

Summary of Contents

Preface . xi

1. Getting Started with MySQL . 1

2. Storing Data . 15

3. Retrieving and Updating Data . 37

4. Working with Multiple Tables . 57

5. Connecting from Code . 77

6. Programming the Database . 95

7. Backups and Replication . 121

JUMP START
MYSQL
BY TIMOTHY BORONCZYK

Jump Start MySQL
by Timothy Boronczyk

Copyright © 2015 SitePoint Pty. Ltd.

English Editor: Ralph MasonProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Peter Nijssen

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9924612-8-7 (print)

ISBN 978-0-9941826-3-0 (ebook)

Printed and bound in the United States of America

iv

About Timothy Boronczyk

Timothy Boronczyk is a native of Syracuse, NY, where he works as a senior developer at

ShoreGroup, Inc. He's been involved with Web technologies since 1998, has a degree in

Software Application Programming, and is a Zend Certified Engineer. In what little spare

time he has left, Timothy enjoys hanging out with friends, speaking Esperanto, and sleeping

with his feet off the end of the bed. He's easily distracted by shiny objects.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

v

http://www.sitepoint.com/

Table of Contents

Preface . xi

What is a Database? . xi

From Codd to MySQL, a Brief History . xiii

Alternatives and the Future of MySQL . xv

Who Should Read This Book . xvi

Conventions Used . xvi

Code Samples . xvi

Tips, Notes, and Warnings . xvii

Supplementary Materials . xvii

Want to Take Your Learning Further? . xviii

Chapter 1 Getting Started with MySQL 1

Installing MySQL on Linux . 2

Installing via a Package Manager . 2

Installing from Source . 5

Installing MySQL on Windows . 8

Communicating with the Server . 10

MySQL Accounts and Security . 11

Conclusion . 14

Chapter 2 Storing Data . 15

Creating Tables . 16

Data Types and Storage Requirements . 20

Storage Engines . 27

Adding Data . 31

Using Transactions . 33

Conclusion . 35

Chapter 3 Retrieving and Updating Data 37

Deploying Sakila . 38

Retrieving Data . 40

Ordering Results . 41

Managing the Number of Returned Rows . 44

Aggregate Functions and Grouping . 49

Keeping Data Fresh . 51

Updating Data . 51

Deleting Data . 53

Conclusion . 55

Chapter 4 Working with Multiple Tables 57

Joining Tables . 58

Types of Joins . 61

Abstracting with Views . 66

Normal Forms . 69

First Normal Form . 70

Second Normal Form . 71

Third Normal Form . 73

Altering Tables . 74

Conclusion . 76

Chapter 5 Connecting from Code 77

Connecting from Python with Connector/Python 78

Basic Querying . 79

Buffered and Unbuffered Results . 81

Prepared Statements . 82

viii

Connecting from PHP with PDO . 84

Basic Querying . 85

Handling Errors . 88

Prepared Statements . 89

Connecting from R with RMySQL . 90

Working with Tables . 91

Basic Querying . 93

Conclusion . 94

Chapter 6 Programming the Database 95

Learning the Basics . 96

Functions . 99

Stored Procedures . 102

Triggers . 105

Events . 109

User-defined Functions . 112

Conclusion . 119

Chapter 7 Backups and Replication 121

Logical Backups . 121

Using mysqldump . 122

Redirecting SELECT . 124

Physical Backups . 124

Replication . 126

Setting up Replication . 127

Fixing Broken Replication . 130

Plan Ahead . 131

Conclusion . 133

ix

Preface
From “big data” data sets in an enterprise data center to hand-scribbled shopping

lists, data is everywhere. Corporations collect as much of it as they can and analyze

it to formulate new business strategies. Scientists study data looking for answers

that can save lives, improve our environment, and explain our place in the universe.

Even the average person maintains a fair amount of data, from ledgers detailing

one’s spending habits to phone numbers in a cellphone’s address book. Storing and

organizing all of this this data has become so easy that we often take for granted

many of the database concepts and algorithms that make these things possible.

This book is an introduction to the basic concepts of working with a Relational

Database Management System (RDBMS)—specifically, the popular, open source

RDBMS MySQL. Like other installments in SitePoint’s Jump Start series, it aims to

give you a head start in your understanding of the chosen technology. You’ll learn

the basics quickly, in a friendly, (hopefully) pain-free way, and have a solid

foundation to continue on in your learning.

I’m very grateful to have been given the opportunity to write this book. What separ-

ates it from others in the lineup is that it discusses a technology widely used both

within and outside the world of web development. That’s not to say MySQL isn’t

popular with developers creating web-based applications—quite the contrary! But

databases are used in many other areas as well and I've tried to capture this in my

selection of topics.

What is a Database?
Although we tend to associate the word database with the digital world of computers,

the term simply refers to any organized collection of data. A database can therefore

be digital/electronic or physical. The filing cabinet full of financial records that sits

in the corner of your home office is a physical database. The cookbooks on your

bookshelf, with their dog-eared pages and extra recipes clipped from magazines

tucked inside, can also be viewed as a physical database.

In the digital world, databases are classified by how they organize and store their

data. Some common types of digital databases are:

■ Flat file databases ― these store data sequentially, often in plain text files. They

are easy to create and to add data to but they also have several drawbacks. Flat

file databases are slow to search, may contain redundant data, and can easily

become corrupted. An example of this type of database is the text file created

by a solitaire game to store users’ high scores.

■ Hierarchical databases ― these organize data in parent/child relationships.

They are highly organized and searching is efficient, but hierarchical databases

are difficult to navigate when you’re not familiar with their relationships.

Maintaining data relationships over time can be difficult as well. The Windows

Registry is an example of a hierarchical database.

■ Key-value/document-oriented databases ― these store free-form data indexed

by a key or hash value. They typically scale across wide network topologies very

well but share many of the problems with flat file databases. They often contain

redundant data, do not maintain relationships, and searching them can be slow.

Redis and CouchDB are popular “NoSQL” database systems that manage these

types of databases.

■ Relational databases ― these organize data in rows and tables, much like a

printed price list or bus schedule can be organized as a table. Relational databases

can support indexing large amounts of data for quick retrieval, but the relation-

ships between tables can become very complex.

Sitting above most modern digital databases is a database server, an application

designed specifically for managing databases, and which is responsible for marshal-

ing access to the underlying data. We never work directly with a database in such

systems. Instead, we send requests to add, update, remove, or fetch the desired data

to the server. The server performs the requested actions on our behalf and forwards

the results on to us. The book you’re reading right now focuses on MySQL, a database

server that manages relational databases.

Since the mid 1980s, Structured Query Language (SQL) has been the standard

language used to communicate with relational database management systems. SQL

consists of statements for adding, retrieving, and managing data, creating and

maintaining tables, and even managing databases. Statements can be divided into

categories or “sub-languages” based on their purpose: those pertaining to data

storage and retrieval make up the Data Manipulation Language (DML), those for

xii

table and database management make up the Data Definition Language (DDL), and

those that grant or revoke access to the database make up the Data Control Language

(DCL). It’s good to know about these if they come up in conversation at your next

database administrator cocktail party, but I don’t make such fine distinctions here.

I’ll refer to DML, DDL, and DCL statements all collectively as SQL.

From Codd to MySQL, a Brief History
Early databases organized their data into tree or graph structures and accessing the

data required a programmer to write code to directly traverse these structures. This

was a fragile approach and it was risky to add or update data, or to change the data’s

organization. Edgar Codd challenged this approach in 1970 in his paper A Relational

Model of Data for Large Shared Data Banks. He argued that a superior approach

would be to organize data into tables and to treat it independently from relationship,

ordering, and indexing information. This was an intriguing concept at the time and

engineers at IBM’s San Jose Research Laboratory began work on System R, a project

to prove the validity of Codd’s theories.

The System R project produced the first implementation of SQL and proved that

the relational concepts championed by Codd were sound. When Larry Ellison heard

about the research going into the System R prototype, he was so impressed that he

incorporated Codd’s ideas and the SQL language into his own database server, Oracle.

Incidentally, Ellison beat IBM to market in 1979 and Oracle became the first com-

mercially available relational database management system.

Meanwhile, computer science professors at the University of California, Berkeley,

had also taken an interest in Codd’s paper. The university obtained funding from

the National Science Foundation and the research divisions of the United States

Air Force and the United States Army and set a rotating team of students—led by

Michael Stonebraker—to work on University INGRES. INGRES explored many of

Codd’s relational ideas, but also implemented its own query language called QUEL.

As students graduated and went on to work at other software companies, commercial

INGRES-inspired systems and clones appeared, most notably Sybase (later licensed

to Microsoft and rebranded as Microsoft SQL Server). INGRES itself was commer-

cialized and quickly became a market leader.

INGRES’ position of dominance started to decline 1985 when public sentiment

shifted in favor of SQL over QUEL. SQL was accepted as a standard by both the

xiii

American National Standards Institute and the International Organization for

Standards by 1987, and the decade came to a close with Oracle and SQL on top.

In 1993, David Hughes was developing a network-monitoring application that stored

data in a Postgres (a successor of INGRES) managed database. For portability, he

also wanted to provide an SQL interface to the data so he wrote a QUEL-to-SQL

translator which he named miniSQL. As work continued on his monitoring app,

Hughes grew frustrated by Postgres’ hardware requirements and decided to evolve

miniSQL into his own light-weight database management system. miniSQL favored

a small resource footprint over complete adherence to the SQL standards, imple-

menting only the most important subset of the standards. Hughes distributed his

system for a fraction of the cost that current commercial offerings were licensed at

and miniSQL went on to become the first low-cost, SQL-based relational database

system. The stage was now set for MySQL.

At that same time, Monty Widenius was developing web-based applications for the

still-burgeoning Internet using UNIREG, his own home-grown database server.

Widenius found that accessing UNIREG to generate dynamic pages was too resource

intensive and began to look for an alternative. miniSQL piqued his interest, as it

had grown very popular due to its pricing strategy—especially among shared hosting

providers—but it didn’t implement some of the features Widenius’ applications

needed. He ended up rewriting UNIREG for better performance, but also took the

opportunity to reimplement its API to be compatible with miniSQL’s. This would

allow him to take take advantage of the many third-party utilities that had sprung

up for miniSQL. Widenius renamed his server MySQL and a friend convinced him

to release it publicly.

MySQL was made available under the GNU General Public License, and Widenius

and his friends, David Axmark and Allan Larsson, founded MySQL AB in 1995 to

shepherd the development of MySQL and provide alternative licensing and support

for commercial customers. Whereas miniSQL was affordable, for most users MySQL

was practially free.

Since the licensing terms for MySQL were amenable for inclusion in most Linux

distributions, and because its API was compatible with miniSQL but made more

features available, MySQL quickly ate most of miniSQL’s market share. Today,

MySQL is the second most popular SQL RDBMS (the number one spot is held by

SQLite thanks in large part to its use in smartphones and embedded software).

xiv

Alternatives and the Future of MySQL
Sun Microsystems bought MySQL AB in 2008 for $1 billion, and in 2010, Oracle

Corporation acquired Sun Microsystems and its assets (including MySQL) for $7.4

billion. The same company that beat IBM and INGRES in the 1980s now owned the

copyrights to MySQL. And Oracle already had its own flagship database, so any

fears the community had about the future of MySQL under Sun were only exacer-

bated by the Oracle acquisition.

But thanks to the GPL, anyone can make improvements and build upon MySQL,

so long as those changes are properly licensed. This means others can make enhance-

ments to MySQL, or even fork it, and release their own version. And forks there

are!

■ Dorsal Source ― the first MySQL fork made by Proven Scaling in response to

complaints over Sun’s slow release process and the company handled com-

munity-submitted bug fixes and enhancements. The project is now defunct.

■ Drizzle1 ― a fork of MySQL by Brian Aker with the goal of being a faster, pared-

down version of MySQL specifically for supporting web applications. Core

functionality is provided by a kernel and additional features are provided by

plugins. The project isn’t defunct, but development seems to have stalled.

■ Percona Server2 ― a fork maintained by the consulting firm Percona LLC. Its

goal is to be a drop-in MySQL replacement that offers improved performance

and various enterprise-grade features not found in Oracle’s Community edition.

■ MariaDB3 ― a fork by Monty Widenius himself in response to the Sun and Oracle

acquisitions. It aims to be a community-friendly replacement that maintains

feature-parity for most use cases.

1 http://www.drizzle.org/
2 http://www.percona.com/software/percona-server
3 https://mariadb.org/

xv

http://www.drizzle.org/
http://www.percona.com/software/percona-server
https://mariadb.org/

Learn More about the Forks

To learn more about the MySQL forks, watch the talk “Different MySQL Forks for

Different Folks4” given by Sheeri Cabral at Confoo in 2013.

The long-term outlook for the MySQL “brand” is strong despite tensions in the

community. Oracle hasn’t shuttered MySQL as many feared, and the quality of re-

leases has actually improved under their stewardship. The forks provide competition,

which hopefully is a good thing. Even in the most cynical sense, the past decade

has seen an uptick in the use of open source in the enterprise setting so MySQL

won’t be going anywhere anytime soon.

Who Should Read This Book
This book is aimed at those interested in working with data and want to learn how

to use MySQL. To get the most out of some parts of this book, you should have some

previous programming experience, although no specific language is required.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout the

book to signify different types of information. Look out for the following items:

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

4 https://www.youtube.com/watch?v=dcWoHusSAsE

xvi

https://www.youtube.com/watch?v=dcWoHusSAsE
https://www.youtube.com/watch?v=dcWoHusSAsE

Where existing code is required for context, rather than repeat all the code, a vertical

ellipsis will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/blogs/2015/05/28/user-style-she
➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.learnable.com/books/jsmysql1/

The book’s website, which contains links, updates, resources, and more.

xvii

http://www.learnable.com/books/jsmysql1/

http://community.sitepoint.com/

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Want to Take Your Learning Further?
Thanks for buying this book—we appreciate your support. Do you want to continue

learning? You can now gain unlimited access to courses and ALL SitePoint books

at Learnable for one low price. Enroll now and start learning today! Join Learnable

and you’ll stay ahead of the newest technology trends: http://www.learnable.com.

xviii

http://community.sitepoint.com/
http://www.learnable.com

Chapter1
Getting Started with MySQL
This chapter presents the first steps of getting started with MySQL. I’ll show you

how to install MySQL on both Linux and Windows systems, so be sure to follow

along on the platform of your choice. Then you’ll begin to get acquainted with

MySQL’s command-line client as we use it to connect to the database server and

create our first database.

Often the first step of installing an application is to determine which version is

appropriate, so it’s worth noting that MySQL is available in several “flavors.” From

Oracle there is the freely available Community Edition and the paid commercial

Standard, Enterprise, and Cluster Carrier Grade editions. The differences between

Community Edition and the paid versions boil down to licensing and support con-

tracts, some additional server plugins, and backup and monitoring utilities.

MySQL is open-source software released under the GNU General Public License so

it should come as no surprise there are also alternative forks available. Two popular

forks are MariaDB, a community-maintained “enhanced, drop-in replacement” for

MySQL, and Percona Server, a drop-in maintained by the consulting firm Percona

LLC. The differences between MySQL, MariaDB, and Percona are mostly impercept-

ible to the casual user.

You’re free to use whichever flavor of MySQL you like, but to maintain focus and

consistency I’ll use Oracle’s Community Edition version 5.6.23 (the current stable

release at the time I’m writing this book). I’ll also limit these instructions to Debi-

an/Ubuntu, RedHat/CentOS, and Windows Server 2012. This list of operating systems

covers the major platforms that MySQL is likely to run on in a production environ-

ment.

Local Development Environment

For readers looking to set up an installation for local development, I recommend

creating a virtual machine using Oracle’s VirtualBox1. You can install one of the

aforementioned operating systems on the virtual machine and then install MySQL

using this chapter’s instructions. Not only does this give you the ability to work

with a dev environment which can be configured as closely as possible to produc-

tion without being tied down to a specific server or network, but also your local

system remains clean from extra services and applications, whether your system

is running Linux, Windows, or OS X.

Installing MySQL on Linux
Linux isn’t a homogeneous platform and each distro has a preferred way to install

software. In this section, I’ll cover how to install MySQL on Debian/Ubuntu and

Red Hat/CentOS systems using a package manager and how to compile and install

MySQL from source. This will equip you with the necessary skills to handle most

any Linux-based installation scenarios you may encounter.

Installing via a Package Manager
Most modern Linux systems use a package manager to make software installation

a trivial task. And because it’s so popular, chances are MySQL or one of its forks is

available in your distro’s package repositories. Debian/Ubuntu offers Oracle’s MySQL

Community Edition in their repos, and users can get up and running by simply

typing sudo apt-get install mysql-server. Red Hat/CentOS repositories recently

replaced MySQL with MariaDB; users can install MariaDB with su -c 'yum install

mariadb-server'.

1 https://www.virtualbox.org/

Jump Start MySQL2

https://www.virtualbox.org/

Installing software from a distro-maintained repository is fine for most users, but

relying on these repos may not give you the most current release. Luckily, we don’t

have to give up the convenience that working with packages affords us. Oracle

provides up-to-date RPM and DEB packages which can be installed using rpm and

dpkg. They also maintain APT and Yum repositories and provide special packages

to automatically add these repos to your system’s list of known repositories.

The following steps register one of Oracle’s repositories and install MySQL Com-

munity Edition from it. If your server isn’t running a graphical interface and you

can’t use a text-based browser like Lynx, you’ll need to complete the first four steps

on another system and copy the file to your server.

1. Open a browser and navigate to the MySQL Repositories page at

http://dev.mysql.com/downloads/repo.

2. Click the Download link for the MySQL Yum Repository or MySQL APT Repository

depending on your platform’s package manager. You’ll be redirected to a page

that lists various configuration packages.

3. Click the Download button next to the package appropriate for your system. For

example, a Red Hat/CentOS 7 user should download the package Red Hat Enterprise

Linux 7 / Oracle Linux 7 (Architecture Independent), RPM Package. An Ubuntu user

using Trusty Tahr should download the package Ubuntu Linux 14.04 (Architecture

Independent), DEB.

4. Oracle will try to trick you into signing up for an account. This isn’t mandatory,

so scroll down to the bottom of the page and click the link No thanks, just start my

download to start the download.

5. Using a terminal window, navigate to the directory you downloaded (or copied)

the package to and execute the appropriate command to install it:

■ Red Hat/CentOS users should run rpm -i mysql-community-release-el7-

5.noarch.rpm.

■ Debian/Ubuntu users should run dpkg -i mysql-apt-config_0.2.1-

1ubuntu14.04_all.deb.

6. The repository is now registered and you can install MySQL Community Edition

with your package manager:

3Getting Started with MySQL

http://dev.mysql.com/downloads/repo

■ Red Hat/CentOS users should run su -c 'yum install mysql-community-

server'.

■ Debian/Ubuntu users should run sudo apt-get install mysql-server-5.6.

Ubuntu users will be prompted during the installation process for a password for

MySQL’s root user (Debian and Red Hat/CentOS users will provide this password

with a post-install command in the next step). MySQL maintains its own list of ac-

counts separate from the user accounts on our system—that is, while the username

may be the same, the MySQL root user isn’t the same as the Linux root user.

Red Hat/CentOS users should run these post-install commands to set the password

for MySQL’s root user, register MySQL as a system service, and start a running in-

stance (Debian/Ubuntu automatically registers and starts MySQL):

1. Set the root user’s password for MySQL: mysqladmin -u root password.

2. Register MySQL to start when the system boots: su -c 'chkconfig --level

2345 mysqld on'.

3. Start the MySQL server: su -c 'systemctl start mysql'.

MySQL Community Edition is now installed on your system. For future reference,

the following commands are used to start, stop, and check the running status of

MySQL:

■ Start MySQL

■ Ubuntu — sudo service mysql start

■ Debian — sudo systemctl start mysqld

■ Red Hat/CentOS — su -c 'systemctl start mysql'

■ Stop MySQL

■ Ubuntu — sudo service mysql stop

■ Debian — sudo systemctl stop mysqld

■ Red Hat/CentOS — su -c 'systemctl stop mysql'

Jump Start MySQL4

■ Query MySQL’s running state

■ Ubuntu — service mysql status

■ Debian — sudo systemctl status mysqld

■ Red Hat/CentOS — su -c 'systemctl status mysql'

A Simpler Future

Different commands are used to start, stop, and monitor MySQL because Ubuntu

uses Upstart and the other distros use systemd. The Ubuntu developers plan to

migrate to the systemd init system starting in 15.04. By the time 16.04 LTS rolls

out, the commands to perform these tasks will be the same as those on Debian.

Installing from Source
It’s becoming less and less common for system administrators to compile software

from source code, but doing so often gives complete control over an application’s

features, optimizations, and configuration settings. As you might expect, it’s also

the most involved installation method.

The following steps show how to download the MySQL Community Edition source

code, compile it, and install it. Again, if you don’t have access to a graphical interface

or text-based browser on the server then you’ll need to complete the first few steps

on another system and copy over the download.

1. Open a browser and navigate to the MySQL Community Downloads page at

http://dev.mysql.com/downloads.

2. Click the MySQL Community Server link to be taken to the Download MySQL

Community Server page. The various platform options are filtered by the drop-

down labeled Select Platform.

3. Set the drop-down to Source Code, scroll down to the Generic Linux (Architecture

Independent), Compressed TAR Archive entry, and click its Download button.

4. An Oracle account isn’t mandatory for continuing with the download. Scroll to

the bottom of the page and click the link No thanks, just start my download to begin

the download.

5Getting Started with MySQL

http://dev.mysql.com/downloads

5. Using a terminal window, create a new user account dedicated solely to running

the MySQL server:

sudo groupadd mysql
sudo useradd -r -g mysql mysql

6. Navigate to the directory you downloaded the source archive to. Extract the

archive and change into the code’s directory:

cd /tmp
gzip -cd mysql-5.6.23.tar.gz | tar xvf -
cd mysql-5.6.23

7. Generate the build scripts by running cmake. I don’t specify any options below,

but a full list of configuration options can be found in the online documentation2.

cmake .

8. Run make to compile MySQL, and then with elevated privileges run make install

to copy the resulting binaries, utilities, libraries, and documentation files to their

new home on your system:

make
sudo make install

9. Make sure the installed files are assigned the correct ownership and access per-

missions:

sudo chown -R mysql /usr/local/mysql
sudo chgrp -R mysql /usr/local/mysql

10. MySQL’s data directory and system tables need to be initialized by the

mysql_install_db script found in the installation’s scripts directory. The script

2 http://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html

Jump Start MySQL6

http://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html

uses paths relative to the installation directory, so invoke it from the installation

directory rather than the scripts directory or somewhere else:

cd /usr/local/mysql
sudo scripts/mysql_install_db --user=mysql

11. Start MySQL and set its root user’s password:

sudo mysqld_safe &
mysqladmin -u root password

The installation of MySQL itself is complete, but there’s still some additional system

configuration tasks you should consider. I recommend adding the installation’s bin

directory to the PATH environment variable so you can run MySQL’s utilities without

providing a full path each time. Assuming you use Bash, add the following lines to

/etc/profile:

PATH=/usr/local/mysql/bin:$PATH
export PATH

Working with PATH

Setting the value of PATH in /etc/profile makes the utilities conveniently ac-

cessible for all system users. If you only want your own account to have this

ability then add the lines to your ~/.bash_profile or ~/.bashrc file instead.

It’s also likely you’ll want MySQL to start automatically when the system boots.

These steps assume your system uses a SysV-style init process.

1. Place a copy of the mysql.server script found in the source code’s support-

files directory in your system’s init.d directory and make the script executable:

sudo cp /tmp/mysql-5.6.23/support-files/mysql.server \
 /etc/init.d/mysql
sudo chmod 755 /etc/init.d/mysql

2. Create symbolic links that point to the script from the desired runlevels:

7Getting Started with MySQL

ln -s /etc/init.d/mysql /etc/rc3.d/S99mysql
ln -s /etc/init.d/mysql /etc/rc0.d/K01mysql

You can now run the command sudo /etc/init.d/mysql start to start MySQL

and run sudo /etc/init.d/mysql stop to stop it.

Installing MySQL on Windows
Windows is a relatively homogeneous platform compared to Linux even though

several versions of the OS are actively maintained at any given time by Microsoft.

The instructions here target Server 2012, but may be more or less applicable to a

desktop OS like Windows 8.

1. Open a browser and navigate to the MySQL Community Downloads page at

http://dev.mysql.com/downloads.

2. Click the link for MySQL Community Server to be taken to the Download MySQL

Community Server page. The various platform options here are filtered by the

drop-down labeled Select Platform.

3. Set the drop-down to Microsoft Windows and click the Download button next to

the appropriate Windows MSI Installer for your architecture, most likely 64-bit.

4. Scroll to the bottom of the page and click the link No thanks, just start my download

to begin the download.

5. Navigate to the folder you downloaded the MSI file to and double-click the file

to launch the installation wizard.

6. Advance through the wizard’s welcome screen by pressing the Next button.

7. At the License Agreement screen, click the checkbox to accept the terms of the

agreement, and press Next.

8. At the Choose Setup Type screen, choose Typical, then press the Install button to

begin the installation. You may be prompted by User Account Control to proceed

depending on the security policies in effect.

9. Press the Finish button once the wizard is finished.

Jump Start MySQL8

http://dev.mysql.com/downloads

Now follow these post-install configuration steps to add the installation’s bin dir-

ectory to the system PATH variable and register MySQL as a service.

1. Open the System Properties window.

a. Press the key combination WIN-C to bring up the Edge UI.

b. Click the Search charm, search for Control Panel, and click on the Control

Panel icon when it appears in the results.

c. If Control Panel is in Category view, click the System and Security entry and

then System to launch the System panel item. If Control Panel is in Icon view,

click the System icon.

2. Click the Advanced systems settings link to open the System Properties window.

3. Select the Advanced tab if it’s not already selected and then press the Environment

Variables button to open the Environment Variables window.

4. Select the Path entry in the System variables section and press the Edit button.

5. Add the bin directory’s path (C:\Program Files\MySQL\MySQL Server 5.6\bin)

to the end of the existing value, separating the entry from the previous entries

with a semicolon.

6. Open Command Prompt with administrator privileges. Depending on the security

policies in effect, you may be prompted by User Account Control to continue.

a. Press the key combination WIN-C to bring up the Edge UI.

b. Click the Search charm and search for Command Prompt.

c. Right-click the Command Prompt icon when it appears in the results and select

Run as administrator.

7. Run mysqld.exe --install at the prompt. The command should report back

the service was successfully installed.

You’re now able to invoke the utilities when using Command Prompt without

providing their full path because MySQL’s bin directory appears in the list that

Windows searches for executables. And since MySQL is registered as a service, it

9Getting Started with MySQL

will start automatically when the system boots and can be controlled from Windows

Service Manager. Alternatively, the following commands may be executed in

Command Prompt with administrator privileges to start and stop the MySQL server

as well.

■ Start MySQL — net start mysql

■ Stop MySQL — net stop mysql

Communicating with the Server
A MySQL server sits idle, waiting to receive queries. When it receives one, the

server performs the requested action on our behalf and responds back with the

result. There are several ways we can communicate with MySQL, for example pro-

grammatically from an application we wrote or interactively using a dedicated client

program. We’ll use the command-line client that’s included in the MySQL installa-

tion to connect and communicate with the running server throughout most of this

book, and in Chapter 5 we’ll discuss sending SQL statements programmatically.

Open a terminal window or Command Prompt and run mysql -u root -p. The -u

option specifies the username of the MySQL account used for the connection and

-p will prompt for the account’s password. When prompted, enter the root account’s

password you set earlier.

Options Galore

-u and -p are just two of many options accepted by the client. Here’s a list of

some other options you may find yourself using frequently (you can call the client

with the option -? for a complete listing):

■ -A — don’t re-initialize the auto-complete lookup

■ -B — run in batch mode

■ -e statement — execute the given SQL statement

■ -h hostname — specify a hostname to a remote database server

■ -N — suppress column names from the result output

■ -p — prompt for the account’s password to connect

Jump Start MySQL10

■ -u username — specify the username of an account to connect

■ -? — list all of the available options

The client displays the mysql> prompt once you’ve successfully connected to

MySQL. It’s at this prompt we’ll submit our SQL statements. The client displays

the server’s response, timing information for how long it took to execute the request,

and whether any errors or warnings were encountered.

The MySQL server is capable of managing more than one database at a time. To ask

what databases it’s managing, enter SHOW DATABASES; at the prompt. The response

will show a list of all the databases MySQL is managing. If you’re connected to a

newly installed instance then you’ll only see the three databases that are used by

MySQL itself: information_schema, mysql, and performance_schema. You may

also see a test database which is created by mysql_install_db for use as a sandbox.

The CREATE DATABASE statement creates a new database. To create a database named

“jumpstart”, send the statement CREATE DATABASE jumpstart; at the prompt. Then

send SHOW DATABASES; again, and you’ll see the new database added to the list.

To let the client know we want to work with a specific database, we use the USE

command. Enter USE jumpstart; at the prompt, and all subsequent statements we

send will be executed against the jumpstart database. It’s possible to specify a target

database when connecting with the command-line client, for example mysql -u

root -p jumpstart.

The SHOW TABLES statement instructs MySQL to return a list of tables in the currently

active database. Of course, we haven’t added any tables to the jumpstart database

yet so sending SHOW TABLES; will be met with the response “Empty set.” There’s a

fair bit of planning involved to create a table properly, and we’ve covered a lot

already, so I’ll save that for the next chapter.

To quit the client, either type exit or use the key combination CTRL-D.

MySQL Accounts and Security
The final thing I feel the need to cover in this chapter is MySQL user accounts. Even

though MySQL’s root user isn’t the same as the system’s root account, it’s still not

intended to be used on a regular basis. The MySQL root user should only be used

11Getting Started with MySQL

for administrative tasks such as creating new user accounts, setting permissions,

and flushing access caches. Less privileged accounts should be used on a day-to-

day basis.

To create a new user account, connect to the MySQL server with the command-line

client using the root account and send the following CREATE USER statement:

CREATE USER 'jump'@'localhost' IDENTIFIED BY 'secret';

The statement creates a new account with the username “jump” and password

“secret” that will permit the user to authenticate from the same system MySQL is

running on. Different hostnames and IP addresses can be used in place of localhost

to allow connections from different systems and networks. However, bear in mind

that MySQL considers each username/hostname pair to be a separate account. That

is, jump@localhost and jump@192.168.1.100 are treated as separate accounts, each

with their own set of privileges.

Wildcards

The _ and % characters are wildcards that can be used in the hostname part to

provide partial matches, for example “192.168.1.10_” or “%.example.com”. _

matches a single character and % matches any number of characters. Thus, the

following can be used to create an account capable of authenticating from any

system—a convenient but potentially very insecure practice:

CREATE USER 'jump'@'%' IDENTIFIED BY 'secret';

Whether MySQL permits a user to perform an activity depends on what privileges

are associated with the account. New accounts are created without any privileges

so we must explicitly grant any that the account will need. The "jump" user will

require several privileges as you use it to follow along throughout the rest of this

book. For now, let’s grant a basic set of privileges to start with (you can grant addi-

tional privileges as they become necessary). Enter the following statement:

Jump Start MySQL12

GRANT CREATE, DROP, ALTER, INSERT, UPDATE, SELECT, DELETE,
INDEX ON jumpstart.* TO 'jump'@'localhost';

The syntax of MySQL’s GRANT statement is flexible enough that we can narrow the

scope of a privilege down to specific columns of a table, or to certain tables in a

database. Here, we’ve simply instructed MySQL to allow these permissions for all

tables (denoted by the *) in our jumpstart database. The privileges granted are:

■ CREATE — allows the user to create databases and tables

■ DROP — allows the user to delete entire tables and databases

■ ALTER — allows the user to change the definition of an existing table

■ INSERT — allows the user to add records to a table

■ UPDATE — allows the user to update existing records in a table

■ SELECT — allows the user to retrieve existing records from a table

■ DELETE — allows the user to delete existing records from a table

■ INDEX — allows the user to create or delete indexes

A full list of privileges and what they allow an account to do can be found in the

documentation3. In the future, if it’s determined an account needs extra privileges

then they can be granted by issuing another GRANT statement. Privileges that are no

longer needed can be revoked with a REVOKE statement, the syntax of which is

identical to that of GRANT:

REVOKE CREATE, DROP, ALTER, INDEX ON jumpstart.* TO
'jump'@'localhost';

Whenever a user-related or privilege-related change is made, we need to send a

FLUSH PRIVILEGES statement to instruct MySQL to reload the cache of account in-

formation it maintains so the updates can take effect. Otherwise, the changes will

go unnoticed until MySQL is restarted:

3 http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html

13Getting Started with MySQL

http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html

FLUSH PRIVILEGES;

Exit the command-line client after you send the FLUSH PRIVILEGES statement and

reconnect using the new "jump" account. If you’ve entered the statements correctly,

and provided the correct password when prompted, you’ll be greeted with the

mysql> prompt.

Conclusion
We’ve definitely covered a lot of ground in this chapter. You’ve learned how to install

MySQL on various platforms, how to connect to a MySQL server using the command-

line client, how to create a new database, and even a bit about basic MySQL user

management.

Although you may be anxious to dive into the next chapter, I suggest you skim

through the online MySQL manual first—specifically to see what it has to say on

the topics we’ve covered so far. Review the details of the CREATE USER and GRANT

statements. Learn how to change an account’s password and how to delete an account

that’s no longer needed. Think about what privileges you’d assign to an account

that needs to store and retrieve data as part of some back-end process for a website.

In Chapter 2, we’ll get into the specifics of storing data in a database. I’ll show you

how to create a table and insert new rows into it. We’ll also discuss what types of

data can be stored in a table, what a storage engines is, and how our choice of engine

affects the way MySQL manages our data.

Jump Start MySQL14

Chapter2
Storing Data
Data stored in a relational database is organized into tables. A database table organ-

izes data in a grid-like fashion, where each entry forms a row and each column

identifies a specific value in the entry. To illustrate this, here’s a table showing the

number of medals won by each of the top five medal-winning countries that parti-

cipated in the 2014 Winter Olympic Games. Each row lists the country’s name, how

many gold medals, silver medals, and bronze medals were won, and the total

number of medals won.

TotalBronzeSilverGoldCountry

3391113Russia

281279United States

2610511Norway

2551010Canada

24978Netherlands

A table like the one above is “physical” in that we can see it printed in a book or

drawn on a whiteboard. It’s limited only by the amount of physical space available.

On the other hand, a database table is an intangible structure stored somewhere on

a hard drive or in computer memory. We can only imagine it or make drawings to

represent it. A database table is interpreted by a computer process (such as MySQL),

and the limitations of the interpreting process impose restrictions on the table. The

number of columns, the number of rows, and even what the individual values in a

row can be, all depend upon what the computer system and database server can

handle. But despite these limitations, a database table is actually very flexible. We

can define relationships between tables, combine multiple tables together, sort rows

and view specific entries, remove rows, and easily perform various calculations on

the data.

In this chapter, we’ll look at the CREATE TABLE statement—which defines new

database tables—and discuss some important details surrounding table creation:

MySQL’s supported data types, naming restrictions, and storage engines. We’ll also

see how to add rows to a table with the INSERT statement, and finish by discussing

transactions.

Creating Tables
Tables are created using the CREATE TABLE statement. In its simplest form, the

statement provides the name of the table we we want to create and a list of column

names and their data types. Not surprisingly, a CREATE TABLE statement can be very

very complex depending on the requirements driving the design of the table. We

can specify one or more attributes as part of a column’s definition; such attributes

can limit the range of values the column can store or specify a default value when

one isn’t provided by the user. Defining any logical relationships that exist between

the table and another, and which storage engine MySQL should use to manage the

table, is also common. You can see how detailed the statement can be if you look

at the syntax and options for CREATE TABLE in the MySQL documentation1.

Let’s take a look at a pair of relatively simple CREATE TABLE statements. (I’ll highlight

some common points that add complexity, but I won’t get too crazy, I promise.)

With the jumpstart database created in Chapter 1 as your active database, issue

the statements below. MySQL should respond “Query OK” after each one.

1 http://dev.mysql.com/doc/refman/5.6/en/create-table.html

Jump Start MySQL16

http://dev.mysql.com/doc/refman/5.6/en/create-table.html

CREATE TABLE employee (
 employee_id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(30) NOT NULL,
 first_name VARCHAR(30) NOT NULL,
 email VARCHAR(100) NOT NULL,
 hire_date DATE NOT NULL,
 notes MEDIUMTEXT,

 PRIMARY KEY (employee_id),
 INDEX (last_name),
 UNIQUE (email)
)
ENGINE=InnoDB;

CREATE TABLE address (
 employee_id INTEGER UNSIGNED NOT NULL,
 address VARCHAR(50) NOT NULL,
 city VARCHAR(30) NOT NULL,
 state CHAR(2) NOT NULL,
 postcode CHAR(5) NOT NULL,

 FOREIGN KEY (employee_id)
 REFERENCES employee (employee_id)
)
ENGINE=InnoDB;

The first statement creates a table named employee, designed to store basic inform-

ation about a company’s employees—their name, email address, date of hire, and

perhaps any notes the Human Resources director might provide. The formatting is

just to keep things readable for ourselves; it makes no difference to MySQL whether

we write a statement entirely on one line or across several lines with indentation.

The spacing in a statement is also generally irrelevant.

Local Bias

The address table has a North American bias. An address in the United States

or Mexico fits perfectly, and a Canadian address can store the two-letter province

or territory abbreviation in the state column. But an address in the Netherlands,

for example, needs space for a 6-character postal code. Feel free to adapt the

definition to your own locale.

17Storing Data

Names chosen for a table and its columns can be anything we like so long as they

adhere to the following restrictions:

■ The name uses basic Latin letters (A–Z, both uppercase and lowercase), the

dollar sign ($), underscore (_), or Unicode characters U+0080–U+FFFF.

■ The null character 0x00, Unicode characters U+10000 and higher, and characters

that are prohibited in file names like slash (/), backslash (\), and period are not

allowed in a name.

■ The name must be quoted if it contains characters outside of the above. MySQL

uses backticks by default for this (`…`) although it can be configured to use single

quotes ('…') as well. I recommend sticking with the default.

■ The name must be quoted if it’s a MySQL reserved keyword. A list of reserved

words can be found in the online documentation2.

The employee_id column is designated as the table’s primary key. A primary key

is a column in which all of the values are distinct and can be used to uniquely

identify each and every row in the table. In more complex table definitions, we may

define a primary key from multiple columns together, but using a single INTEGER

type column is the most common practice. Only one primary key can be defined

per table (hence the name primary key).

The employee_id column also has the AUTO_INCREMENT attribute. Whenever we add

a row that doesn’t provide a value for this column, MySQL will automatically use

the next highest sequential integer as its value. Suppose we have a number of rows

in the employee table and the largest employee_id value among them is 42. If we

add a new row without an employee_id value, MySQL will use 43 for the missing

value. If we then add another row without the value, MySQL will use 44, and so

on. Only one column in the table can be designated an auto-increment column, and

the column must also be a primary key.

Behind the scenes, MySQL maintains various data structures to track data and rela-

tionships. The INDEX defined on last_name lets MySQL know that we might use

its value in our selection criteria later when we retrieve rows—for example, if we

wanted to search for employees named Smith or Jones. MySQL will create and

2 http://dev.mysql.com/doc/refman/5.6/en/reserved-words.html

Jump Start MySQL18

http://dev.mysql.com/doc/refman/5.6/en/reserved-words.html

manage a special index structure with the values in the column to make its search

more efficient. Don’t go overboard adding indexes though. It takes time for MySQL

to maintain them so row retrieval may be faster, but adding/updating rows will be

slower.

The term constraint describes a special condition imposed on a column or table

that must be adhered to at all times. Most of the column definitions have NOT NULL,

a constraint that prohibits storing NULL values in the column. NULL is a special value

that represents the absence of a value. Essentially, NOT NULL means the column

must hold a value. MySQL treats NULL differently from an empty value, such as an

empty text string.

The UNIQUE constraint defined on the email column ensures all of the email ad-

dresses stored in the table are different. UNIQUE and PRIMARY KEY are similar, but

there are important differences between them. Because the values in a primary key

column must be able to unambiguously identify each row, its uniqueness is inherent.

We don’t explicitly specify UNIQUE with PRIMARY KEY. And while only one primary

key can be defined per table, we can provide any number of UNIQUE constraints. A

UNIQUE column may also contain NULL values, something PRIMARY KEY doesn’t allow.

The FOREIGN KEY constraint in the address table’s CREATE TABLE statement refer-

ences the employee table, thus defining a relationship between the two tables. This

relationship means that a row in the address table is logically related to whatever

row in the employee table that has the same value in its employee_id column. Take,

for instance, a row in the address table with an employee_id value of 42. That row

may be associated with the row in the employee table whose employee_id value is

also 42. In other words, an address with employee_id 42 is linked to employee 42’s

employee record. A FOREIGN KEY column doesn’t need to have the same name as

its partner column in the other table, but the two must share the same data type and

NULL constraint.

We can issue DESCRIBE or SHOW CREATE TABLE statements to verify a table was cre-

ated or view the definition of an existing table. The DESCRIBE statement returns the

list of the table’s column names and their data types, and SHOW CREATE TABLE returns

a statement that can be used later to re-create the table.

19Storing Data

DESCRIBE employee;

SHOW CREATE TABLE employee;

Pick a Convention

A convention I’ve adopted is to type MySQL keywords in uppercase and my own

identifiers in lowercase. MySQL doesn’t treat keywords and column names in a

case-sensitive manner, but table names might be case-sensitive depending on the

file system storing your tables’ files. It’s best to pick a convention—whatever it

may be—and stick with it.

So far, we’ve discussed the column attributes and table constraints that appear in

the example, but we haven't discussed the data types. The next part of this chapter

may be a little dry, but it covers some important information. Each type requires a

different amount of storage on disk and in memory so we always want to specify

the minimum viable type for a column. The amount of wasted space from assigning

a data type that’s larger than necessary might be negligible at first because there’s

only a handful of rows, but it can add up quickly as more and more data is added

to the table.

Data Types and Storage Requirements
MySQL supports many different data types, most of which we’ll discuss in the fol-

lowing paragraphs. The term data type refers to the classification of data based on

its possible values, the set of operations we can perform on it, and its storage require-

ments. Values of the INTEGER type can only consist of integers like 0, 42, and 1337.

This is different from the DECIMAL type which consists of decimal numbers like

1.61, 3.14, and 100.0. We can perform operations like addition, subtraction, multi-

plication, and division on INTEGER and DECIMAL values, but these cannot be per-

formed on text-based types like CHAR and TEXT.

Numeric Types
MySQL offers the INTEGER (also abbreviated as INT), TINYINT, SMALLINT, MEDIUMINT,

and BIGINT data types for storing integer data. These types differ in the number of

bytes they occupy to represent a value. This in turn limits the range of integers each

type can hold. For example, TINYINT uses 1 byte, so its range is -128 to 127—the

Jump Start MySQL20

range of numbers than can be expressed in binary with 8 bits. INTEGER uses 4 bytes,

so its range is larger: -2,147,483,648 to 2,147,483,647.

We can also specify the UNSIGNED attribute with integer-based types. The type con-

sumes the same amount of space but negative values are disallowed in exchange

for raising the upper bound. For example, the range of TINYINT UNSIGNED becomes

0 to 255. Both TINYINT and TINYINT UNSIGNED represent a range of 256 integers,

but their starting points are -128 and 0 respectively.

The following table shows the storage requirements and range for each of MySQL’s

integer types, both signed and unsigned:

Max.

Unsigned

Min.

Unsigned

Max.

Signed

Min.

Signed

Storage

Used

(Bytes)

Data Type

2550127-128 1271TINYINT

65,535032,767-32,7682SMALLINT

6,777,21508,388,607-8,388,6083MEDIUMINT

4,294,967,29502,147,483,647-2,147,483,6484INTEGER

18,446,744,

073,709,551,

615

09,223,372,

036,854,775,

807

-9,223,372,

036,854,775,

808

8BIGINT

DECIMAL, FLOAT, and DOUBLE are types that support real numbers. We also must

provide the precision (the number of total digits) and scale (the number of digits

that follow the decimal point) when we use one of these types. DECIMAL(5,2) has

a range of -999.99 to 999.99—that is, five digits in total with two of them following

the decimal point. We can specify UNSIGNED for these types as well, but doing so

only disallows negative values. This is because the upper limit is defined by the

precision and scale we provide.

The DECIMAL type is a fixed-point data type which means it preserves the exact

precision of its value in calculations. This is useful for representing values like

monetary amounts. The maximum precision we can specify for DECIMAL is 65, and

the maximum scale is 30. On the other hand, FLOAT and DOUBLE are both floating-

point types. Calculations with these types are approximate because some rounding

21Storing Data

may occur due to how the values are represented internally in the computer. The

difference between FLOAT and DOUBLE is the amount of space they occupy, which

in turn affects their accuracy. FLOAT is 4-byte single-precision which is generally

accurate up to 7 decimal places. DOUBLE is 8-byte double-precision which is generally

accurate up to 15 decimal places.

The BIT data type stores a bit-sequence. This is useful for storing bit-field values

like flags and bit masks. BIT has a capacity of 1 to 64 bits. BIT(1) can only hold 0

or 1; BIT(2) can hold the binary values 00, 01, 10, and 11; BIT(3) can hold the

binary values 000, 001, 010, 011, 100, 101, 110, and 111, and so on. MySQL uses

the notation b'value' to specify the value as string of binary digits, like b'101010'.

String Types
MySQL devotes several data types to storing textual data: CHAR, VARCHAR, BINARY,

VARBINARY, TEXT, TINYTEXT, MEDIUMTEXT, LONGTEXT, BLOB, TINYBLOB, MEDIUMBLOB,

and LONGBLOB. The sized types like TINYTEXT and MEDIUMTEXT behave exactly like

TEXT although each is constrained by a different maximum amount of text it can

hold. The same is true for BLOB and its sized counterparts, TINYBLOB, MEDIUMBLOB,

and LONGBLOB.

We must provide a length when we specify a CHAR or VARCHAR type. CHAR(255), for

instance, stores text strings 255 characters long, and VARCHAR(255) stores strings

up to 255 characters in length. Notice that I said “255 characters” and “up to 255

characters.” CHAR is intended to store fixed-length strings, values that will always

have the same number of characters across all rows in the table. The amount of

space remains constant. VARCHAR stores variable-length strings, values that can have

different lengths across the rows. The amount of space each value occupies is de-

termined by the length of the string.

I’ll highlight the difference between CHAR and VARCHAR using the string “Hello

World”. The string is 11 characters long, and it will occupy 11 bytes (plus an extra

byte or two that MySQL needs to add for its own bookkeeping) if we store it in a

VARCHAR(255) column. But with CHAR(255), the storage space is constant across all

rows in the table. MySQL pads the string with 244 spaces. The padding is removed

when we retrieve the string and the original 11-character “Hello World” string is

returned, but all CHAR(255) strings occupy 255 bytes when they’re stored.

Jump Start MySQL22

