computation Process	169
		10.3.2 Design Procedure Summary	170
		10.3.3 Design Example and Bode Plot Validation of FO[PD]	
		Design	170
1	0.4	Integer Order PID Controller and Fractional Order PD Controller	
		Designs	170
1	0.5	Simulation Comparisons	172
1	0.6	Chapter Summary	174

PART IV STABILITY AND FEASIBILITY

11	Stab	ility and	l Design Feasibility of Robust PID Controllers	
	for F	OPTD S	Systems	177
	11.1	Introd	uction	177
		11.1.1	Research Questions	177
		11.1.2	Previous Work	178
		11.1.3	Contributions in This Chapter	178
	11.2	Stabili	ty Region and Flat Phase Tuning Rule for the	
		Robust	t PID Controller Design	180
		11.2.1	Preliminary	180
		11.2.2	Stability Region of PID Controller for FOPTD Plants	181
	11.3	PID Co	ontroller Design with Pre-Specifications on ϕ_M and ω_C	184
		11.3.1	Design Scheme	184
		11.3.2	0	
			Design	185
		11.3.3	Design Procedures Summary with An Example	186
			How to Find the Achievable Region of the	
			Two Specifications?	189
	11.4	Simula	ition Illustration	195
	11.5	Chapte	er Summary	198
12	Stab	ility and	l Design Feasibility of Robust FOPI Controllers for	
		ГD Syst		199
	12.1	5		199
	12.2	Stabiliz	zing and Robust FOPI Controller Design for FOPTD	
		System	ns	200
		12.2.1	The Plant and Controller Considered	200
		12.2.2	Stability Region Analysis of the FOPI Controller	200
		12.2.3	FOPI Parameters Design with Two Specifications	203
		12.2.4	FOPI Parameters Design with an Additional Flat Phase	
			Constraint	204

xii			Contents
		12.2.5 Achievable Region of Two Design Specifications for the	e
		FOPI Controller Design	205
	12.3	· · · · · · · · · · · · · · · · · · ·	206
	12.4	· · · ·	
		of ω_c and ϕ_m	211
	12.5	Simulation Illustration	212
	12.6	Chapter Summary	221
PA	RT V	FRACTIONAL ORDER DISTURBANCE COMPENSATIONS	5
13	Fract	tional Order Disturbance Observer	225
	13.1	Introduction	225
	13.2	Disturbance Observer	226
	13.3	Actual Design Parameters in DOB and their Effects	227
	13.4	Loss of the Phase Margin with DOB	229
	13.5	Solution One: Rule-Based Switched Low Pass Filtering	
		with Varying Relative Degree	230
	13.6	The Proposed Solution: Guaranteed Phase Margin Method usin	ng
		Fractional Order Low Pass Filtering	230
	13.7	Implementation Issues: Stable Minimum-Phase Frequency	
		Domain Fitting	231
	13.8	Chapter Summary	235
14	Fract	tional Order Adaptive Feed-Forward Cancellation	237
	14.1		237
		Fractional Order Adaptive Feed-Forward Cancellation	239
	14.3	1 1	
		and Fractional Order Adaptive Feed-Forward Cancellation	241
		14.3.1 Single-Frequency Disturbance Cancellation	241
		14.3.2 Generalization to Multi-Frequency Disturbance	
		Cancellation	244
	14.4	1 5 5	
	14 5	Periodic Disturbance	245
	14.5		248
	14.6	1	252
		14.6.1 Introduction to the Experiment Platform	252
	14 17	14.6.2 Experiments on the Dynamometer	253
	14.7	Chapter Summary	254
15	Fract	tional Order Adaptive Compensation for Cogging Effect	257
	15.1	Introduction	257
	15.2	Fractional Order Adaptive Compensation of Cogging Effect	257
		15.2.1 Cogging Effect Analysis	257
		15.2.2 Motivations and Problem Formulation	258

		15.2.3 IOAC Stability Analysis	260
		15.2.4 FOAC Stability Analysis	262
	15.3	Simulation Illustration	266
		15.3.1 Case-1: IOAC with Constant Reference Speed	266
		15.3.2 Case-2: FOAC with Constant Reference Speed	267
		15.3.3 Case-3: IO/FOAC with Varying Reference Speed	272
	15.4	1	273
		15.4.1 Introduction to the Experimental Platform	273
		15.4.2 Experiments on the Dynamometer	276
	15.5	Chapter Summary	288
16	Fract	ional Order Periodic Adaptive Learning Compensation	291
		Introduction	291
		Fractional Order Periodic Adaptive Learning Compensation for	
		State-Dependent Periodic Disturbances	292
		16.2.1 The General Form of State-Dependent Periodic	
		Disturbances	292
		16.2.2 Problem Formulation	292
		16.2.3 Stability Analysis	294
	16.3		298
		16.3.1 Case-1: Integer Order PALC	299
		16.3.2 Case-2: Fractional Order PALC	300
	16.4	Experimental Validation	301
		16.4.1 Introduction to the Experiment Platform	301
		16.4.2 Experiments on the Dynamometer	301
	16.5	- · · · · · · · · · · · · · · · · · · ·	305
PA	RT VI	EFFECTS OF FRACTIONAL ORDER CONTROLS ON NONLINEARITIES	
17	Fract	ional Order PID Control of a DC-Motor with Elastic Shaft	309
17	17.1		309
		The Benchmark Position System	309
	17.3		311
		Comparative Simulations	313
	17.1	17.4.1 Best IOPID versus Best FOPID	313
		17.4.2 How to Decide λ and μ ?	314
		17.4.3 Which <i>N</i> is Good Enough?	316
		17.4.4 Robustness against Load Variations	317
		17.4.5 FOPI Controllers	317
		17.4.6 Robustness to Mechanical Nonlinearities	322
		17.4.7 Robustness to Elasticity Parameter Change	323
	17.5	Chapter Summary	329

18	Fract	ional Order Ultra Low-Speed Position Control	33
	18.1	Introduction	33
	18.2	Ultra Low-Speed Position Tracking using Designed	
		FOPD and Optimized IOPI	33
		18.2.1 FOPD Design for the Position Tracking without	
		Considering the Friction Effect	332
		18.2.2 Ultra Low-Speed Position Tracking Performance with	
		Designed FOPD and Optimized IOPI	33
	18.3	Static and Dynamic Models of Friction and Describing Functions	
		for Friction Models	334
		18.3.1 Static and Dynamic Models of Friction	33
		18.3.2 Describing Functions for Friction Models and Two	
		Uncoupling Methods of Linear and Nonlinear Parts	33
	18.4	Simulation Analysis with IOPI and FOPD Controllers using	
		Describing Function	33
	18.5	Extended Experimental Demonstration	34
	18.6	Chapter Summary	34
19	Opti	mized Fractional Order Conditional Integrator	34
	19.1	Introduction	34
	19.2	Clegg Conditional Integrator	34
		Intelligent Conditional Integrator	34
	19.4	The Optimized Fractional Order Conditional Integrator	35
		19.4.1 Fractional Order Conditional Integrator	35
		19.4.2 Optimality Criteria	354
		19.4.3 Optimization of FOCI	354
	19.5	Simulation Illustration	35
	19.6	Chapter Summary	35
PA	RT VI	I FRACTIONAL ORDER MOTION CONTROL	
		APPLICATIONS	
20		ral Directional Fractional Order Control of a Small	
		l-Wing UAV	36
		Introduction	36
	20.2	Flight Control System of Small Fixed-Wing UAVs	36
		20.2.1 Dynamics of Small Fixed-Wing UAVs	36

-0.1	Introduction				
20.2	Flight Control System of Small Fixed-Wing UAVs				
	20.2.1	Dynamics of Small Fixed-Wing UAVs	366		
	20.2.2	The ChangE Small Fixed-Wing UAV Flight Control			
		Platform	367		
	20.2.3	Closed-Loop System Identification	368		
20.3	Integer/Fractional Order Controller Designs				
	20.3.1	Integer/Fractional Controllers Considered and Design			
		Rules	371		
20.4	Modified Ziegler-Nichols PI Controller Design				

	20.5	Fractic	onal Order $(PI)^{\lambda}$ Controller Design	373	
	20.6	Fractic	onal Order PI Controller Design	375	
	20.7	Integer	r Order PID Controller Design	376	
	20.8	Simula	ation Illustration	377	
		20.8.1	Fractional Order Controllers Implementation	377	
		20.8.2	Simulation Results	379	
	20.9	Flight	Experiments	382	
			er Ŝummary	387	
21	Fract	ional O	rder PD Controller Synthesis and Implementation for an		
	HDD	Servo	System	389	
	21.1	Introd	uction	389	
	21.2	Fractional Order Controller Design with "Flat Phase"			
	21.3	0			
		21.3.1	Phase Loss from the Sampling Delay	392	
		21.3.2	Gain Boosting from Discretization	395	
	21.4	Adjustment of the Designed FOPD Controller			
		21.4.1	Phase Margin Adjustment with Phase Loss Prediction	397	
		21.4.2	Gain Crossover Frequency Adjustment with Gain		
			Boosting Prediction	398	
		21.4.3	Phase Slope Adjustment with the Phase Loss Slope		
			Prediction	398	
		21.4.4	FO Controller Design and Implementation Procedure		
			Summary	400	
	21.5	Experiment			
		21.5.1	Original Integer Order Controller Design	402	
		21.5.2	Track Following Performance	402	
		21.5.3	Throughput Performance	404	
	21.6 Chapter Summary				
Ref	ference	s		407	
Ind	lex			421	

Foreword

I am pleased that Professor Ying Luo and Professor YangQuan Chen have completed their book, Fractional Order Motion Controls, and it will be published by John Wiley & Sons Ltd. The mathematical backbone of fractional order control is fractional order differential equations and fractional order transfer functions. Fractional order transfer functions were proposed by Bode in the analysis and feedback amplifier design as early as in the mid-1940s. Tustin applied Bode's idea in the late 1950s to motion control, and he suggested that the open loop transfer function of the motion control system may be set $G(s) = (\frac{w_c}{s})^k$ with k = 1.5 over a certain frequency range, say, $(0.2 \ 1.2)w_c$ It is easy to check that for this transfer function the phase margin is 45 degree, and the closed loop system remains robust if this phase margin can be maintained over a finite frequency range. This example may be a strong motivation for motion control engineers to perform fractional order design. In tracing references on fractional order control, I noted that a number of interesting successful applications of fractional order control have been reported, and that excellent papers were published by control practitioners in industry such as Dr. Manabe at Mitsubishi. We may wonder then why fractional order control has not been more widely used as yet. One reason may be that fractional order controllers must be approximated by a combination of standard (integer order) differentiators and integrators for implementation and that implementable controllers may become high order. This is no longer a major obstacle since high order controllers may be digitally implemented. I think that fractional order control should not be regarded as a new control theory to replace standard control such as PID control based on integer order transfer functions. Good ideas that we learned in the standard (integer order) control theory all remain as valid design guidelines. Fractional order control adds something more to what we know and practice. It may be regarded as a means that allows us to design control systems, for example perform loop shaping, in a wider design domain. When we are freed from the constraint that each element of a controller must be of integer order, we may move only in the direction to have better control systems. Thus, fractional order control is of interest for those who design controllers for physical systems: for example motion control systems, automotive suspension systems, robots, and so on. This book by Luo and Chen covers the range from fundamental fractional calculus and early development of fractional order control to the most recent developments by the authors themselves as well as by others. It is a fun book to read, and it will surely motivate more motion control engineers to plunge into the world of fractional thinking.

> Masayoshi Tomizuka Cherly and John Neerhout, Jr. Distinguished Professor University of California – Berkeley, USA

Preface

There is increasing interest in dynamic systems and controls of non-integer orders or fractional orders. Traditional calculus is based on integer order differentiation and integration. The concept of fractional calculus has tremendous potential to change the way we model and control the world around us. Rejecting fractional derivatives is like saying that zero, fractional, or irrational numbers do not exist. Fractional calculus has a firm and enduring theoretical foundation. However, the fractional calculus concept was not widely applied in control engineering for hundreds of years, because the idea was unfamiliar and the fractional operators were limited in their realization. In the past few decades, with the rapid development of computer technology and better understanding of the potential of fractional calculus, the realization of fractional order control systems became much easier and fractional calculus is becoming more and more useful in various science and engineering areas. The present book focuses on fractional order control of motion systems.

Motion control is a sub-field of automation, in which the velocity and position of machines are controlled using certain types of actuation devices such as a hydraulic actuator, a linear actuator, or an electric motor, generally called a servo. Motion control is an important part of robotics and Computerized Numerical Control (CNC) machine tools, and is widely used in packaging, printing, textile, semiconductor production, and the assembly industries. In motion control systems, the control strategies should be stabilizing, fast and precise. In real-time applications, high performance motion control systems must be immune to any kind of disturbance. Thus, motion control research explores enhancement of both performance following command and disturbance rejection. The aim of this book is to introduce fractional calculus-based control methods in motion control applications and to illustrate the advantages and importance of using fractional order controls.

In order to improve the performance following command of motion control, fractional order PID controllers are proposed and designed in a systematic way for integer/fractional order velocity and position systems in this work. With the "flat phase" tuning constraint and other specifications, the motion control systems based on fractional calculus can achieve better robust performances with respect to loop gain variations or time constant variations than using traditionally optimized integer order controllers. From our extensive simulation and experimental efforts, we demonstrated the desirable control performance with faster response and smaller overshoot using properly designed fractional order controllers over those using optimized integer order controllers. In terms of systematic design schemes for fractional order PID controllers satisfying the desired specifications, stability is the minimum requirement for the controller design, and it is better to obtain a feasible region to check the complete set of specifications before the controller is designed and tuned. Therefore, the complete stability regions of the fractional order PID controller parameters, and the achievable regions of the specifications to obtain stabilizing and the desired fractional order PID controllers are discussed in detail in this book. Impressively, the achievable regions of specifications using fractional order PID controllers are significantly larger than those using an integer order PID controller for certain types of systems.

Motion control systems are usually influenced by various disturbances. In high performance motion control systems, maintaining a stable and robust operation by attenuating the influence of disturbances is required. A fractional order disturbance observer (DOB) based on the fractional order *Q*-filter is presented. A nice feature of this is that the traditional DOB is extended to the fractional order DOB (FO-DOB) with the advantage that the FO-DOB design will no longer be conservative nor aggressive. In addition, a fractional order adaptive feedforward cancellation (FO-AFC) scheme is proposed to cancel periodic disturbances. This FO-AFC method is much more flexible than the integer order AFC in preventing periodic disturbance and suppressing the harmonics or the noise. Meanwhile, a fractional order robust control method is devised for cogging effect compensation on the permanent magnetic synchronous motor position and the velocity systems. Also presented is a fractional order periodic disturbances.

In this book, nonlinear motion control systems are also considered for fractional calculus applications. A fractional order PID controller design scheme is presented for a DC motor control system with an elastic shaft. Under the same optimization conditions, the best fractional order PID controller outperforms the best integer order PID controller for the motion control system with nonlinearities of backlash and dead zone. Applying the systematic design of fractional order PD (FOPD) controller for ultra-low speed position tracking with a significant nonlinear friction effect, the experimental tracking performance using the designed FOPD controller is much better than that using the optimized integer order PI controller. This advantage of the designed FOPD is explained by the describing function analysis. Furthermore, an optimized fractional order conditional integrator (OFOCI) is proposed. By tuning the fractional order and the other tuning parameter following the analytical optimal design specifications, this proposed OFOCI can achieve an optimized performance not achievable by integer order conditional integrators.

In order to further validate and demonstrate some of the presented fractional order controller design schemes in this work, two real-world applications of fractional order control are included: an unmanned aerial vehicle (UAV) flight control system and an industrial hard-disk-drive (HDD) servo system. These are really exciting real-world applications that clearly show the advantages of using fractional calculus for motion controls.

This book is organized as follows. Part I contains only Chapter 1, introducing fundamentals of fractional order systems and controls followed by research motivations and book contributions. Part II is dedicated to the fractional order velocity controls, which includes Chapters 2–5. Part III focuses on the fractional order position controls, including Chapters 6–10. The feasible regions of the specifications for integer and fractional order controller designs based on the stability analysis are studied in Part IV, which includes Chapters 11 and 12. Part V explains how to design a fractional order disturbance observer, a fractional order adaptive feed-forward controller, a fractional order adaptive controller, and a fractional order periodic adaptive learning controller to compensate for the external disturbances in motion control systems, shown in Chapters 13–16, respectively. Part VI is devoted to the fractional order controls on nonlinear control systems in Chapters 17–19. Applications of fractional order controls in UAV flight control system and the HDD servo system are presented in Part VII including Chapters 20 and 21.

It is our sincere hope that this book can well serve two purposes. For motion control researchers and engineers, this book offers some new schemes that can present further improved performance not achievable before. For researchers and students interested in fractional calculus, this book is a demonstration that fractional calculus is indeed useful in real-world applications, not just a pure math game. Given the pervasive and ubiquitous nature of fractional calculus, we do believe that, as demonstrated in this book, even for simple motion control problems, there are ample opportunities to apply fractional calculus-based control methods. For more complex engineering and non-engineering systems, the opportunities and beneficial consequences of applying fractional calculus are limited only by our imagination.

Ying Luo YangQuan Chen California, USA

Acknowledgments

This book provides a comprehensive summary of our research efforts during the past few years in fractional order control theory and its applications in motion systems. This book contains material from papers and articles that have been previously published as well as the Ph.D. dissertation of the first author. We are grateful and would like to acknowledge the copyright permissions from the following publishers who have released our works.

Acknowledgement is given to the Institute of Electrical and Electronics Engineers (IEEE) to reproduce material from the following papers:

- © 2009 IEEE. Reprinted, with permission, from YangQuan Chen, I. Petras, and Dingyu Xue, "Fractional order control: A tutorial," in *Proceedings of American Control Conference*, 10–12 June 2009, St. Louis, MO, pages 1397–1411 (material found in Chapter 1). DOI: 10.1109/ACC.2009.5160719.
- © 2002 IEEE. Reprinted, with permission, from Dingyu Xue, and YangQuan Chen, "A comparative introduction of four fractional order controllers," in *Proceedings of the 4th World Congress on Intelligent Control and Automation*, 2002, pages 3228–3235 (material found in Chapter 1). DOI: 10.1109/WCICA.2002.1020131.
- © 2009 IEEE. Reprinted, with permission, from Chunyang Wang, Ying Luo, and YangQuan Chen, "Fractional order proportional integral (FOPI) and [proportional integral] (FO[PI]) controller designs for first order plus time delay (FOPTD) systems," in *Proceedings of the 21th IEEE Conference on Chinese Control and Decision*, Guilin, China, June 17–19, 2009, pages 329–334 (material found in Chapter 2). DOI: 10.1109/CCDC.2009.5195105.
- © 2005 IEEE. Reprinted, with permission, from YangQuan Chen and K. L. Moore, "Relay feedback tuning of robust PID controllers with iso-damping property," *IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,* volume 35, issue 1, 2005, pages 23–31 (material found in Chapter 4). DOI: 10.1109/ TSMCB.2004.837950.
- © 2009 IEEE. Reprinted, with permission, from ChunYang Wang, YongShun Jin, and YangQuan Chen, "Auto-tuning of FOPI and FO[PI] controllers with iso-damping property," in *Proceedings of the 48th IEEE Conference on Decision and Control*, 2009

Held Jointly with the 2009 28th Chinese Control Conference, 15–18 Dec. 2009, pages 7309–7314 (material found in Chapter 5). DOI: 10.1109/CDC.2009.5400057.

- © 2010 IEEE. Reprinted, with permission, from HongSheng Li, Ying Luo and YangQuan Chen, "A fractional order proportional and derivative (FOPD) motion controller: Tuning rule and experiments," *IEEE Transactions on Control Systems Technology*, vol. 18, no. 2, March 2010, pages 516–520 (material found in Chapter 6). DOI: 11.1109/TCST.2009.2019120.
- © 2009 IEEE. Reprinted, with permission, from Ying Luo and YangQuan Chen, "Fractional-order [proportional derivative] controller for robust motion control: Tuning procedure and validation," in *Proceedings of the 2009 American Control Conference*, St. Louis, Missouri, June 10–12 2009, pages 1412–1417 (material found in Chapter 7). DOI: 10.1109/ACC.2009.5160284.
- © 2011 IEEE. Reprinted, with permission, from Yongshun Jin, YangQuan Chen, and Dingyu Xue, "Time-constant robust analysis of a fractional order [proportional derivative] controller," *IET Control Theory and Applications*, volume 5, issue 1, January 2011, pages 164–172 (material found in Chapter 8). DOI: 10.1049/iet-cta.2009.0543.
- © 2011 IEEE. Reprinted, with permission, from Ying Luo and YangQuan Chen, "Synthesis of robust PID controllers design with complete information on prespecifications for the FOPTD systems," in *Proceedings of 2011 American Control Conference*, San Francisco, CA, June 29–July 1, 2011 (material found in Chapter 11).
- © 2011 IEEE. Reprinted, with permission, from Ying Luo and YangQuan Chen, "Stabilizing and robust FOPI controller synthesis for first order plus time delay systems," in *Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference*, Orlando, FL, USA, December 12–15, 2011 (material found in Chapter 12).
- © 2011 IEEE. Reprinted, with permission, from Ying Luo, YangQuan Chen and YouGuo Pi, "Fractional order adaptive feedforward cancelation," in *Proceedings of 2011 American Control Conference*, San Francisco, CA, June 29–July 1, 2011 (material found in Chapter 14).
- © 2011 IEEE. Reprinted, with permission, from Ying Luo, YangQuan Chen, Hyo-sung Ahn, and Youguo Pi, "Fractional order periodic adaptive learning compensation for the state-dependent periodic disturbance," *IEEE Transactions on Control Systems Technology*, volume 20, issue 2, 2012, pages 465–472 (material found in Chapter 16). DOI: 10.1109/TCST.2011.2117426.
- © 2006 IEEE. Reprinted, with permission, from Dingyu Xue, Chunna Zhao, and YangQuan Chen, "Fractional order PID control of a DC-motor with elastic shaft: A case study," in *Proceedings of American Control Conference*, 14–16 June 2006, Minneapolis, MN (material found in Chapter 17). DOI: 10.1109/ACC.2006.1657207.
- © 2010 IEEE. Reprinted, with permission, from Ying Luo, Haiyang Chao, Long Di, and YangQuan Chen, "Fractional order [proportional integral] roll channel flight control for small fixed-wing UAV," in *Proceedings of the 8th World Congress on Intelligent Control and Automation*, Jinan, China, July 2010 (material found in Chapter 20).

Acknowledgement is given to the Elsevier B.V. to reproduce material from the following papers:

- © 2010 Elsevier B.V. Reprinted, with permission, from Ying Luo, Chunyang Wang, YangQuan Chen and YouGuo Pi, "Tuning fractional order proportional integral controllers for fractional order systems," *Journal of Process Control*, volume 20, issue 7, August 2010, pages 823–831 (material found in Chapter 3). DOI: 10.1016/j.jprocont.2010.04.011.
- © 2011 Elsevier B.V. Reprinted, with permission, from Ying Luo, YangQuan Chen, and Youguo Pi, "Experimental study of fractional order proportional derivative controller synthesis for fractional order systems," Mechatronics, volume 21, 2011, pages 204–214 (material found in Chapter 9). DOI: 10.1016/j.mechatronics. 2010.10.004.
- © 2009 Elsevier B.V. Reprinted, with permission, from Ying Luo and YangQuan Chen, "Fractional-order [proportional derivative] controller for a class of fractional order systems," *Automatica*, volume 45, issue 10, 2009, pages 2446–2450 (material found in Chapter 10). DOI: 10.1016/j.automatica.2009.06.022.
- © 2010 Elsevier B.V. Reprinted, with permission, from Ying Luo, YangQuan Chen, Hyo-Sung Ahn and YouGuo Pi, "Fractional order robust control for cogging effect compensation in PMSM position servo systems: Stability analysis and experiments," *Control Engineering Practice*, volume 18, issue 9, September 2010, pages 1022–1036 (material found in Chapter 15). DOI: 10.1016/j.conengprac.2010.05.005.
- © 2011 Elsevier B.V. Reprinted, with permission, from Ying Luo, YangQuan Chen, and Youguo Pi, "Fractional order ultra low-speed position servo: Improved performance via describing function analysis," *ISA Transactions*, volume 50, 2011, pages 53–60 (material found in Chapter 18). DOI: 10.1016/j.isatra.2010.09.003.
- © 2011 Elsevier B.V. Reprinted, with permission, from Ying Luo, YangQuan Chen, Youguo Pi, Concepción A. Monje, and Blas M. Vinagre, "Optimized fractional order conditional integrator," *Journal of Process Control*, volume 21, issue 6, July 2011, pages 960–966 (material found in Chapter 19). DOI: 10.1016/j.jprocont.2011.02.002.

Acknowledgement is given to the American Society of Mechanical Engineers (ASME) to reproduce material from the following paper:

© 2003 ASME. Reprinted, with permission, from YangQuan Chen, Blas M. Vinagre, and Igor Podlubny, "On fractional order disturbance observer," in *Proceedings of* 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, Illinois, USA, September 2–6, 2003 (material found in Chapter 14).

The research described in this book would not have been possible without the inspiration and help from the work of individuals in the research community, and we

would like to acknowledge them. We would like to express our thanks to Dr. YouGuo Pi for his efforts in some chapters of this book, and all his great support and help to the first author of this book. Thanks go to Dr. DingYu Xue for his support on the robust analysis and discussion on the nonlinearities effect of fractional order PID controls (Chapters 8 and 17). Our thanks are directed to Dr. Haiyang Chao, Long Di, and Jinlu Han for their joint efforts on fractional order flight control on unmanned aerial vehicles (Chapter 20), to Dr. Yongshun Jin and Dr. Chunyang Wang for their joint work on fractional order controllers' design and tuning (Chapters 2, 5, and 8), and to Dr. HuiFang Dou for her help on linear motor modeling and control. We would like to thank Dr. Tao Zhang, Dr. C. I. Kang, and BongJin Lee for their help and guidance on fractional order control in the industrial hard-disk-drive servo system (Chapter 21), and Dr. Hyo-Sung Ahn for his efforts in our joint research on iterative and repetitive learning controls (Chapters 15 and 16). Our thanks go to Dr. Concepción A. Monje and Dr. Blas M. Vinagre for their work and guidance on the fractional order conditional integrator (Chapter 19).

Ying Luo would like to express his sincere thanks to his parents, XianShu Luo and Gui'E Xiong, for their constant and great support. He would also like to thank former and current CSOIS members: Dr. Yan Li, Yiding Han, Austin Jensen, Calvin Coopmans, Shayok Mukhopadhyay and Dr. Hu Sheng for their support during their studies in CSOIS at Utah State University.

YangQuan Chen would like to thank his wife, Dr. Huifang Dou, and his sons, Duyun, David and Daniel, for their patience, understanding and complete support throughout this work. He is thankful to Utah State University for the support and academic freedom he received where the main work of this book was performed while the final proof was completed during his move to University of California, Merced.

We wish to express our appreciation to five anonymous book proposal reviewers whose comments improved our presentation. In particular, we are thankful to Prof. Tomizuka for preparing an insightful Foreword for this book. Last but not least, we thank Sophia Travis (John Wiley & Sons – Chichester) and Paul Petralia (John Wiley & Sons – Hoboken) for their excellent professional support during the whole cycle of this book project.