
[1]

Learning Docker

Optimize the power of Docker to run your applications
quickly and easily

Pethuru Raj

Jeeva S. Chelladhurai

Vinod Singh

BIRMINGHAM - MUMBAI

Learning Docker

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1240615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-793-7

www.packtpub.com

www.packtpub.com

Credits

Authors
Pethuru Raj

Jeeva S. Chelladhurai

Vinod Singh

Reviewers
Shashikant Bangera

Sergei Vizel

Baohua Yang

Commissioning Editor
Sarah Crofton

Acquisition Editor
Larissa Pinto

Content Development Editor
Kirti Patil

Technical Editors
Dhiraj Chandanshive

Narsimha Pai

Copy Editors
Vikrant Phadke

Rashmi Sawant

Trishla Singh

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=c4cde857-9bd5-eb79-829f-53db8af758af
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=c4cde857-9bd5-eb79-829f-53db8af758af

About the Authors

Pethuru Raj, PhD, works as a cloud architect at the IBM Global Cloud Center of
Excellence (CoE) in Bangalore, India. He completed his CSIR-sponsored PhD degree
at Anna University, Chennai, and continued his UGC-sponsored postdoctoral
research at the Department of Computer Science and Automation of IISc, Bangalore.
Thereafter, he was granted a couple of international research fellowships (JSPS and
JST) to work as a research scientist for 3 years at two leading Japanese universities.

Pethuru has contributed to a number of high-quality technology books that are
edited by internationally acclaimed professionals. In association with another IBMer,
he has recently submitted the complete manuscript for a book called Smart Cities: the
Enabling Technologies and Tools, to be published by the CRC Press in the USA in May
2015. He has collaborated with a few established authors to publish a book called
High-Performance Big Data Analytics, which will be published by Springer-Verlag,
UK, in 2015. He maintains an IT portal at http://www.peterindia.net, and his
LinkedIn profile can be found at https://www.linkedin.com/in/peterindia.

Jeeva S. Chelladhurai has been working as a technical project manager at the
IBM Global Cloud Center of Excellence (CoE) in India for the last 8 years. He has
more than 18 years of experience in the IT industry. In various capacities, he has
technically managed and mentored diverse teams across the globe in envisaging and
building pioneering telecommunication products. He specializes in cloud solution
delivery, with a focus on data center optimization, software-defined environments
(SDEs), and distributed application development, deployment, and delivery
using the newest Docker technology. Jeeva is also a strong proponent of Agile
methodologies, DevOps, and IT automation. He holds a master's degree in computer
science from Manonmaniam Sundaranar University and a graduation certificate in
project management from Boston University. He has been instrumental in crafting
reusable assets for IBM solution architects and consultants in Docker-inspired
containerization technology.

http://www.peterindia.net
https://www.linkedin.com/in/peterindia

Vinod Singh is a lead architect for IBM's cloud computing offerings. He has
more than 18 years of experience in the cloud computing, networking, and data
communication domains. Currently, he works for IBM's cloud application services
and partner marketplace offerings. Vinod has worked on architecting, deploying,
and running IBM's PaaS offering (BlueMix) on the SoftLayer infrastructure cloud.
He also provides consultancy and advisory services to clients across the globe on
the adoption of cloud technologies. He is currently focusing on various applications
and services on the IBM Marketplace/BlueMix/SoftLayer platform. He is a graduate
engineer from the National Institute of Technology, Jaipur, and completed his
master's degree at BITS, Pilani.

About the Reviewers

Shashikant Bangera is a DevOps architect with 16 years of IT experience.
He has vast exposure to DevOps tools across the platform, with core expertise in
open source. He has helped his customers adopt DevOps practice and implemented
Enterprise DevOps for them and has also contributed to many open sources
platforms, such as DevOps Publication. He has designed an automated on-demand
environment with a set of open source tools and also an environment booking tool,
which is available on GitHuB. His Twitter handle is @shzshi.

Sergei Vizel is a senior software engineer at Modera (modera.org). He is a
full-stack web application developer with more than 10 years of impressive
experience. He is a firm believer of the value and power of open source software
and contributes to projects on GitHub. Sergei has published numerous pieces of
open source code of his own. You can learn more about him and contact him on
GitHub via https://github.com/cravler.

modera.org
https://github.com/cravler

Baohua Yang is a research scientist on cloud-computing-related technologies at
IBM. He is a contributor to many open source communities such as OpenStack,
OpenvSwitch, Docker, and OpenDaylight. He is also a TPC member and a reviewer
of a number of international conferences and journals.

Baohua's interests mainly include system and application architecture, performance
optimization, and security issues in cloud networking and distributed systems,
especially in emerging technologies such as cloud computing, SDN, and NFV.
He has written many technical books and articles to introduce and analyze
these techniques. He loves open source technologies and enjoys designing and
implementing efficient systems with elegant architecture.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with Docker 1

An introduction to Docker 2
Docker on Linux 3
Differentiating between containerization and virtualization 4

The convergence of containerization and virtualization 5
Containerization technologies 6

Installing the Docker engine 7
Installing from the Ubuntu package repository 7
Installing the latest Docker using docker.io script 8

Understanding the Docker setup 9
Client server communication 11

Downloading the first Docker image 12
Running the first Docker container 12
Running a Docker container on Amazon Web Services 13
Troubleshooting 14
Summary 15

Chapter 2: Handling Docker Containers 17
Clarifying the Docker terms 18

Docker images and containers 18
A Docker layer 20
A Docker container 20
Docker Registry 20
Docker Repository 21

Table of Contents

[ii]

Working with Docker images 21
Docker Hub Registry 23
Searching Docker images 24

Working with an interactive container 26
Tracking changes inside containers 28
Controlling Docker containers 30
Housekeeping containers 34
Building images from containers 35
Launching a container as a daemon 37

Summary 38
Chapter 3: Building Images 39

Docker's integrated image building system 39
A quick overview of the Dockerfile's syntax 42
The Dockerfile build instructions 43

The FROM instruction 44
The MAINTAINER instruction 44
The COPY instruction 45
The ADD instruction 46
The ENV instruction 47
The USER instruction 47
The WORKDIR instruction 48
The VOLUME instruction 48
The EXPOSE instruction 49
The RUN instruction 49
The CMD instruction 51
The ENTRYPOINT instruction 53
The ONBUILD instruction 55
The .dockerignore file 55

A brief overview of the Docker image management 56
Best practices for writing Dockerfiles 58
Summary 58

Chapter 4: Publishing Images 59
Understanding the Docker Hub 60
Pushing images to the Docker Hub 63
Automating the building process for images 68
Private repositories on the Docker Hub 71
Organizations and teams on the Docker Hub 72
The REST APIs for the Docker Hub 73
Summary 75

Table of Contents

[iii]

Chapter 5: Running Your Private Docker Infrastructure 77
The Docker registry and index 78
Docker registry use cases 78
Run your own index and registry 80

Step 1 – Deployment of the index components and
the registry from GitHub 80
Step 2 – Configuration of nginx with the Docker registry 82
Step 3 – Set up SSL on the web server for secure communication 84

Push the image to the newly created Docker registry 87
Summary 88

Chapter 6: Running Services in a Container 89
A brief overview of container networking 90
Envisaging the Container as a Service 93

Building an HTTP server image 93
Running the HTTP server Image as a Service 95
Connecting to the HTTP service 96

Exposing container services 97
Publishing container ports – the -p option 98
Network Address Translation for containers 99
Retrieving the container port 100
Binding a container to a specific IP address 102
Auto-generating the Docker host port 103
Port binding using EXPOSE and the -P option 105

Summary 108
Chapter 7: Sharing Data with Containers 109

The data volume 110
Sharing host data 113

The practicality of host data sharing 117
Sharing data between containers 119

Data-only containers 119
Mounting data volume from other containers 120
The practicality of data sharing between containers 122

Avoiding common pitfalls 125
Directory leaks 125
The undesirable effect of data volume 126

Summary 128

Table of Contents

[iv]

Chapter 8: Orchestrating Containers 129
Linking containers 130
Orchestration of containers 138

Orchestrate containers using docker-compose 140
Installing docker-compose 141
The docker-compose.yml file 142
The docker-compose command 144
Common usage 145

Summary 150
Chapter 9: Testing with Docker 151

A brief overview of the test-driven development 152
Testing your code inside Docker 152

Running the test inside a container 157
Using a Docker container as a runtime environment 159

Integrating Docker testing into Jenkins 162
Preparing the Jenkins environment 162
Automating the Docker testing process 167

Summary 173
Chapter 10: Debugging Containers 175

Process level isolation for Docker containers 176
Control groups 180

Debugging a containerized application 181
The Docker exec command 182
The Docker ps command 183
The Docker top command 184
The Docker stats command 185
The Docker events command 186
The Docker logs command 186

Installing and using nsenter 187
Summary 188

Chapter 11: Securing Docker Containers 191
Are Docker containers secure enough? 192

The security facets – virtual machines versus Docker containers 192
The security features of containers 194

Resource isolation 195
Resource accounting and control 196

Table of Contents

[v]

The root privilege – impacts and best practices 197
The trusted user control 197
Non-root containers 197
Loading the Docker images and the security implications 199
The emerging security approaches 199

Security-Enhanced Linux for container security 199
SELinux-inspired benefits 201

The best practices for container security 203
Digital signature verification 206

Secure deployment guidelines for Docker 207
The future 208

Summary 209
Index 211

[vii]

Preface
We have been fiddling with virtualization techniques and tools for quite a long time
now in order to establish the much-demanded software portability. The inhibiting
dependency factor between software and hardware needs to be decimated by
leveraging virtualization, a kind of beneficial abstraction, through an additional layer
of indirection. The idea is to run any software on any hardware. This is achieved
by creating multiple virtual machines (VMs) out of a single physical server, with
each VM having its own operating system (OS). Through this isolation, which is
enacted through automated tools and controlled resource sharing, heterogeneous
applications are accommodated in a physical machine.

With virtualization, IT infrastructures become open, programmable, remotely
monitorable, manageable, and maintainable. Business workloads can be hosted in
appropriately-sized virtual machines and delivered to the outside world, ensuring
broader and more frequent utilization. On the other hand, for high-performance
applications, virtual machines across multiple physical machines can be readily
identified and rapidly combined to guarantee any kind of high-performance
requirement.

The virtualization paradigm has its own drawbacks. Because of the verbosity and
bloatedness (every VM carries its own operating system), VM provisioning typically
takes a while, the performance goes down due to excessive usage of computational
resources, and so on. Furthermore, the growing need for portability is not fully met
by virtualization. Hypervisor software from different vendors comes in the way of
ensuring application portability. Differences in the OS and application distributions,
versions, editions, and patches hinder smooth portability. Computer virtualization
has flourished, whereas the other, closely associated concepts of network and storage
virtualization are just taking off. Building distributed applications through VM
interactions invites and involves some practical difficulties.

Preface

[viii]

Let's move on to containerization. All of these barriers contribute to the
unprecedented success of the idea of containerization. A container generally contains
an application, and all of the application's libraries, binaries, and other dependencies
are stuffed together to be presented as a comprehensive, yet compact, entity for
the outside world. Containers are exceptionally lightweight, highly portable, easily
and quickly provisionable, and so on. Docker containers achieve native system
performance. The greatly articulated DevOps goal gets fully fulfilled through
application containers. As best practice, it is recommended that every container hosts
one application or service.

The popular Docker containerization platform has come up with an enabling
engine to simplify and accelerate the life cycle management of containers. There are
industry-strength and openly automated tools made freely available to facilitate the
needs of container networking and orchestration. Therefore , producing and sustaining
business-critical distributed applications is becoming easy. Business workloads are
methodically containerized to be easily taken to cloud environments, and they are
exposed for container crafters and composers to bring forth cloud-based software
solutions and services. Precisely speaking, containers are turning out to be the most
featured, favored, and fine-tuned runtime environment for IT and business services.

This book is meticulously designed and developed in order to empower developers,
cloud architects, business managers, and strategists with all the right and relevant
information on the Docker platform and its capacity to power up mission-critical,
composite, and distributed applications across industry verticals.

What this book covers
Chapter 1, Getting Started with Docker, talks about the Docker platform and
how it simplifies and speeds up the process of realizing containerized workloads to
be readily deployed and run on a variety of platforms. This chapter also has step-
by-step details on installing the Docker engine, downloading a Docker image from
the centralized Docker Hub, creating a Docker container out of that image, and
troubleshooting the Docker container.

Chapter 2, Handling Docker Containers, is primarily meant to expound the commands
required to manage Docker images and containers. This chapter provides the basic
Docker terminologies needed to understand the output of Docker commands.
Other details covered here include starting an interactive session inside a container,
managing your images, running containers, and tracking changes inside containers.

Chapter 3, Building Images, introduces Docker's integrated image building system.
The other important topics covered in this chapter include a quick overview of a
Dockerfile's syntax and a bit of theory on how Docker stores images.

Preface

[ix]

Chapter 4, Publishing Images, focuses on publishing images on the centralized Docker
Hub and how to get the most out of the Docker Hub. The other important contents
in the chapter include greater details about the Docker Hub, how to push images to
the Docker Hub, the automatic building of images, creating organizations on Docker
Hub, and finally private repositories.

Chapter 5, Running Your Private Docker Infrastructure, explains how corporates can
set up their own private repositories. Due to certain reasons, corporates may not
want to host specific Docker images in publicly-available image repositories, such
as the Docker Hub. Here, the need for their own private repository to keep up those
images arises. This chapter has all of the information required to set up and sustain
private repositories.

Chapter 6, Running Services in a Container, illustrates how a web application can be
run inside a Docker container as a service, and how to expose the service for the
outside world to find and access it. How the appropriate Dockerfile gets developed
to simplify this task is also described in detail.

Chapter 7, Sharing Data with Containers, shows you how to use Docker's volumes
feature to share data between the Docker host and its containers. The other topics
covered here are how to share data between containers, the common use cases, and
the typical pitfalls to avoid.

Chapter 8, Orchestrating Containers, focuses on orchestrating multiple
containers towards composite, containerized workloads. It is a well-known
truth that orchestration plays a major role in producing composite applications.
This chapter includes some information about orchestration and the toolset made
available for enabling the process of orchestration. Finally, you will find a well-
orchestrated example of how containers can be orchestrated to bring forth highly
reusable and business-aware containers.

Chapter 9, Testing with Docker, focuses on testing your code inside Docker images.
In this chapter, you find out how to run the tests inside an ad hoc Docker image.
Finally, you come across details of how to integrate Docker testing into a continuous
integration server, such as Jenkins.

Chapter 10, Debugging Containers, teaches you how to debug applications running
inside containers. Also, the details regarding how Docker ensures that processes
running inside containers are isolated from the outside world are covered.
Furthermore, descriptions of the usage of the nsenter and nsinit tools for effective
debugging are included.

Preface

[x]

Chapter 11, Securing Docker Containers, is crafted to explain the brewing security
and privacy challenges and concerns, and how they are addressed through the
liberal usage of competent standards, technologies, and tools. This chapter inscribes
the mechanism on dropping user privileges inside an image. There is also a brief
introduction on how the security capabilities introduced in SELinux come in handy
when securing Docker containers.

What you need for this book
The Docker platform requires a 64-bit hardware system to run on. Docker
applications have been developed on Ubuntu 14.04 for this book, but this does
not mean that the Docker platform cannot run on other Linux distributions,
such as Redhat, CentOS, CoreOS, and so on. However, the Linux kernel version
must be 3.10 or above.

Who this book is for
If you are an application developer who wants to learn about Docker in order to
utilize its features for application deployment, then this book is for you. No prior
knowledge of Docker is required.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"If the docker service is running, then this command will print the status as
start/running, along with its process ID."

A block of code is set as follows:

FROM busybox:latest
CMD echo Hello World!!

Preface

[xi]

Any command-line input or output is written as follows:

$ sudo docker tag 224affbf9a65 localhost:5000/vinoddandy/
dockerfileimageforhub

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Select the
Docker option, which is in the drop-down menu, and then click on Launch Now."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Getting Started with Docker
These days, Docker technology is gaining more market and more mind shares
among information technology (IT) professionals across the globe. In this chapter,
we would like to shed more light on Docker, and show why it is being touted as
the next best thing for the impending cloud IT era. In order to make this book
relevant to software engineers, we have listed the steps needed for crafting highly
usable application-aware containers, registering them in a public registry repository,
and then deploying them in multiple IT environments (on-premises as well as
off-premises). In this book, we have clearly explained the prerequisites and the most
important details of Docker, with the help of all the education and experiences that
we could gain through a series of careful implementations of several useful Docker
containers in different systems. For doing this, we used our own laptops as well as a
few leading public Cloud Service Providers (CSP).

We would like to introduce you to the practical side of Docker for the game-
changing Docker-inspired containerization movement.

In this chapter, we will cover the following topics:

• An introduction to Docker
• Docker on Linux
• Differentiating between containerization and virtualization
• Installing the Docker engine
• Understanding the Docker setup
• Downloading the first image
• Running the first container
• Running a Docker container on Amazon Web Services (AWS)
• Troubleshooting the Docker containers

Getting Started with Docker

[2]

An introduction to Docker
Due to its overwhelming usage across industry verticals, the IT domain has been
stuffed with many new and pathbreaking technologies used not only for bringing
in more decisive automation but also for overcoming existing complexities.
Virtualization has set the goal of bringing forth IT infrastructure optimization and
portability. However, virtualization technology has serious drawbacks, such as
performance degradation due to the heavyweight nature of virtual machines (VM),
the lack of application portability, slowness in provisioning of IT resources, and so
on. Therefore, the IT industry has been steadily embarking on a Docker-inspired
containerization journey. The Docker initiative has been specifically designed for
making the containerization paradigm easier to grasp and use. Docker enables the
containerization process to be accomplished in a risk-free and accelerated fashion.

Precisely speaking, Docker is an open source containerization engine, which
automates the packaging, shipping, and deployment of any software applications
that are presented as lightweight, portable, and self-sufficient containers, that will
run virtually anywhere.

A Docker container is a software bucket comprising everything necessary to run
the software independently. There can be multiple Docker containers in a single
machine and containers are completely isolated from one another as well as from
the host machine.

In other words, a Docker container includes a software component along with
all of its dependencies (binaries, libraries, configuration files, scripts, jars, and so
on). Therefore, the Docker containers could be fluently run on x64 Linux kernel
supporting namespaces, control groups, and file systems, such as Another Union
File System (AUFS). However, as indicated in this chapter, there are pragmatic
workarounds for running Docker on other mainstream operating systems, such
as Windows, Mac, and so on. The Docker container has its own process space and
network interface. It can also run things as root, and have its own /sbin/init,
which can be different from the host machines'.

In a nutshell, the Docker solution lets us quickly assemble composite, enterprise-
scale, and business-critical applications. For doing this, we can use different and
distributed software components: Containers eliminate the friction that comes with
shipping code to distant locations. Docker also lets us test the code and then deploy
it in production as fast as possible. The Docker solution primarily consists of the
following components:

• The Docker engine
• The Docker Hub

Chapter 1

[3]

The Docker engine is for enabling the realization of purpose-specific as well as
generic Docker containers. The Docker Hub is a fast-growing repository of the
Docker images that can be combined in different ways for producing publicly
findable, network-accessible, and widely usable containers.

Docker on Linux
Suppose that we want to directly run the containers on a Linux machine. The Docker
engine produces, monitors, and manages multiple containers as illustrated in the
following diagram:

The preceding diagram vividly illustrates how future IT systems would have
hundreds of application-aware containers, which would innately be capable of
facilitating their seamless integration and orchestration for deriving modular
applications (business, social, mobile, analytical, and embedded solutions). These
contained applications could fluently run on converged, federated, virtualized,
shared, dedicated, and automated infrastructures.

Getting Started with Docker

[4]

Differentiating between containerization
and virtualization
It is pertinent, and paramount to extract and expound the game-changing
advantages of the Docker-inspired containerization movement over the widely
used and fully matured virtualization paradigm. In the containerization paradigm,
strategically sound optimizations have been accomplished through a few crucial
and well-defined rationalizations and the insightful sharing of the compute
resources. Some of the innate and hitherto underutilized capabilities of the Linux
kernel have been rediscovered. These capabilities have been rewarded for bringing
in much-wanted automation and acceleration, which will enable the fledgling
containerization idea to reach greater heights in the days ahead, especially those of
the cloud era. The noteworthy business and technical advantages of these include the
bare metal-scale performance, real-time scalability, higher availability, and so on.
All the unwanted bulges and flab are being sagaciously eliminated to speed up the
roll-out of hundreds of application containers in seconds and to reduce the time
taken for marketing and valuing in a cost-effective fashion. The following diagram
on the left-hand side depicts the virtualization aspect, whereas the diagram on the
right-hand side vividly illustrates the simplifications that are being achieved in
the containers:

DB DB

Bins/Libs Bins/Libs

Bins/Libs Bins/Libs Bins/Libs

Hypervisor (Type 2)

Host OS

Host OS

Hardware
Hardware

Web
Server

Web
ServerApp App App

Guest
OS

Guest
OS

Guest
OS

Docker Apps

Chapter 1

[5]

The following table gives a direct comparison between virtual machines
and containers:

Virtual Machines (VMs) Containers

Represents hardware-level virtualization Represents operating system virtualization

Heavyweight Lightweight

Slow provisioning Real-time provisioning and scalability

Limited performance Native performance

Fully isolated and hence more secure Process-level isolation and hence less
secure

The convergence of containerization and
virtualization
A hybrid model, having features from both the virtual machines and that of
containers, is being developed. It is the emergence of system containers, as illustrated
in the preceding right-hand-side diagram. Traditional hypervisors, which implicitly
represent hardware virtualization, directly secure the environment with the help
of the server hardware. That is, VMs are completely isolated from the other VMs
as well as from the underlying system. But for containers, this isolation happens
at the process level and hence, they are liable for any kind of security incursion.
Furthermore, some vital features that are available in the VMs are not available in
the containers. For instance, there is no support for SSH, TTY, and the other security
functionalities in the containers. On the other hand, VMs are resource-hungry and
hence, their performance gets substantially degraded. Indeed, in containerization
parlance, the overhead of a classic hypervisor and a guest operating system will
be eliminated to achieve bare metal performance. Therefore, a few VMs can be
provisioned and made available to work on a single machine. Thus, on one hand,
we have the fully isolated VMs with average performance and on the other side,
we have the containers that lack some of the key features, but are blessed with high
performance. Having understood the ensuing needs, product vendors are working
on system containers. The objective of this new initiative is to provide full system
containers with the performance that you would expect from bare metal servers,
but with the experience of virtual machines. The system containers in the preceding
right-hand-side diagram represent the convergence of two important concepts
(virtualization and containerization) for smarter IT. We will hear and read more
about this blending in the future.

Getting Started with Docker

[6]

Containerization technologies
Having recognized the role and the relevance of the containerization paradigm
for IT infrastructure augmentation and acceleration, a few technologies that leverage
the unique and decisive impacts of the containerization idea have come into
existence and they have been enumerated as follows:

• LXC (Linux Containers): This is the father of all kinds of containers and it
represents an operating-system-level virtualization environment for running
multiple isolated Linux systems (containers) on a single Linux machine.
The article LXC on the Wikipedia website states that:

"The Linux kernel provides the cgroups functionality that allows
limitation and prioritization of resources (CPU, memory, block I/O,
network, etc.) without the need for starting any virtual machines,
and namespace isolation functionality that allows complete isolation
of an applications' view of the operating environment, including
process trees, networking, user IDs and mounted file systems."

You can get more information from http://en.wikipedia.org/wiki/LXC.

• OpenVZ: This is an OS-level virtualization technology based on the Linux
kernel and the operating system. OpenVZ allows a physical server to run
multiple isolated operating system instances, called containers, virtual
private servers (VPSs), or virtual environments (VEs).

• The FreeBSD jail: This is a mechanism that implements an OS-level
virtualization, which lets the administrators partition a FreeBSD-based
computer system into several independent mini-systems called jails.

• The AIX Workload partitions (WPARs): These are the software
implementations of the OS-level virtualization technology, which provide
application environment isolation and resource control.

• Solaris Containers (including Solaris Zones): This is an implementation
of the OS-level virtualization technology for the x86 and SPARC systems.
A Solaris Container is a combination of the system resource controls and
boundary separation provided by zones. Zones act as completely isolated
virtual servers within a single operating system instance.

In this book, considering the surging popularity and the mass adoption happening
to Docker, we have chosen to dig deeper, dwell in detail on the Docker platform, the
one-stop solution for the simplified and streamlined containerization movement.

http://en.wikipedia.org/wiki/LXC

Chapter 1

[7]

Installing the Docker engine
The Docker engine is built on top of the Linux kernel and it extensively leverages its
features. Therefore, at this point in time, the Docker engine can only be directly run
on Linux OS distributions. Nonetheless, the Docker engine could be run on the Mac
and Microsoft Windows operating systems by using the lightweight Linux VMs with
the help of adapters, such as Boot2Docker. Due to the surging growing of Docker, it
is now being packaged by all major Linux distributions so that they can retain their
loyal users as well as attract new users. You can install the Docker engine by using
the corresponding packaging tool of the Linux distribution; for example, by using
the apt-get command for Debian and Ubuntu, and the yum command for RedHat,
Fedora, and CentOS.

We have chosen the Ubuntu Trusty 14.04 (LTS) (64-bit) Linux
distribution for all practical purposes.

Installing from the Ubuntu package repository
This section explains the steps involved in installing the Docker engine from the
Ubuntu package repository in detail. At the time of writing this book, the Ubuntu
repository had packaged Docker 1.0.1, whereas the latest version of Docker was 1.5.
We strongly recommend installing Docker version 1.5 or greater by using any one of
the methods described in the next section.

However, if for any reason you have to install the Ubuntu packaged version, then
please follow the steps described here:

1. The best practice for installing the Ubuntu packaged version is to begin
the installation process by resynchronizing with the Ubuntu package
repository. This step will essentially update the package repository to the
latest published packages, thus we will ensure that we always get the latest
published version by using the command shown here:
$ sudo apt-get update

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Getting Started with Docker

[8]

2. Kick-start the installation by using the following command. This setup will
install the Docker engine along with a few more support files, and it will also
start the docker service instantaneously:
$ sudo apt-get install -y docker.io

The Docker package is called docker.io because an older version of
the Ubuntu package was called docker. As a result, all the files with
the name docker are installed as docker.io.
Examples are /usr/bin/docker.io and /etc/bash_
completion.d/docker.io.

3. For your convenience, you can create a soft link for docker.io called docker.
This will enable you to execute Docker commands as docker instead of
docker.io. You can do this by using the following command:

$ sudo ln -sf /usr/bin/docker.io /usr/local/bin/docker

The official Ubuntu package does not come with the latest
stable version of docker.

Installing the latest Docker using docker.io
script
The official distributions might not package the latest version of Docker. In such
a case, you can install the latest version of Docker either manually or by using the
automated scripts provided by the Docker community.

For installing the latest version of Docker manually, follow these steps:

1. Add the Docker release tool's repository path to your APT sources,
as shown here:
$ sudo sh -c "echo deb https://get.docker.io/ubuntu \

 docker main > /etc/apt/sources.list.d/docker.list"

2. Import the Docker release tool's public key by running the following
command:
$ sudo apt-key adv --keyserver \

 hkp://keyserver.ubuntu.com:80 --recv-keys \

 36A1D7869245C8950F966E92D8576A8BA88D21E9

Chapter 1

[9]

3. Resynchronize with the package repository by using the command
shown here:
$ sudo apt-get update

4. Install docker and then start the docker service.

$ sudo apt-get install -y lxc-docker

The lxc-docker command will install the Docker image
using the name docker.

The Docker community has taken a step forward by hiding these details in an
automated install script. This script enables the installation of Docker on most
of the popular Linux distributions, either through the curl command or through
the wget command, as shown here:

• For curl command:
$ sudo curl -sSL https://get.docker.io/ | sh

• For wget command:

$ sudo wget -qO- https://get.docker.io/ | sh

The preceding automated script approach enforces AUFS as
the underlying Docker file system. This script probes the AUFS
driver, and then installs it automatically if it is not found in
the system. In addition, it also conducts some basic tests upon
installation for verifying the sanity.

Understanding the Docker setup
It's important to understand Docker's components and their versions, storage,
execution drivers, file locations, and so on. Incidentally, the quest for understanding
the Docker setup would also reveal whether the installation was successful or
not. You can accomplish this by using two docker subcommands, namely docker
version, and docker info.

Getting Started with Docker

[10]

Let's start our docker journey with the docker version subcommand,
as shown here:

$ sudo docker version

Client version: 1.5.0

Client API version: 1.17

Go version (client): go1.4.1

Git commit (client): a8a31ef

OS/Arch (client): linux/amd64

Server version: 1.5.0

Server API version: 1.17

Go version (server): go1.4.1

Git commit (server): a8a31ef

Although the docker version subcommand lists many lines of text, as a Docker
user, you should know what these following output lines mean:

• The client version
• The client API version
• The server version
• The server API version

The client and server versions that have been considered here are 1.5.0 and the client
API and the server API, versions 1.17.

If we dissect the internals of the docker version subcommand, then it will first
list the client-related information that is stored locally. Subsequently, it will make a
REST API call to the server over HTTP to obtain the server-related details.

Let's learn more about the Docker environment using the docker info subcommand:

$ sudo docker -D info

Containers: 0

Images: 0

Storage Driver: aufs

Chapter 1

[11]

 Root Dir: /var/lib/docker/aufs

 Backing Filesystem: extfs

 Dirs: 0

Execution Driver: native-0.2

Kernel Version: 3.13.0-45-generic

Operating System: Ubuntu 14.04.1 LTS

CPUs: 4

Total Memory: 3.908 GiB

Name: dockerhost

ID: ZNXR:QQSY:IGKJ:ZLYU:G4P7:AXVC:2KAJ:A3Q5:YCRQ:IJD3:7RON:IJ6Y

Debug mode (server): false

Debug mode (client): true

Fds: 10

Goroutines: 14

EventsListeners: 0

Init Path: /usr/bin/docker

Docker Root Dir: /var/lib/docker

WARNING: No swap limit support

As you can see in the output of a freshly installed Docker engine, the number of
Containers and Images is invariably nil. The Storage Driver has been set up
as aufs, and the directory has been given the /var/lib/docker/aufs location.
The Execution Driver has been set to the native mode. This command also lists
details, such as the Kernel Version, the Operating System, the number of CPUs, the
Total Memory, and Name, the new Docker hostname.

Client server communication
On Linux installations, Docker is usually programmed for carrying out server-client
communication by using the Unix socket (/var/run/docker.sock). Docker also has
an IANA registered port, which is 2375. However, for security reasons, this port is
not enabled by default.

Getting Started with Docker

[12]

Downloading the first Docker image
Having installed the Docker engine successfully, the next logical step is to download
the images from the Docker registry. The Docker registry is an application repository,
which hosts a range of applications that vary between basic Linux images and
advanced applications. The docker pull subcommand is used for downloading any
number of images from the registry. In this section, we will download a tiny version of
Linux called the busybox image by using the following command:

$ sudo docker pull busybox

511136ea3c5a: Pull complete

df7546f9f060: Pull complete

ea13149945cb: Pull complete

4986bf8c1536: Pull complete

busybox:latest: The image you are pulling has been verified. Important:
image verification is a tech preview feature and should not be relied on
to provide security.

Status: Downloaded newer image for busybox:latest

Once the images have been downloaded, they can be verified by using the docker
images subcommand, as shown here:

$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

busybox latest 4986bf8c1536 12 weeks ago 2.433 MB

Running the first Docker container
Now, you can start your first Docker container. It is standard practice to start with
the basic Hello World! application. In the following example, we will echo Hello
World! by using a busybox image, which we have already downloaded, as shown
here:

$ sudo docker run busybox echo "Hello World!"

"Hello World!"

Cool, isn't it? You have set up your first Docker container in no time. In the
preceding example, the docker run subcommand has been used for creating a
container and for printing Hello World! by using the echo command.

Chapter 1

[13]

Running a Docker container on Amazon
Web Services
Amazon Web Services (AWS) announced the availability of Docker containers at the
beginning of 2014, as a part of its Elastic Beanstalk offering. At the end of 2014, they
revolutionized Docker deployment and provided the users with options shown here
for running Docker containers:

• The Amazon EC2 container service (only available in preview mode at the
time of writing this book)

• Docker deployment by using the Amazon Elastic Beans services

The Amazon EC2 container service lets you start and stop the container-enabled
applications with the help of simple API calls. AWS has introduced the concept of
a cluster for viewing the state of your containers. You can view the tasks from a
centralized service, and it gives you access to many familiar Amazon EC2 features,
such as the security groups, the EBS volumes and the IAM roles.

Please note that this service is still not available in the AWS console. You need to
install AWS CLI on your machine to deploy, run, and access this service.

The AWS Elastic Beanstalk service supports the following:

• A single container that supports Elastic Beanstalk by using a console.
Currently, it supports the PHP and Python applications.

• A single container that supports Elastic Beanstalk by using a command line
tool called eb. It supports the same PHP and Python applications.

• Use of multiple container environments by using Elastic beanstalk.

Currently, AWS supports the latest Docker version, which is 1.5.

This section provides a step-by-step process to deploy a sample application on a
Docker container running on AWS Elastic Beanstalk.The following are the steps of
deployment:

1. Log in to the AWS Elastic Beanstalk console by using this
https://console.aws.amazon.com/elasticbeanstalk/ URL.

2. Select a region where you want to deploy your application, as shown here:

Vinod Kumar Singh � Singapore � Help �

https://console.aws.amazon.com/elasticbeanstalk/

Getting Started with Docker

[14]

3. Select the Docker option, which is in the drop down menu, and then click
on Launch Now. The next screen will be shown after a few minutes, as
shown here:

Now, click on the URL that is next to Default-Environment (Default-
Environment-pjgerbmmjm.elasticbeanstalk.com), as shown here:

Troubleshooting
Most of the time, you will not encounter any issues when installing Docker.
However, unplanned failures might occur. Therefore, it is necessary to discuss
prominent troubleshooting techniques and tips. Let's begin by discussing the
troubleshooting knowhow in this section. The first tip is that the running status of
Docker should be checked by using the following command:

$ sudo service docker status

Chapter 1

[15]

However, if Docker has been installed by using the Ubuntu package, then you will
have to use docker.io as the service name. If the docker service is running, then
this command will print the status as start/running along with its process ID.

If you are still experiencing issues with the Docker setup, then you could open
the Docker log by using the /var/log/upstart/docker.log file for further
investigation.

Summary
Containerization is going to be a dominant and decisive paradigm for the enterprise
as well as cloud IT environments in the future because of its hitherto unforeseen
automation and acceleration capabilities. There are several mechanisms in place
for taking the containerization movement to greater heights. However, Docker has
zoomed ahead of everyone in this hot race, and it has successfully decimated the
previously-elucidated barriers.

In this chapter, we have exclusively concentrated on the practical side of Docker for
giving you a head start in learning about the most promising technology. We have
listed the appropriate steps and tips for effortlessly installing the Docker engine in
different environments, for leveraging and for building, installing, and running a
few sample Docker containers, both in local as well as remote environments. We will
dive deep into the world of Docker and dig deeper to extract and share tactically and
strategically sound information with you in the ensuing chapters. Please read on to
gain the required knowledge about advanced topics, such as container integration,
orchestration, management, governance, security, and so on, through the Docker
engine. We will also discuss a bevy of third-party tools.

[17]

Handling Docker Containers
In the previous chapter, we explained stimulating and sustainable concepts,
which showed the Docker's way of crafting futuristic and flexible application-aware
containers. We discussed all the relevant details of producing the Docker containers
in multiple environments (on-premise as well as off-premise). Using these techniques,
you can easily replicate these features in your own environments to get a rewarding
experience. Therefore, the next step for us is to understand the container's life cycle
aspects in a decisive manner. You will learn the optimal utilization of containers of our
own as well as those of other third-party containers in an effective and risk-free way.
Containers are to be found, assessed, accessed, and leveraged toward bigger and better
applications. There are several tools that have emerged to streamline the handling
of containers.

In this chapter, we will dig deeper and describe the critical aspects of container
handling at length. A number of practical tips and execution commands for the
leveraging of containers will also be discussed in this chapter.

In this chapter, we will cover the following topics:

• Clarifying the Docker terms
• Working with the Docker images and containers
• The meaning of the Docker registry and its repository
• The Docker Hub Registry
• Searching the Docker images
• Working with an interactive container
• Tracking the changes inside the containers
• Controlling and housekeeping the Docker containers
• Building images from containers
• Launching a container as a daemon

Handling Docker Containers

[18]

Clarifying the Docker terms
To make this chapter substantially simpler to understand and to minimize any kind
of ambiguity, the frequently used terms will be explained in the following section.

Docker images and containers
A Docker image is a collection of all of the files that make up a software application.
Each change that is made to the original image is stored in a separate layer. To
be precise, any Docker image has to originate from a base image according to the
various requirements. Additional modules can be attached to the base image for
deriving the various images that can exhibit the preferred behavior. Each time you
commit to a Docker image you are creating a new layer on the Docker image, but
the original image and each pre-existing layer remains unchanged. In other words,
images are typically of the read-only type. If they are empowered through the
systematic attachment of newer modules, then a fresh image will be created with a
new name. The Docker images are turning out to be a viable base for developing and
deploying the Docker containers.

A base image has been illustrated here. Debian is the base image, and a variety of
desired capabilities in the form of functional modules can be incorporated on the
base image for arriving at multiple images:

Chapter 2

[19]

Every image has a unique ID, as explained in the following section. The base images
can be enhanced such that they can create the parent images, which in turn can be
used for creating the child images. The base image does not have any parent, that is,
the parent images sit on top of the base image. When we work with an image and
if we don't specify that image through an appropriate identity (say, a new name),
then the latest image (recently generated) will always be identified and used by the
Docker engine.

As per the Docker home page, a Docker image has a read-only template. For
example, an image could contain an Ubuntu operating system, with Apache and
your web application installed on it. Docker provides a simple way for building
new images or of updating the existing images. You can also download the Docker
images that the other people have already created. The Docker images are the
building components of the Docker containers. In general, the base Docker image
represents an operating system, and in the case of Linux, the base image can be one
of its distributions, such as Debian. Adding additional modules to the base image
ultimately dawns a container. The easiest way of thinking about a container is as
the read-write layer that sits on one or more read-only images. When the container
is run, the Docker engine not only merges all of the required images together, but
it also merges the changes from the read-write layer into the container itself. This
makes it a self-contained, extensible, and executable system. The changes can be
merged by using the Docker docker commit subcommand. The new container will
accommodate all the changes that are made to the base image. The new image will
form a new layer on top of the base image.

The following diagram will tell you everything clearly. The base image is the Debian
distribution, then there is an addition of two images (the emacs and the Apache
server), and this will result in the container:

Handling Docker Containers

[20]

Each commit invariably makes a new image. This makes the number of images go
up steadily, and so managing them becomes a complicated affair. However, the
storage space is not a big challenge because the new image that is generated is only
comprised of the newly added modules. In a way, this is similar to the popular object
storage in the cloud environments. Every time you update an object, there will be a
new object that gets created with the latest modification and then it is stored with a
new ID. In the case of object storage, the storage size balloons significantly.

A Docker layer
A Docker layer could represent either read-only images or read-write images.
However, the top layer of a container stack is always the read-write (writable) layer,
which hosts a Docker container.

A Docker container
From the preceding diagram, it is clear that the read-write layer is the container
layer. There could be several read-only images beneath the container layer. Typically,
a container originates from a read-only image through the act of a commit. When you
start a container, you actually refer to an image through its unique ID. Docker pulls
the required image and its parent image. It continues to pull all the parent images
until it reaches the base image.

Docker Registry
A Docker Registry is a place where the Docker images can be stored in order to be
publicly found, accessed, and used by the worldwide developers for quickly crafting
fresh and composite applications without any risks. Because all the stored images
would have gone through multiple validations, verifications, and refinements, the
quality of those images will be really high. Using the Docker push command, you
can dispatch your Docker image to the Registry so that it is registered and deposited.
As a clarification, the registry is for registering the Docker images, whereas the
repository is for storing those registered Docker images in a publicly discoverable
and centralized place. A Docker image is stored within a Repository in the Docker
Registry. Each Repository is unique for each user or account.

Chapter 2

[21]

Docker Repository
A Docker Repository is a namespace that is used for storing a Docker image. For
instance, if your app is named helloworld and your username or namespace for the
Registry is thedockerbook then, in the Docker Repository, where this image would
be stored in the Docker Registry would be named thedockerbook/helloworld.

The base images are stored in the Docker Repository. The base images are
the fountainheads for realizing the bigger and better images with the help of a
careful addition of new modules. The child images are the ones that have their own
parent images. The base image does not have any parent image. The images sitting
on a base image are named as parent images because the parent images bear the
child images.

Working with Docker images
In the previous chapter, we demonstrated the typical Hello World! example by
using a busybox image. Now there is a need for a close observation of the output
of the docker pull subcommand, which is a standard command for downloading
the Docker images. You would have noticed the presence of the busybox:latest
text in the output text, and we will explain this mystery in a detailed manner by
bringing in a small twist to the docker pull subcommand by adding the -a option,
as shown here:

$ sudo docker pull -a busybox

Surprisingly, you will observe that the Docker engine downloads a few more images
with the -a option. You can easily check the images that are available on the Docker
host by running the docker images subcommand, which comes in handy, and it
reveals more details with respect to :latest and the additional images that are
downloaded by running this command. Let us run this command:

$ sudo docker images

Handling Docker Containers

[22]

You will get the list of images, as follows:

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

busybox ubuntu-14.04 f6169d24347d 3 months ago 5.609
MB

busybox ubuntu-12.04 492dad4279ba 3 months ago 5.455
MB

busybox buildroot-2014.02 4986bf8c1536 3 months ago 2.433
MB

busybox latest 4986bf8c1536 3 months ago 2.433
MB

busybox buildroot-2013.08.1 2aed48a4e41d 3 months ago 2.489
MB

Evidently, we have five items in the preceding list, and to gain a better
understanding of those, we need to comprehend the information that is printed out
by the Docker images subcommand. Here is a list of the possible categories:

• REPOSITORY: This is the name of the repository or image. In the preceding
example, the repository name is busybox.

• TAG: This is the tag associated with the image, for example
buildroot-2014.02, ubuntu-14.04, latest. One or more tags can be
associated with one image.

The ubuntu-* tagged images are built by using the busybox-
static Ubuntu package and the buildroot-* tagged images
are built from scratch by using the buildroot tool-chain.

• IMAGE ID: Every image is associated with a unique ID. The image ID is
represented by using a 64 Hex digit long random number. By default, the
Docker images subcommand will only show 12 Hex digits. You can display
all the 64 Hex digits by using the --no-trunc flag (for example: sudo
docker images --no-trunc).

• CREATED: Indicates the time when the image was created.
• VIRTUAL SIZE: Highlights the virtual size of the image.

