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Preface

This book provides an introduction to nuclear physics. Research in nuclear physics
covers a wide variety of subjects, and one can list many key words: nuclear
structure and reactions of stable and unstable nuclei, fission and decay of a nucleus,
extreme states such as the limits of existence and high-spin states, properties at high
temperature and high density, hypernuclei, neutron stars, and nucleosynthesis,
among others. All of these are the subjects of nuclear physics. In addition to these
rather static properties, nuclear reactions such as heavy-ion collisions introduce new
aspects of research, i.e., dynamical properties of nuclei or reaction mechanisms,
such as heavy-ion fusion reactions, dissipation phenomena and liquid–gas phase
transition. Many of these phenomena can be understood from the point of view that
a nucleus is a quantum many-body system of nucleons stabilized by nuclear force.
On the other hand, phenomena at higher energies, driven by, e.g., high-energy
heavy-ion collisions, require a different approach: the approach based on the
quantum chromodynamics (QCD). The study of quark–gluon plasma and of the
QCD phase diagram is representative and forms a large stream of current nuclear
physics.

In this book, we largely restrict our subjects and describe basic features of
nuclear structure and of nuclear decays. b-decay and most excitation motions are
left to other books. Also, nuclear reactions and current subjects such as physics of
unstable nuclei, hypernuclei, and nuclear physics based on QCD are untouched
except for occasional very brief references. Even with these limitations, we could
only briefly mention recent developments. However, we have tried to convey part
of them through columns on the QCD phase diagram of nuclear matter, superheavy
elements, superdeformed states, and overview of the synthesis of elements. We
hope that together with the main text they help readers to grasp our current
knowledge of the nucleus and some recent research trends in nuclear physics. By
restricting the subjects, our aim was to contain many experimental data of basic
nuclear properties or suitable illustrations and explain the main structural features of
nuclei in some detail. This will be useful because most of the phenomena listed in
the first paragraph, but omitted from the book, are intimately related to those
basic properties. We also have attempted to explain how the nuclear model has
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developed from the original phenomenological level of a shell model to the modern
understanding based on a many-body theory such as the Hartree–Fock calculations.
We also have described nuclear force, the basis of nuclear physics, in some detail.
We sometimes introduce semi-classical approximation to the original quantum
mechanical formalism. We hope that it helps the readers to intuitively grasp the
underlying physics of complicated nuclear phenomena.

In writing the book our intention was to create not only a good introduction to
nuclear physics, but also a good reference book for physicists to learn the appli-
cation of quantum mechanics and mathematics. Toward that aim, in addition to
describing the basic phenomena of a nucleus, we attempted to convey how the basic
subjects of modern physics such as quantum mechanics, statistical physics, math-
ematics for physics, e.g., complex integrals, are used to describe or interpret various
phenomena of nucleus. We also considered the standard level of knowledge of
junior and senior students, and gave a detailed description to enable them to derive
each equation. Finally, we added the appendix to prove a number of important
formulae in the main text and to show some fundamental formulae.

The contents of the book are based on the lectures that one of the authors, N.T.,
has delivered at Tohoku University, Sendai, Japan, for a long time to junior and
senior students in the undergraduate physics course and also to beginning graduate
students. We have included as sidebars some additional material that was presented
in the class in order to keep the atmosphere of the lecture. Many textbooks and
original papers and figures therein have helped in preparing the lectures and this
book. Several of the figures are taken from them. Using this opportunity, we wish to
thank the authors. The papers cited at various places are not at all complete.
Moreover, it does not mean that they are necessarily the representative papers on
each citation. Nevertheless, we hope that they can help readers to do further study.
This book is an English translation of the Japanese edition, which one of the
authors, N.T., published in 2013. The appendix contains the errata to the original
Japanese edition.

We would like to thank Akif Baha Balantekin for many useful comments for the
writing of this English edition. We thank D.M. Brink, A.B. Balantekin, N. Rowley,
F. Michel, S.Y. Lee, P. Fröbrich, S. Landowne, K. McVoy, W.A. Friedman,
G.F. Bertsch, A. Brown, H. Weidenmüller, H. Friedrich, H. Esbensen,
M.S. Hussein, L.F. Canto, C. Bertulani, P.R.S. Gomes, D. Hinde, M. Dasgupta,
G. Pollarolo, A. Bonasera, M. Di Toro, C. Spitaleri, C. Rolfs, I. Thompson,
S. Ayik, K. Hara, Y. Abe, H. Sagawa, A. Iwamoto, T. Tazawa, M. Ohta, J. Kasagi,
and many other colleagues and friends around the world; and K. Hagino and
A. Ono in the Nuclear Theory Group of Tohoku University, Sendai, for useful
discussions. We are grateful to students of Tohoku University, especially foreign
students, for stimulating us to write this English book. We would like to thank
F. Minato, S. Yusa, S. Iwasaki and his wife, H. Tamura, and H. Koura for preparing
figures, and K. Morita, T. Hirano, Y. Aritomo, T. Kajino, and Y. Motizuki in
preparing the columns; and P. Möller, T. Wada, K. Matsuyanagi, T. Tamae, and
K. Kato for kindly reading sections of the Japanese edition and making many
helpful suggestions. We also thank all the mentors and collaborators who provided
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us opportunities to work in their institutions. We are grateful to H. Niko and
R. Takizawa for their help as the editors of this English version. Above all
N.T. would like to thank his wife, Noriko, and his family for their support over the
years.

Sendai, Japan Noboru Takigawa
September 2016 Kouhei Washiyama
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Chapter 1
Introduction

Abstract It would be useful to have an overview of some fundamental aspects of
nuclei before discussing each subject in detail. In this connection, we briefly describe
in this chapter the constituents and basic structure of atomic nuclei, properties of
particles which are closely related to nuclear physics, the role of the four fundamental
forces in nature in nuclear physics, nuclear species, the abundance of elements and
the phase diagram of nuclear matter.

1.1 The Constituents and Basic Structure of Atomic Nuclei

The atomic nuclei are self-bound many-body systems of protons (p) and neutrons (n)
by strong interaction. Although other baryons such as Δ(1232) are also contained,
their amounts are small. For example, the percentage of Δ(1232)Δ(1232) contained
in the lightest nucleus deuteron (d) is about 1%.π -mesons in virtual statesmediate the
interaction between the constituent particles and affect the electromagnetic properties
of protons and neutrons. Furthermore, each proton and neutron is also a composite
particle consisting of three quarks. The other hadrons also consist of quarks. One can
therefore take also the view that atomic nuclei are many-body systems of quarks.

The picture of nuclei and of nuclear phenomena, hence the appropriate way to
describe them, depend on the object and method of observation and the related
energy scale, and lead to various models for nuclei. This book restricts to low-
energy phenomena and discusses the nuclear structure and properties primarily from
the point of view that nuclei are many-body systems of protons and neutrons. The
governing law is quantum mechanics. This contrasts to quantum chromodynamics
for high-energy phenomena. Among various quantum many-body systems, nuclei
have characteristics that the number of constituents is small and also that the leading
forces are strong interactions.

Each nucleus is represented, for example, as 16
8O. O is the symbol of the chemical

element. It represents oxygen in this example, hence the number of protons is 8.
This number is called the atomic number, and is given at the left lower side. It is
often omitted, because it has a one to one correspondence to the symbol of element.
The number at the left upper side is called mass number and is given by the sum

© Springer Japan 2017
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2 1 Introduction

Fig. 1.1 Conceptual
illustration of nuclear
structure: example of 4521Sc

of the atomic number and the neutron number. They are denoted by A, Z and N ,
respectively, and A = Z + N .

Figure1.1 is a conceptual illustration of nuclear structure exemplified by 45
21Sc.

The enclosing circle has been drawn to indicate the finiteness of the nuclear size. In
reality, it is absent, because nuclei are not given by any external boundary conditions,
but are self-bound systems. The arrows indicate that protons p and neutrons n inside a
nucleus are not fixed at lattice points like atoms in solids, but are moving around with
finite velocities. We learn later that nuclei behave like either liquid or gas depending
on the observables or phenomena we are interested in.

1.2 Properties of Particles Relevant to Nuclear Physics

Table1.1 gives the properties of particles which are closely related to this book. As
the table shows, proton and neutron resemble each other in many properties such as
the mass and the spin except for electric properties, and are jointly called nucleons.
In order to distinguish them, one introduces the concept of isospin space related to
charge, and considers proton and neutron to be two different states in the isospin
space. The operators and states in the isospin space obey the same law as that of
angular momentum, and are called isospin operators and isospin states, respectively.

Nucleon has two states in the isospin space. Similarly to the spin operators for
electron ŝ, one therefore introduces the isospin operators t̂ by

t̂x = 1

2

(
0 1
1 0

)
, t̂y = 1

2

(
0 −i
i 0

)
, t̂z = 1

2

(
1 0
0 −1

)
, (1.1)

and, analogously to the Pauli spin operators σ̂ , τ̂ = 2t̂ by

τ̂x =
(
0 1
1 0

)
, τ̂y =

(
0 −i
i 0

)
, τ̂z =

(
1 0
0 −1

)
, (1.2)
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Table 1.1 Properties of particles relevant to nuclear physics. I : isospin, S: strangeness, Rc: radius
of charge distribution, μ: magnetic dipole moment, m in the magneton e�/2mc is me for electron,
mμ for μ particle,mp for proton and neutron, andmp forΛ andΣ particles. The number represents
the mean value if error is not given. The lifetime of proton depends on methods. The mass of ν is
from the decay of tritium. The lifetime of ν is from nuclear reactor with mνe in units of eV. The
quark structure for ρ±,0 is the same as that for π±,0. Taken from [1]

Name I I3 Jπ S mc2 (MeV) Rc
(fm)

μ

( e�
2mc )

τ (mean life) (s) Quark
model

p 1
2 − 1

2
1
2

+
0 938.3 0.88 ±

0.01
2.79 >1.9 × 1029 y uud

n 1
2

1
2

1
2

+
0 939.6 0.34a −1.91 885.7 ± 0.8 udd

γ 1− <6 × 10−23 stable

W± 1 80.4 × 103 3.1 × 10−25

Z0 1 91.2 × 103 2.7 × 10−25

νe
1
2 <2 × 10−6 b >300mνe

e− 1
2 0.511 1.00 >4.6 × 1026 y

μ− 1
2 105.7 1.00 2.2 × 10−6

π+ 1 1 0− 0 139.6 2.6 × 10−8 ud̄

π− 1 −1 0− 0 139.6 2.6 × 10−8 dū

π0 1 0 0− 0 135.0 0.84 × 10−16 1√
2
(uū−dd̄)

ρ±,0 1 1− 775.5 4.5 × 10−24 (ud̄, dū)

ω 0 1− 782.7 7.9 × 10−23 c

K+ 1
2

1
2 0− 1 493.7 1.24 × 10−8 us̄

K− 1
2 − 1

2 0− −1 493.7 1.24 × 10−8 sū

K0 1
2 − 1

2 0− 1 497.6 d s̄

K̄0 1
2

1
2 0− −1 497.6 s d̄

Λ 0 0 1
2

+ −1 1115.7 −0.61 2.63 × 10−10 uds

Σ+ 1 1 1
2

+ −1 1189.4 2.46 0.80 × 10−10 uus

Σ0 1 0
1
2

+ −1 1192.6 (7.4 ± 0.7) × 10−20 uds

Σ− 1 −1 1
2

+ −1 1197.4 1.5 × 10−10 dds

Ξ0 1
2

1
2

1
2

+ −2 1314.8 2.9 × 10−10 uss

Ξ− 1
2 − 1

2
1
2

+ −2 1321.3 1.6 × 10−10 dss

Δ 3
2

3
2

+
0 ∼ 1232 ∼ 6 × 10−24 d

aThe mean square charge radius of neutron is 〈r2n 〉 = −0.1161 ± 0.0022 fm2

bμν < 0.54 × 10−10μB
cc1(uū+dd̄)+c2ss̄
dΔ++ =uuu, Δ+ =uud, Δ0 =udd, Δ− =ddd
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and considers proton and neutron to be simultaneous eigenstates of t̂
2
and t̂z in such

a way that1

|n〉 =
∣∣∣∣12

1

2

〉
=

(
1
0

)
, |p〉 =

∣∣∣∣12 − 1

2

〉
=

(
0
1

)
. (1.3)

AsTable1.1 shows, the isospin is one of the important quantumnumbers to specify
the property of each particle. Itsmagnitude is assigned to be I when there exist 2I + 1
particles which have common properties for all aspects such as the mass and spin
but the electric charge. For example, the isospin of π -mesons is 1, since there exist
three particles which differ only in the electric charge. In nuclei, the isospin quantum
number of each state and the symmetry concerning the isospin play important roles
reflecting the symmetry properties of nuclear force in the isospin space.

If a particle is a structureless fermion, one can deduce from the Dirac equation
that its magnetic dipole moment, which is often simply called magnetic moment,
is given by μ = e�/2mc, where m is the mass of the particle. In fact, the magnetic
moment of an electron is 1 in units of the Bohr magneton μB = e�/2mec.2 However,
Table1.1 shows that the magnetic moment of a proton significantly deviates from the
nuclear magneton μN = e�/2mpc. Also, the magnetic moment of a neutron is not
zero, but is nearly comparable in magnitude and opposite in sign to that of a proton.
They are called anomalous magnetic moments and imply that both the proton and
the neutron are composite particles with intrinsic structure.3

Exercise 1.1 Derive the approximate equation for two large components ϕ in the
four-component spinor ψ starting from the Dirac equation in the presence of elec-
tromagnetic fields and assuming that the velocity v of the particle is much smaller
than the speed of light in vacuum c, i.e., v � c, and show that the term which
describes the interaction with the magnetic field in the effective Hamiltonian is given
by H = − e�

2mcσ · B, where B is the magnetic field. One can thus prove that the
magnetic moment of a Dirac particle is given by e�/2mc.

The fact that both proton and neutron are not point particles, but have intrinsic
structure, can be seen also directly from the data of charge distribution. The radius
of the charge distribution of a proton is about 1 fm.4

1There exists an alternative definition, where proton and neutron are inverted such that |p〉 = | 12 1
2 〉,

|n〉 = | 12 − 1
2 〉. Since N ≥ Z for most stable nuclei, we adopt the Definition (1.3) in this book.

2Precisely speaking, the experimental value of the magnetic moment of an electron is larger than the
prediction of the Dirac theory by about 0.1%, and can be explained by quantum electrodynamics.
3It is Otto Stern who experimentally determined the magnetic moment of a proton for the first
time. There remains an episode that Pauli visited Stern while he was conducting the experiment
and denied the significance of the experiment based on the Dirac theory. Despite the criticism,
Stern continued his experiment, and discovered the anomalous magnetic moment of a proton, and
consequently was awarded the Nobel Prize in Physics in 1943.
4Recent experiments of the scattering of high-energy electrons, and also of polarized electrons, are
shedding new lights on the intrinsic structure of nucleons. For example, it is getting uncovered that
the electric and magnetic charge distributions are different.
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Fig. 1.2 A physical nucleon
dressed with a virtual
π -meson cloud

The anomalous magnetic moments of nucleons can be understood by either the
meson theory or the quark model. The latter will be explained in Sect. 5.4.3. Here,
we learn the former.

Let us assume that the proton observed in experiments is a superposition of a
bare proton as a structureless Dirac particle and a bare neutron as a Dirac particle
surrounded by a virtual π+-meson (the left part of Fig. 1.2),

|p ↑) = √
1 − Cp|p ↑〉 + √

Cp|(n × π+) ↑〉 . (1.4)

Since the π -meson is a pseudoscalar particle, the orbit of the π -meson around the
neutron is p-orbit. Corresponding to Eq. (1.4), the magnetic moment of a proton will
be given by

μp = (1 − Cp)μN + Cp
e�

2mπc
. (1.5)

The first and the second terms on the right-hand side represent the contribution of
the interaction of the electromagnetic field with a bare proton and with π -meson,
respectively. Because of the difference between the masses of a nucleon and a π -
meson, one can explain the anomalous magnetic moment of a proton by assuming
the admixture of the (neutron×π+-meson)-component in a proton to be about 30%.

Similarly, if one assumes that a neutron is not a genuineDirac particle, but contains
the component, where π−-meson is moving around a proton as a Dirac particle, by
Cn in proportion (the right part of Fig. 1.2), one obtains

μn = Cn

(
μN − e�

2mπc

)
(1.6)

for the magnetic moment of a neutron. Assuming Cp = Cn, one obtains

μp + μn = μN . (1.7)

This agrees well with the experimental data (μp + μn)exp ∼ 0.88μN .

http://dx.doi.org/10.1007/978-4-431-55378-6_5
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1.3 The Role of Various Forces

It is known that four types of forces exist in nature. In this section, we briefly survey
the role of four forces in nuclear physics.

The strong interaction is principally responsible for the stability and the struc-
ture of nuclei. The electromagnetic interaction provides a powerful probe of nuclear
structure through the electron scattering from nuclei as well as electromagnetic tran-
sitions and moments thanks to its well understood nature and the weakness of the
force. Furthermore, it governs the lifetime of excited states of nuclei through the
electromagnetic transition by γ -ray emission. The weak interaction governs the sta-
bility of nuclei through β±-decay. The representative example is the beta decay of
neutron (Fig. 1.3), which is given by

n → p + e− + ν̄e . (1.8)

As shown in Table1.1, the mean life of the neutron in free space is τ ∼ 14.8 min,
and the corresponding half-life is T1/2 ∼ 10.2 min. The weak interaction plays an
important role also in the synthesis of elements beyond Fe.

Exercise 1.2 Explain the reason why the third particle besides the proton and the
electron is needed in the final state of the β-decay of the neutron. Also, discuss the
properties of that particle.

All of the strong, the electromagnetic and the weak interactions are relevant to
the decay of nuclei. Though there are a large variety of decays, the time scale of the
lifetime associated with them is of the order of 10−21 s, 1 ps = 10−12 s, and 1min,
respectively, reflecting the difference among their strengths.

The gravitational force plays almost no role in the structure of nuclei. However,
it plays a crucial role in the synthesis of elements. Also, as we learn later, although
there exists no stable nucleus of dineutrons, there exist neutron stars because of the
gravitational force.

Fig. 1.3 The β-decay of a
neutron
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1.4 Useful Physical Quantities

It is sometimesworthmaking order-of-magnitude estimates of various physical quan-
tities. In that connection. it is useful to remember the following approximate values
related to the fundamental physical constants c (the speed of light in vacuum), � (the
Planck constant divided by 2π ), e (electron charge magnitude), kB (the Boltzmann
constant) as

c = 2.99792458 × 108 m/s ≈ 3.00 × 108 m/s, (1.9)

�c = 197.326968MeV fm ≈ 200MeV fm, (1.10)

e2

�c
= 1

137.035999074
≈ 1

137
(fine structure constant), (1.11)

kBT = 0.02482 eV ≈ 1

40
eV at T = 288K. (1.12)

The quantity e2/�c is called the fine structure constant. Equation (1.11) holds when
the proportional coefficient in the static electric force between two particles with
electric charge q1, q2 is determined such that the force is given by F(r) = q1q2/r2

when the two particles are apart from each other by the distance r . Equation (1.12)
represents the kinetic energy of thermal neutrons. It is useful to convert the temper-
ature given in units of Kelvin to the corresponding energy in units of MeV.

Exercise 1.3 The range of force is given by the Compton wave length �/mc of the
corresponding gauge particle. Estimate the range of the strong interaction and of the
weak interaction.

Exercise 1.4 As Fig. 1.4 shows, the force between two protons is dominated by a
repulsive Coulomb interaction at large distances, and turns attractive in the region
inside their touching radius due to the nuclear force, i.e., due to the strong interac-
tion. Estimate the height of the Coulomb barrier VCB = V (rB) by assuming that the
touching radius is given by r = rB ∼ 2 × Rp ∼ 2 fm, where Rp is the radius of the
proton.

Exercise 1.5 The temperature of the Sun at the core is about 16 million K. Estimate
the collision energy E at the core of the Sun.

Fig. 1.4 Illustration of the
collision between two
protons in the Sun

E
Newtonian mechanics

Quantum tunneling
rrB

V(r)

VCB
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Nuclear reactions in the Sun occur very slowly, because they take place by quan-
tum tunneling as indicated by Exercises1.4 and 1.5. In reality, there exists another
important hindrance factor. As we learn later, there exists no stable bound state in the
diproton system. The only stable dinucleon system is deuteron consisting of one pro-
ton and one neutron. In order for the fusion of two protons to take place, the inverse
reaction of Eq. (1.8), where a proton is converted into a neutron by weak interaction,
must therefore be involved. Because of the superposition of the quantum tunneling
and weak interaction, the nuclear reaction between two protons is doubly hindered.
Consequently, the Sun burns very slowly. It has burnt already for 4.6 billion years
and is expected to continue to shine for another almost same period.

1.5 Species of Nuclei

The display of nuclei on the two-dimensional plane, where one axis, say the abscissa,
represents the neutron number and the other, say the ordinate, the proton number, is
calledNuclear chart or Segré chart. There are 256 stable nuclei if one includes those
nuclei which have long lifetimes of the order comparable to the lifetime of the Sun
such as U. They lie in the vicinity of the diagonal line of the nuclear chart for the
reason we learn later. The reason why there exist more stable nuclei than the number
of stable elements about 92 in nature is because there exist about three stable nuclei
for each element on average. For example, there exist two stable nuclei, called proton
p and deuteron d, for the element hydrogen.

Incidentally, the nuclei which have the same number of protons (i.e., the same
atomic number), but differ in the neutron number, hence in the mass number as well,
are called isotopes to each other, and those whose neutron numbers are the same,
but the proton numbers are different, the isotones, and those which have same mass
numbers the isobars, respectively.

The study of unstable nucleiwith short lifetimes is currently one of the hot subjects
of nuclear physics. If one includes unstable nuclei whose lifetime is longer than 1µs,
about 7000 nuclei are theoretically predicted to exist, amongwhich about 3000 nuclei
have already been discovered experimentally. Also, a group of nuclei stabilized by
shell effects (see Chap.5) are predicted to exist in the region far beyond U. They
are called superheavy nuclei or superheavy elements, on which extensive studies are
going on both experimentally and theoretically.

http://dx.doi.org/10.1007/978-4-431-55378-6_5
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Fig. 1.5 Nuclear chart.
Made from the 2010 version
of Japan Atomic Energy
Agency (JAEA)

Fig. 1.6 Three-dimensional
nuclear chart. Made by the
experimental group of
nuclear physics in the
graduate school of science of
Tohoku University

This book deals with nuclei made from the first-generation quarks, i.e., u and d
quarks, from the point of view of the quark model. In recent years, however, nuclei
containing Λ or Σ or Ξ particles, which include one or two second-generation s
quark (s) as constituents, are also under extensive studies. These novel nuclei are
called hypernuclei. A big progress of their study is expected to be stimulated by
the operation of, e.g., J-PARC. Figure1.5 shows the ordinary nuclear chart, while
Fig. 1.6 a multi-layers nuclear chart, where the ordinate represents the strangeness
number. The numbers appearing in Fig. 1.5 are the magic numbers, which we learn
in Chap.5.

To end this chapter, we mention the abundance of elements. Figure1.7 shows the
relative abundance of elements5 in the conventional unit, i.e., by taking the abundance

5See also [4], where the relative abundance of even–even nuclear species with A ≥ 50 in the solar
system is given.

http://dx.doi.org/10.1007/978-4-431-55378-6_5
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Fig. 1.7 Schematic curve of atomic abundances as a function of atomic weight based on the data
of Suess and Urey [2]. Taken from [3]

of Si to be 106, i.e., H(Si) = 106. The hydrogen dominates by far, and the general
trend is that the abundance sharply decreases with increasing mass number up to
A ∼ 100, then decreases much more slowly. In addition, it is noticeable that there
appears a sharp peak of Fe group and that the abundances of nuclei with particular
neutron numbers are large. Also, one notices that each of the latter abundances
has twin peaks. These features originate from the stability of nuclei, and the magic
numbers, and the way of nucleosynthesis. We will gradually learn them in this book.
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1.6 Column: QCD Phase Diagram of Nuclear Matter

Water changes its state from ice (solid phase) to water (liquid phase), then to vapour (gas
phase) when the temperature and the pressure vary. Similarly, nuclear matter changes its state
or phase with temperature and density.

Figure1.8 conceptually represents the phase diagram of nuclear matter from the point of
view of QCD by taking the temperature and the chemical potential, which corresponds to the
baryon density, for the ordinate and the abscissa, respectively. The region marked as nuclear
matter is the state of nucleus treated in detail in this book.

As the figure shows, it is conjectured that a phase of quark–gluon plasma is achieved
irrespective of the density if the temperature becomes high. Related experimental as well as
theoretical studies are extensively performed including the high-energy heavy-ion collisions
(Au+Au) using the RHIC (Relativistic Heavy Ion Collider) at the Brookhaven National Lab-
oratory (BNL) in USA, and the Pb+Pb Collision experiments by the Large Hadron Collider
(LHC) at the European Organization for Nuclear Research (CERN). The stars and the arrows
in the diagram indicate the regions expected to be achieved by collision experiments and the
expected paths of time evolution, respectively. There still remain, however,many uncertainties,
including the phase diagram itself, and studies from various aspects are under way.

Fig. 1.8 QCD phase diagram. Taken from [5], courtesy of Brookhaven National Laboratory
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Chapter 2
Bulk Properties of Nuclei

Abstract Their sizes andmasses are themost fundamental properties of nuclei. They
have simple mass number dependences which suggest that the nucleus behaves like a
liquid and lead to the liquid-dropmodel for the nucleus. In this chapter we learn these
bulk properties of nuclei and their applications to discussing nuclear stability, muon-
catalysed fusion and the structure of heavy stars. As an example of the applications
we discuss somewhat in detail the basic features of fission and nuclear reactors. We
also mention deviations from what are expected from the liquid-drop model which
suggest the pairing correlation and shell effects. We also discuss the velocity and the
density distributions of nucleons inside a nucleus.

2.1 Nuclear Sizes

2.1.1 Rutherford Scattering

At the beginning of the twentieth centurywhen quantummechanicswas born, various
models were proposed for the structure of atoms such as the plum pudding or raisin
bread model of J.J. Thompson, which assumes that the plus charge distributes over
whole atom together with electrons, and the Saturn model by Hantaro Nagaoka.
Rutherford led these debates to conclusion through the study of scattering of alpha
particles on atom. He proposed the existence of a central part of the atom, i.e., the
core part, which bears all the positive charge that cancels out the total negative charge
of electrons and also carries the dominant part of the mass of the atom. Rutherford
named this core part nucleus, and gave the limiting value to its size.1 At that time,
Rutherford hadbeen engaged in the detailed studies of the properties of alphaparticles
emitted from radioactive materials, and knew that the alpha particle is the ionized
He. What Rutherford remarked in the experimental results of Marsden is that alpha

1It was 1911 when Rutherford submitted his article on the atomic model to a science journal.
The idea and the formula of Rutherford were derived by stimulation of experimental results of his
coworker Marsden who had been engaged in the study of scattering of alpha particles emitted from
natural radioactive elements on matter. Furthermore, they have been confirmed experimentally to
be correct by his collaborators Geiger and Marsden.

© Springer Japan 2017
N. Takigawa and K. Washiyama, Fundamentals of Nuclear Physics,
DOI 10.1007/978-4-431-55378-6_2
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Fig. 2.1 Connection
between the classical orbits
of the Rutherford scattering
and differential cross section

particles passing through matter sometimes make a large angle scattering, although
most of them go nearly straight. This experimental feature cannot be explained by
the Thompson model which assumes that positive charges distribute over the whole
atom.2

It is established today that alpha particle is the nucleus of He. Here, we learn how
the Rutherford model for atom was born, and how the information on the nuclear
size is obtained through the scattering experiments of alpha particles.

Let us now consider the scattering of two structureless charged particles by
Coulomb interaction, which is called Coulomb scattering or Rutherford scattering.
Here, the two charged particles represent the alpha particle and the nucleus of the tar-
get atom. Since themass of electrons is extremely small, one can ignore the scattering
by electrons. The correct expression of the differential cross section for the Coulomb
scattering can be obtained by classical mechanics, although, correctly speaking, one
should use quantum mechanics. One important thing in this connection is that one to
one correspondence holds between the impact parameter b and the scattering angle θ

as illustrated in Fig. 2.1. The alpha particles which pass the area 2πbdb of the impact
parameter between b and b + db in Fig. 2.1 are scattered to the region of solid angle
dΩ = 2π sin θdθ around the scattering angle θ . On the other hand, the differential
cross section is defined as the number of particles scattered to the region of solid
angle dΩ when there exists one incident particle per unit time and unit area. Hence
by definition

dσ

dθ
= 2πb

|dθ/db| . (2.1)

Using the relation

b = a cot

(
θ

2

)
(2.2)

with

a = Z1Z2e2

μv2
(2.3)

2The history of the progress and discoveries of modern physics in the period from late in the
nineteenth century to the beginning of the twentieth century is vividly described in the book by E.
Segré [1].
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which holds between the impact parameter b and the scattering angle θ in the case
of Coulomb scattering, we obtain

dσ

dΩ
= dσR

dΩ
≡ 1

2π sin θ

dσ

dθ
= a2

4

1

sin4(θ/2)
, (2.4)

where the indexR inσR means theRutherford scattering. In Eq. (2.3),μ is the reduced
mass, and v is the speed of the relative motion in the asymptotic region, i.e., at the
beginning of scattering. Note that Eq. (2.4) exactly agrees with the formula of the
differential cross section dσR/dΩ obtained quantummechanically for theRutherford
scattering. The characteristics of the Coulomb scattering given by Eq. (2.4) are that
the forward scattering is strong, but also that backward scattering takes place with a
certain probability as well. These match the experimental results of Marsden.

The ground state of the natural radioactive nucleus 210
84 Po decays with the half-life

of 138.4 days by emitting an alpha particle (21084 Po → 206
82 Pb + α). The kinetic energy

of the alpha particle is about 5.3MeV corresponding to the Q-value of the decay
5.4MeV. The differential cross section for the scattering, where this α particle is used
to bombard the Au target of atomic number 79, agrees with that for the Rutherford
scattering right up to the backward angle θ = π . This suggests that the sum of the
radii of Au and α (R(Au) + R(α)) is smaller than the distance of closest approach
d(θ = π) for the scattering with the impact parameter b = 0 leading to the backward
scattering θ = 180◦ in the case of Rutherford scattering. Since the distance of closest
approach d and the scattering angle θ or the impact parameter b is related by

d = a

[
1 + csc

(
θ

2

)]
= a +

√
a2 + b2 (2.5)

for theRutherford scattering, the abovementioned experimental results give the upper
boundary of the radius as R(Au) + R(α) < 4.3 × 10−12 cm. This upper boundary is
much smaller than the radii of atoms, which are of the order of 10−8 cm. Rutherford
was thus guided to his atomic model.

Figure2.2 shows the ratio of the experimental differential cross section for the
scattering ofα particles of 48.2MeVbyPb target to that for the correspondingRuther-
ford scattering dσR/dΩ as a function of the scattering angle. The experimental cross
section gets rapidly smaller than that of the Rutherford scattering beyond θ = 30◦.
This can be understood as the consequence of that the distance of closest approach
is small for the scattering corresponding to large angle scattering as Eq. (2.5) shows,
and hence the overlap between α particle and Pb becomes large, and consequently,
those phenomena such as inelastic scattering which are excluded in the Rutherford
scattering take place. Figure2.3 shows classical trajectories obtained by fixing Pb
at the origin and by making the incident energy of α particles to 48.2MeV so as
to match with Fig. 2.2. The circle shows the region corresponding to the sum of the
radii of Pb and α particle, i.e., about 9.1 fm. The figure confirms that the distance of
closest approach for the trajectories corresponding to large angle scattering becomes
indeed smaller than the sum of the radii of Pb and α particle.
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Fig. 2.2 Differential cross
section of the elastic
scattering of α particles by
Pb. Taken from [2]

Fig. 2.3 Trajectories of
Rutherford scattering

Exercise 2.1 Estimate the sum of the radii of α and Pb from the result of Fig. 2.2
based on the idea mentioned above.

The ratio of the differential cross section shown in Fig. 2.2 resembles the Fresnel
diffraction of classical optics. The Fresnel diffraction occurs in the case where the
source of light is located in the vicinity of the object that causes diffraction, e.g., an
absorber. The scattering ofα particles by a nucleuswith large atomic number behaves
like a Fresnel scattering, because the large Coulomb repulsion strongly bends the
trajectory and works to make the source of light effectively locate in the vicinity
of the scatterer. It is also because the partial waves corresponding to small impact
parameters whose distance of closest approach is small are removed from the elastic
scattering due to, e.g., inelastic scattering. Concerning the elastic scattering, this
plays effectively the same role as that of an absorber.

This picture holdswhen theCoulomb interaction dominates the scattering process.
The strength of the Coulomb interaction increases in proportion to the product of
the charges of the projectile and target nuclei. On the other hand, roughly speaking,
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the strength of the nuclear interaction increases in proportion to the reduced mass
A1A2/(A1 + A2). Hence the refraction effect due to the nuclear interaction becomes
non-negligible for the scattering by a target nucleus with small atomic number. In
fact, a similar differential cross section appears not by diffraction effect, but by
refraction effect. The interpretation and analysis then get complicated. Accordingly,
one can safely estimate the nuclear size based on the consideration of the Coulomb
trajectory together with the strong absorption due to inelastic scattering as described
in the present section when the atomic number of the target nucleus is large.

2.1.2 Electron Scattering

The scattering of α particles by a nucleus had led to the Rutherford atomic model,
and provided a way to estimate the nuclear size. It thus played an important historical
role. However, as stated at the end of the last section, it has a limitation regarding
applicability. In contrast, the scattering of electrons by a nucleus, which we learn in
this section, is a powerful method to study the nuclear size, more exactly, the dis-
tribution of protons inside a nucleus, because only well understood electromagnetic
force is involved.3,4

2.1.2.1 The de Broglie Wavelength of Electron

In the experiments of electron scattering, electrons are injected on the target nucleus
after they are accelerated by, e.g., a linear accelerator. In order to deduce the infor-
mation on the nuclear size from electron scattering, the de Broglie wavelength of the
electron must be of the same order of magnitude as that of the nuclear size or smaller.
In this connection, let us first study the relation between the de Broglie wavelength
of electron and the kinetic energy of electron supplied by the accelerator.

The de Broglie wavelength of electron λe is given by

λe = h

pe
(2.6)

in terms of the momentum of the electron pe and the Planck constant h. On the other
hand, it holds that

Etotal =
√

m2
ec4 + p2

ec2 = mec
2 + Ekin = mec

2 + Ee (2.7)

3R. Hofstadter was awarded the Nobel Prize in Physics 1961 for the study of high energy electron
scattering with linear accelerator and the discovery of the structure of nucleon. He performed also
systematic studies of nuclei by electron scattering.
4The electron scattering is a powerful method to learn the structure of nucleons mentioned in
Chap.1, and also to study nuclear excitations such as giant resonances and hypernuclei as well.

http://dx.doi.org/10.1007/978-4-431-55378-6_1
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Table 2.1 The de Broglie wavelength of electron for some representative acceleration energies

Acceleration energy Ee (MeV) 100 200 300 1000 4000

de Broglie wavelength λe (fm) 12.4 6.2 4.1 1.2 0.31

by using the relation of relativity between the momentum and the energy of an
electron, since the total energy of electron is given by adding the energy Ee supplied
by the accelerator, i.e., the kinetic energy Ekin, to the rest energy. Hence,

p2
e = 2meEe + E2

e /c2 . (2.8)

By inserting Eq. (2.8) into (2.6), we obtain

λe

2π
= �c

Ee(1 + 2mec2/Ee)1/2
≈ �c

Ee
≈ 200

Ee/MeV
fm . (2.9)

We ignored the rest energy of electron mec2 in the third and fourth terms of Eq. (2.9)
by assuming that it ismuch smaller than the acceleration energy Ee.Wehavegivennot
the wavelength itself, but the quantity which is obtained by dividing the wavelength
by 2π to facilitate the estimate of the order of magnitude.

Table2.1 gives the de Broglie wavelength of electron estimated by Eq. (2.9) for
some representative acceleration energies.

2.1.2.2 Form Factor

As Table2.1 shows, one has to inject electrons on a nucleus after having accelerated
them to much higher energy than the rest energy of electron mec2 ≈ 0.51MeV in
order to learn the nuclear size, which is of the order of fm. Hence one needs to use the
Dirac equation, to which a relativistic Fermi particle obeys, in order to theoretically
derive the proper expression of the differential cross section [3].

Exercise 2.2 Evaluate the ratio v/c of the velocity of the electron v to the speed of
light in the vacuum c when the acceleration energy of the electron Ee is 100MeV.

However, here let us simplify the problem in the following way, and learn how the
information on nuclei can be obtained from the analyses of the electron scattering:

1. Treat the scattering of electrons by the electromagnetic field made by a nucleus,
instead of considering the scattering of electrons by the nucleons inside the
nucleus.

2. Consider only the Coulomb force (electric force) and ignore the magnetic force.
3. Use non-relativistic Schrödinger equation.

We express the Coulomb potential as V (r). The scattering amplitude to the angle θ

is then given by
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f (1)(θ) = − 1

4π

2μ

�2

∫
e−iq·rV (r)dr (2.10)

following the first order Born approximation, which is valid because of the high
energy scattering, and also because the involved electric force is weak compared to
the kinetic energy. The μ is the reduced mass. It can be identified with the mass of
electron me to a high degree of accuracy. The q is the momentum transfer divided
by � and is given by

q = kf − ki , (2.11)

q = |q| = 2k sin(θ/2) . (2.12)

where ki is the wave-vector of the incident electron, kf is the wave-vector of the
electron scattered to the direction of angle θ and k is the wave number of the electron
corresponding to the incident energy.

Exercise 2.3 Derive Eqs. (2.10)–(2.12).

We remark that the potential V (r) obeys the following Poisson equation,

ΔV = 4π Ze2ρC(r) , (2.13)

in order to relate the scattering amplitude to the distribution of protons inside a
nucleus. The Z is the atomic number of the nucleus to be studied, and ρC(r) is
the charge density at the position r measured from the center of the nucleus.5 It is
normalized as ∫

ρC(r)dr = 1 . (2.14)

By repeating the integration by parts twice in Eq. (2.10), and by using Eq. (2.13), we
obtain,

f (1)(θ) = Ze2

2μv2
1

sin2(θ/2)
F(q) , (2.15)

where F(q) is defined as

F(q) ≡
∫

e−iq·rρC(r)dr . (2.16)

The differential cross section is therefore given by

dσ (1)

dΩ
= | f (1)(θ)|2 = dσR

dΩ
|F(q)|2 . (2.17)

5The distribution of protons ρp can be derived from ρC by taking into account the intrinsic structure
of proton.
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Correctly, the expression of the differential cross section is obtained as

dσ (1)

dΩ
= dσM

dΩ
|F(q)|2 , (2.18)

dσM

dΩ
=

[
Ze2

2Ee sin2(θ/2)

]2 [
1 − v2

c2
sin2(θ/2)

]

≈
[

Ze2 cos(θ/2)

2Ee sin2(θ/2)

]2

, (2.19)

by replacing the differential cross section of the Rutherford scattering dσR/dΩ by
that for the Mott scattering dσM/dΩ which takes into account relativistic effects
for electrons. The dσM/dΩ gives the differential cross section of the scattering of
electrons by the Coulomb force made by a point charge. Equation (2.18) shows that
the information on the density distribution of protons inside a nucleus can be obtained
through the ratio of the experimental differential cross section to that for the Mott
scattering. The F(q) defined by Eq. (2.16) is the factor which represents the effects
of the finiteness of the nuclear size and is called the form factor.

Especially, if the nucleus is spherical, i.e., if the charge distribution is spherical,
the form factor is given by

F(q) = 4π
∫ ∞

0
ρC(r) j0(qr)r2dr = 4π

∫ ∞

0
ρC(r)

sin(qr)

qr
r2dr , (2.20)

where j0(x) is the spherical Bessel function of the first kind.

Exercise 2.4 Prove Eq. (2.20) in the following two methods:

1. Perform directly the integration over the angular part of r (dΩr ) in Eq. (2.16).
2. Expand at first the e−iq·r in terms of Legendre functions, and then use the ortho-

normal property of the spherical harmonics.

2.1.2.3 Density Distribution

(1) Estimate of theNuclearRadius fromDiffraction PatternAsTable2.1 implies,
the experiments of electron scattering are performed with high energy in order to
study nuclear size and the density distribution of protons inside a nucleus. The cor-
responding differential cross section is expected to show a diffraction pattern similar
to that of the Fraunhofer diffraction in optics. Figure2.4 shows the differential cross
section for the elastic scattering of electrons fromAu target at 153 and 183MeV. The
monotonically decreasing solid line is the Mott scattering cross section for 183MeV.
The figure shows that the observed cross section is smaller than that for theMott scat-
tering, and that it has indeed the diffraction pattern, i.e., oscillation, of the Fraunhofer
type.
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Fig. 2.4 The elastic
electron-scattering
differential cross section
from Au at energies of 153
and 183MeV. Taken from [4]

Let us assume that the charge distributes uniformly inside a nucleus with a spher-
ical shape of radius R in order to see how the nuclear size is estimated from the
diffraction pattern. The resulting form factor reads

F(q) = 3

q R
j1(q R) = 3

q R
(q R)−2[sin(q R) − (q R) cos(q R)] . (2.21)

We then find that the zeros of j1(x)/x correspond to the angles where the differen-
tial cross section shows local minima. We denote the magnitude of the transferred
momenta corresponding to those scattering angles θ1, θ2, . . . by q1, q2, . . .. The first
zero of j1(x)/x is x1 ≈ 4.49, and the interval between the successive zeros Δx is
about π afterwards. One can therefore estimate the radius either by R ∼ x1/q1 or by
R ∼ π/(q2 − q1) using the q1, q2, . . . evaluated from θ1, θ2, . . ., which are extracted
from the experimental data.

Exercise 2.5 Estimate the radius of the nucleus of Au from the experimental data
shown in Fig. 2.4.6

6The dips in diffraction pattern are buried by the distortion effects due to Coulomb force in the case
of target nuclei with a large mass number such as Au. The diffraction pattern appears more clearly
for the target nuclei with small mass number.
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(2) TheWoods–SaxonRepresentation of theDensityDistributionAccurate infor-
mation on the density distribution7 of nucleons inside a nucleus can be obtained
by making the Fourier transformation of the form factor given by the experiments
of electron scattering. However, one usually takes the method to first postulate a
plausible functional form, then determine the parameters therein to reproduce the
experimental data. In that case, a widely adopted choice is to assume the following
functional form called the Woods–Saxon type,8

ρ(r) = ρ0

1 + e(r−R)/a
, (2.22)

where R is the parameter to represent the radius. a is the parameter to represent the
thickness of the surface area and is called the surface diffuseness parameter. The
density falls from 90 to 10% of the central density over the region of thickness of
4.4 times a around R. The ρ0 is the central density, and is given as a function of R
and a through the normalization condition,

∫
ρdr ∼ ρ0

4π

3
R3

[
1 + π2

( a

R

)2
]

= A . (2.23)

The two solid curves in Fig. 2.4 which reproduce fairly well the experimental
differential cross section have been calculated with the best fit parameters for the data
at 183MeVby assuming theWoods–Saxon representation for the charge distribution.

The following values are obtained from the analyses of experimental data for a
large number of stable target nuclei,

R ∼ (1.1–1.2)A1/3 fm , a ∼ 0.6 fm , ρ0 ∼ (0.14–0.17) fm−3 , (2.24)

as parameters in the Woods–Saxon parametrization.9 The fact that the radius is
proportional to the 1/3 power of the mass number, i.e., the number of nucleons
composing the nucleus, and that the density is independent of the mass number

7In stable nuclei, the protons and neutrons distribute inside the nucleus almost in the same way.
Here, we therefore treat the density distribution of protons and of nucleons as the same except for the
absolute value. In these days, extensive studies are performed on the nuclei far from the β-stability
line, which are called unstable nuclei. It is then getting known that some of them have very different
distributions for protons and for neutrons. For example, the region where there exists only neutrons
largely extends over the surface region in some nuclei such as 11Li in the vicinity of the neutron
drip line. Such layer is called the neutron halo. Recently, it is reported from the inelastic scattering
of polarized protons (see [5]) and also from the elastic scattering of polarized electrons that even
a typical stable nucleus 208Pb has a larger radius of the neutron distribution than that of the proton
distribution by 0.15–0.33 fm. Relatedly, the study of the existence of the region consisting of only
neutrons, which is called neutron skin, is an active area of research.
8There exist deviations from the Woods–Saxon type for individual nucleus. They are explained by
shell model.
9The value ρ0 ∼ 0.17 fm−3 is widely accepted as the density of nuclear matter (see [6] for the
argument about the detailed mass number dependence of the central density of nuclei with large
mass number).




