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Preface

In the 22 years since the first edition appeared, nuclear power systems have regained
favor worldwide as a scalable, dependable, and environmentally desirable energy
supply technology. While water-cooled reactor types promise to dominate the
deployment of nuclear power systems well into this century, several alternate cooled
reactors among the six Generation IV proposed designs are now under intensive
development for deployment in the next decades.

Consequently, while this new edition continues to emphasize pressurized and
boiling light water reactor technologies, the principal characteristics and analysis
approaches for the Generation IV designs of most international interest, the liquid-
metal- and gas-cooled options, are introduced as well.

To accomplish this, the content of most chapters has been amplified by introduc-
ing both new analysis approaches and correlation methods which have gained the
favor of experts over the past several decades. Nevertheless, these enhancements
have been introduced into the sequence of chapters of the first edition, a sequence
which has proven to be pedagogically effective. This organization of text chapters is
shown in Table 0.1.

The content of these chapters emphasizing new material in particular is summa-
rized below:

e Chapter 1 surveys the characteristics of all current principal reactor types:
operating and advanced light water-cooled designs as well as the six
Generation IV designs.

e Chapter 2 emphasizes the relations that integrate the performance of the
core nuclear steam supply system and balance of plant. In doing so, the
performance measures of the multiple disciplines—neutronics, thermal
hydraulics, fuel behavior, structural mechanics, and reactor operations—
are introduced and interrelated. In particular, power density and specific
power measures are thoroughly developed for standard fuel pin arrays as
well as inverted (fuel and coolant are spatially interchanged) assembly
configurations.

e Chapter 3 presents a thorough description of the magnitude and spatial
distribution of the generation and deposition of energy within the reactor
vessel assembly. Emphasis is given to the evolution of the American Nuclear
Society Decay Heat Generation Standard up to 2005. Multiple other sources
of stored energy are present in reactor systems such as those associated with
elevated temperature and pressure conditions of the primary and secondary
reactor coolants and the chemical reactions of materials of construction
under extreme temperatures characteristic of accident conditions. The
stored energy and the energy liberated by the chemical reactions character-
istic of the light water reactor materials are now presented in detail.

XXi
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TABLE 0.1
Text Contents by Chapter and Subject

1—Reactor-Type Overview
2—Core and Plant Performance Measures
3—Fission Energy Generation and Deposition

Conservation

Equations Thermodynamics Fluid Flow Heat Transfer
Single-Phase 4—Differential and 8—Fuel Pins and Assemblies
Coolant Integral 9—Single  10—Single
Formulations Channels Channels
Two-Phase S5—Differential and 11—Single ~ 12—Pool Boiling
Coolant Integral Channels 13—Flow Boiling in
Formulations; Single Channel
2@ Parameter
Definitions
Single-Phase 6—Power Cycles 14—Single-Channel Examples
and Two-Phase 7—Components and
Coolants Containment

e Chapters 4 and 5, which present the mass, momentum, energy, and entropy
conservation equations for single- and two-phase coolants in differential
and control volume formulations, are unchanged from the first edition.

e Chapter 6 presents the analysis of power generation cycles, both Rankine
and Brayton types. The analysis of the supercritical carbon dioxide (SCO,)
cycle, which has recently been introduced as a performance and cost-
efficient option for Generation IV systems, is presented. Of note, this pre-
sentation is designed to clearly illustrate how this recompression cycle must
be designed and analyzed, a subtlety which otherwise easily confounds the
inexperienced analyst.

e Chapter 7 applies thermodynamic principles for analysis of the fuel and
coolant mixture in a severe accident, for analysis of containment design and
accident performance, and for analysis of PWR pressurizer performance.
The chapter remains as in the first edition with the fundamentals of pressur-
izer performance becoming the focus now by deletion of the more complex
multiregion pressurizer model introduced in the first edition.

* Chapter 8 significantly amplifies the discussion of fuel pin materials and
thermal analysis of various fuel geometries in the first edition. Extensive
fuel and cladding material properties for thermal and fast neutron spectrum
reactors are now included. Additionally, the case of annular fuel geometry,
which is cooled inside and outside, is fully analyzed. Finally, the correla-
tions for cladding-coolant surface oxidation are now included.

e Chapters 9 and 10 present the fluid flow and thermal analysis techniques
for single-phase coolant in laminar and turbulent flow. Noteworthy new
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material presents the analysis of geometries configured for enhanced heat
transfer albeit with pressure loss penalty.

e Chapters 11 and 12 along with Chapter 13 present fluid flow and thermal
analysis techniques for two-phase flow. Chapter 11 now has expanded
coverage of critical flow and new coverage of flow instabilities and con-
densation. Boiling heat transfer is now separated into pool boiling and
flow boiling in Chapters 12 and 13, respectively. The entire two-phase
flow treatment in these three chapters has been expanded to include recent
correlations of current usage, particularly for void fraction, pressure loss,
and the critical condition.

e Chapter 14 has been thoroughly restructured to present a systematic analy-
sis of heated flow channel performance for single- and two-phase flow uti-
lizing the methods and correlations of Chapters 9 through 13. Specific focus
is directed to conditions of equilibrium and nonequilibrium for both equal/
unequal phasic temperatures (thermal equilibrium) and equal phasic flow
velocities (mechanical equilibrium).

Finally, throughout the text we refer as appropriate to further elaboration of relevant
technical information which appears in the companion Volume II of this text.”

* Todreas, N. E. and Kazimi, M. S., Nuclear Systems II: Elements of Thermal Hydraulic Design.
New York: Taylor & Francis, 2001.






Preface to the First Edition

This book can serve as a textbook for two to three courses at the advanced under-
graduate and graduate student level. It is also suitable as a basis for the continuing
education of engineers in the nuclear power industry who wish to expand their
knowledge of the principles of thermal analysis of nuclear systems. The book, in
fact, was an outgrowth of the course notes used for teaching several classes at MIT
over a period of nearly 15 years.

The book is meant to cover more than thermal hydraulic design and analysis of
the core of a nuclear reactor. Thus, in several parts and examples, other components
of the nuclear power plant, such as the pressurizer, the containment, and the entire
primary coolant system, are addressed. In this respect the book reflects the impor-
tance of such considerations in thermal engineering of a modern nuclear power plant.
The traditional concentration on the fuel element in earlier textbooks was appropri-
ate when the fuel performance had a higher share of the cost of electricity than in
modern plants. The cost and performance of nuclear power plants has proved to be
more influenced by the steam supply system and the containment building than pre-
viously anticipated.

The desirability of providing in one book basic concepts as well as complex formu-
lations for advanced applications has resulted in a more comprehensive textbook than
those previously authored in the field. The basic ideas of both fluid flow and heat
transfer as applicable to nuclear reactors are discussed in Volume 1. No assumption is
made about the degree to which the reader is already familiar with the subject.
Therefore, various reactor types, energy source distribution, and fundamental laws of
conservation of mass, momentum, and energy are presented in early chapters.
Engineering methods for analysis of flow hydraulics and heat transfer in single-phase
as well as two-phase coolants are presented in later chapters. In Volume II, applica-
tions of these fundamental ideas to multi-channel flow conditions in the reactor are
described as well as specific design considerations such as natural convection and
core thermal reliability. They are presented in a way that renders it possible to use the
analytical development in simple exercises and as the bases for numerical computa-
tions similar to those commonly practiced in the industry.

A consistent nomenclature is used throughout the text and a table of the nomen-
clature is included in the Appendix. Each chapter includes problems identified as to
their topic and the section from which they are drawn. While the SI unit system is
principally used, British Engineering Units are given in brackets for those results
commonly still reported in the United States in this system.
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’I Principal Characteristics
of Power Reactors

1.1 INTRODUCTION

This chapter presents the basic characteristics of power reactors. These character-
istics, along with more detailed thermal hydraulic parameters presented in further
chapters, enable the student to apply the specialized techniques presented in the
remainder of the text to a range of reactor types. Water-, gas-, and sodium-cooled
reactor types, identified in Table 1.1, encompass the principal nuclear power reac-
tor designs that have been employed in the world. The thermal hydraulic character-
istics of these reactors are presented in Sections 1.2 through 1.5 as part of the
description of the power cycle, primary coolant system, core, and fuel assembly
design of these reactor types. Three classes of advanced reactors are also presented
in subsequent sections, the Generation I1I, IT1I+, and I'V designs. The Generation I11
designs are advanced water reactors that have already been brought into operation
(ABWR) or are under construction (EPR). The Generation III+ designs are
advanced water- and gas-cooled reactors, several of which are being licensed and
brought into service in the 2010 decade [12]. These Generation 11T and III+ designs
are discussed in Section 1.6. The Generation I'V reactors described in Section 1.7
were selected by an international roadmapping process and are being pursued
through an internationally coordinated research and development activity for
deployment in the period 2020-2040 [13]. Figure 1.1 presents the evolution and
categorization by the generation of the world’s reactor types. Tables in Chapters 1
and 2 and Appendix K provide detailed information on reactor characteristics
useful for application to specific illustrative examples and homework problems in
the text.

1.2 POWER CYCLES

In these plants, a primary coolant is circulated through the reactor core to extract
energy for ultimate conversion to electricity in a turbine connected to an electric gen-
erator. Depending on the reactor design, the turbine may be driven directly by the
primary coolant or by a secondary coolant that has received energy from the primary
coolant. The number of coolant systems in a plant equals the sum of the one primary
and one or more secondary systems. For the boiling water reactor (BWR) and the
high-temperature gas reactor (HTGR) systems, which produce steam and hot
helium by passage of a primary coolant through the core, direct use of these primary
coolants in the turbine is possible, leading to a single-coolant system. The BWR

1
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TABLE 1.1

Basic Features of Major Power Reactor Types

Reactor Type

Water-cooled
PWR
BWR
PHWR
(CANDU)
SGHWR?

Gas-cooled
Magnox
AGR
HTGR

Sodium-cooled
SFBR¢
SFR¢

2 Steam-generating heavy water reactor.

fuel forms.

Neutron
Spectrum

Thermal

Thermal

Fast

Moderator

H,0
H,0
D,0

D,O
Graphite

None

¢ Sodium-cooled fast-breeder reactor.

Coolant

H,0
H,0
D,0

H,0

Co,
Cco,
Helium

Sodium

4" Sodium fast reactor operating on a closed cycle.
¢ Heavy metal (HM).

f

Fuel

Chemical
Form

uo,
uo,
vo,

vo,

U metal
uo,
uo,

UO,/Pu0,
NU-TRU-Zr!
metal or oxide

Approximate Fissile
Content (All 225U Except the
Sodium-Cooled Reactors)

3-5% enrichment
3-5% enrichment
Natural

~3% enrichment

Natural
~3% enrichment
~7-20% enrichment®

~15-20% of HM is Pu®
~15% of HM is TRU

Older operating plants have enrichments of more than 90% and used a variety of thorium and carbide

Natural uranium (NU), transuranic elements (TRU), and zirconium (Zr).

Generation [

Early prototypes ~ Commercial reactors
- Shippingport -PWR
- Dresden - BWR
- Magnox - CANDU
- Peach bottom
1950 1960 1970 1980

FIGURE 1.1

Generation II

Generation III

Generation I1I+

Generation IV

Advanced LWRs  Evolutionary designs ~ Revolutionary
designs
- CANDU 6 - ACR1000 - SFR
- EPR - AP1000 -LFR
- ABWR - APWR - GFR
- ESBWR - LSFR
- PBMR - SCWR
- PMGR - VHTR
- APR1400 - MSR
1990 2000 2010 2020 2030
Gen I+ ' GenlIV |

The evolution of nuclear power. (Adopted from U.S. Department of Energy,
http://www.gen-4.org/Technology/evolution.htm.)
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Steam line

Turbine generator

Condenser
Condenser cooling water

Reactor g

Pump

FIGURE 1.2 Direct, single-coolant Rankine cycle. (Adopted from U.S. Department of Energy.)

single-coolant system, based on the Rankine cycle (Figure 1.2), is in common use. The
Fort St. Vrain HTGR plant used a secondary water system in a Rankine cycle because
the technology did not exist to produce a large, high-temperature, helium-driven tur-
bine. Although the HTGR direct turbine system has not yet been built for a commercial
reactor, it would use the Brayton cycle, as illustrated in Figure 1.3. Thermodynamic
analyses for typical Rankine and Brayton cycles are presented in Chapter 6.

The pressurized water reactor (PWR) and the pressurized heavy water reactor
(PHWR) are two-coolant systems. This design is necessary to maintain the primary
coolant conditions at a nominal subcooled liquid state while the turbine is driven by
steam in the secondary system. Figure 1.4 illustrates the PWR two-coolant steam
cycle.

The sodium-cooled fast reactors (both SFRs and SFBR) employ three-coolant
systems: a primary sodium coolant system, an intermediate sodium coolant system,
and a steam—water, turbine—condenser coolant system (Figure 1.5). The sodium-to-
sodium heat exchange is accomplished in an intermediate heat exchanger (IHX), and
the sodium-to-water/steam heat exchange in a steam generator. Three-coolant
systems were specified to isolate the radioactive primary sodium coolant from the

Core
Compressor Ga‘s Electric
turbine
generator
Y
S
1
Cooler
[~ |

FIGURE 1.3 Direct, single-coolant Brayton cycle. (Adopted from U.S. Department of
Energy.)
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{<| Steam
"| generator

Reactor

C_

FIGURE 1.4 Two-coolant system steam cycle. (From Shultis, J. K. and Faw, R. E.,
Fundamentals of Nuclear Science and Engineering, 2nd Ed. CRC Press, Boca Raton,
FL, 2008.)

<«— Water

steam—water circulating through the turbine, condenser, and associated conventional
plant components. The SFR concept being developed in the United States draws on
this worldwide SFR technology and the operational experience base, but it is not
designed as a breeder. Sodium-cooled reactor characteristics and examples presented
in this chapter are for both the SFBRs, which were built in the late 1900s, and the
SFR, which is currently under development and design.

The significant characteristics of the thermodynamic cycles and coolant systems
used in these reference reactor types are summarized in Table 1.2.

1.3 PRIMARY COOLANT SYSTEMS

The Generation II BWR single-loop primary coolant system is illustrated in
Figure 1.6, while Figure 1.7 highlights the flow paths within the reactor vessel. The

Sodium

FIGURE 1.5 Three-coolant system steam cycle. (From Shultis, J. K. and Faw, R. E.,
Fundamentals of Nuclear Science and Engineering, 2nd Ed. CRC Press, Boca Raton,
FL, 2008.)
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Reheater

Steam
Generator

T1IF
LI

Turbine

Reactor vessel

Condenser

Core \_

I

Recirculation
pumps

Feedwater
pumps

Extraction
steam

|l Demineralizers

=)D
e

™ Condensate
pumps

Feedwater
heaters

FIGURE 1.6 BWR single-loop primary coolant system. (From Shultis, J. K. and Faw, R. E.,
Fundamentals of Nuclear Science and Engineering, 2nd Ed. CRC Press, Boca Raton,
FL, 2008.)

steam—water mixture first enters the steam separators after exiting the core. After
subsequent passage through a steam separator and dryer assembly located in the
upper portion of the reactor vessel, dry saturated steam flows directly to the turbine.
Saturated water, which is separated from the steam, flows downward in the periphery
of the reactor vessel and mixes with the incoming main feed flow from the condenser.
This combined flow stream is pumped into the lower plenum through jet pumps
mounted around the inside periphery of the reactor vessel. The jet pumps are driven

Steam dryers ~ Output steam

Steam
separators

Feed water

Driving flow

L -

Core = Jet pump

Recirculation pump

FIGURE 1.7 Steam and recirculation water flow paths in the Generation II BWR. (From
Shultis, J. K. and Faw, R. E., Fundamentals of Nuclear Science and Engineering, 2nd Ed.
CRC Press, Boca Raton, FL, 2008.)
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by flow from recirculation pumps located in relatively small-diameter (~50 cm) exter-
nal recirculation loops, which draw flow from the plenum just above the jet pump
discharge location. In the ABWR, all external recirculation loops are eliminated and
replaced with recirculation pumps placed internal to the reactor vessel. In the eco-
nomic simplified boiling water reactor (ESBWR), all jet pumps as well as external
recirculation pumps were eliminated by the natural circulation flow design.

In all BWRs the core flowrate is much greater than the feed water flowrate, reflect-
ing the fact that the average core exit quality Xx, is about 15%. Hence, the recirculation
ratio (RR) is obtained as

Mass flowrate of recirculated liquid 1-x,, 0.85
RR = =— = =
Mass flowrate of vapor produced X,

=oz=57 (D

The primary coolant system of a PWR consists of a multiloop arrangement
arrayed around the reactor vessel. Higher power reactor ratings are achieved by add-
ing loops of identical design. Designs of two, three, and four loops have been built
with three- and four-loop reactors being the most common. In a typical four-loop
configuration (Figure 1.8), each loop has a vertically oriented steam generator* and

Steam outlet
to turbine

Steam generator Steam outlet
to turbine

Feedwater inlet

Coolant
pump
Feedwater from
condenser

Pressuriz[e@:l

(7

I
[
-
.

3

<

(@(e

Reactor pressure vessel

FIGURE 1.8 Arrangement of the primary system for a Generation II PWR. (From Shultis,
J. K. and Faw, R. E., Fundamentals of Nuclear Science and Engineering, 2nd Ed. CRC Press,
Boca Raton, FL, 2008.)

* Russian VVERs employ horizontal steam generators.
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coolant pump. The coolant flows through the steam generator within an array of U
tubes that connect the inlet and outlet plena located at the bottom of the steam
generator. The system’s single pressurizer is connected to the hot leg of one of the
loops. The hot (reactor vessel to steam generator inlet) and cold (steam generator
outlet to reactor vessel) leg pipes are typically 31-42 and 29-30 in. (78.7-106.7 and
73.7-76.2 cm) in diameter, respectively.

The flow path through the PWR reactor vessel is illustrated in Figure 1.9. The
inlet nozzles communicate with an annulus formed between the inside of the reactor
vessel and the outside of the core support barrel. The coolant entering this annulus
flows downward into the inlet plenum formed by the lower head of the reactor vessel.
Here it turns upward and flows through the core into the upper plenum that commu-
nicates with the reactor vessel’s outlet nozzles.

The HTGR primary system is composed of several loops, each housed within a
large cylinder of prestressed concrete. A compact HTGR arrangement as embodied
in the modular high-temperature gas-cooled reactor (MHTGR) is illustrated in

0g 0 101
Control rod drive
mechanism

Control rod

Outlet plenum

Wiater inlet nozzle —= | Water outlet nozzle

Control rod l L Fuel assembly
shroud tubes alignment plate

—— Fuel assembly

"~ Core support barrel

Presure vessel ——# T~ Core shroud

Ll L1l ) Core support
assembly

Instrumentation
guide tubes

\§

FIGURE 1.9 Flow path through a PWR reactor vessel. (From Shultis, J. K. and Faw, R. E.,
Fundamentals of Nuclear Science and Engineering, 2nd Ed. CRC Press, Boca Raton,
FL, 2008.)
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Figure 1.10. In this 588 MWe MHTGR arrangement [2], the flow is directed down-
ward through the core by a circulator mounted above the steam generator in the cold
leg. The reactor vessel and steam generator are connected by a short, horizontal
cross duct, which channels two oppositely directed coolant streams. The coolant
from the core exit plenum is directed laterally through the 47 in. (119.4 cm) interior
diameter region of the cross duct into the inlet of the steam generator. The coolant
from the steam generator and circulator is directed laterally through the outer annu-
lus (equivalent pipe diameter of approximately 46 in. [116.8 cm]) of the cross duct
into the core inlet plenum and then upward through the reactor vessel’s outer annulus
into the inlet core plenum at the top of the reactor vessel.

SFBR and SFR primary systems have been of the loop and pool types. The pool-
type configuration of the Superphenix reactor [14] is shown in Figure 1.11. Its char-
acteristics are detailed in Table 1.2. The coolant flow path is upward through the
reactor core into the upper sodium pool of the main vessel. The coolant from this
pool flows downward by gravity through the IHX and discharges into a low-pressure

Control rod drive/
refueling
penetrations

Reactor
vessel

[ Reactor

"
l. 1 Ly core

Main
circulator

Steam
generator
vessel

Steam
— generator

exchanger

Shutdown
circulator

FIGURE 1.10 Modular HTGR primary coolant flow path. (Courtesy of U.S. Department of
Energy.)
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FIGURE 1.11 Primary system sodium flow path in the Superphenix reactor. (Courtesy of
Electricité de France.)

toroidal plenum located in the periphery of the lower portion of the main vessel.
Vertically oriented primary pumps draw the coolant from this low-pressure plenum
and discharge it into the core inlet plenum.

1.4 REACTOR CORES

The reactor cores of all these reactors, except for the HTGR, are composed of assem-
blies of cylindrical fuel rods surrounded by the coolant that flows along the rod length.
The prismatic HTGR core consists of graphite moderator hexagonal blocks that func-
tion as fuel assemblies. The blocks or assemblies are described in detail in Section 1.5.

There are two design features that establish the principal thermal hydraulic char-
acteristics of reactor cores: the orientation and the degree of hydraulic isolation of an
assembly from its neighbors. It is simple to adopt a reference case and describe the
exceptions. Let us take as the reference case a vertical array of assemblies that com-
municate only at inlet and exit plena. This reference case describes the BWR, SFBR,
and the advanced gas reactor (AGR) systems. The HTGR is nominally configured in
this manner also, although leakage between the graphite blocks that are stacked to
create the proper core length creates a substantial degree of communication between
coolant passages within the core. The PHWR core consists of horizontal pressure
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tubes penetrating a low-pressure calandria tank filled with a heavy water moderator.
The fuel assemblies housed within the pressure tubes are cooled by high-pressure
heavy water, which is directed to and from the tubes by an array of inlet and outlet
headers. The more advanced Canadian reactors use light water for cooling within the
pressure tubes but retain heavy water in the calandria tank. Both the PHWR and the
AGR are designed for online refueling.

The PWR and BWR assemblies are vertical, but unlike the BWR design, the
PWR assemblies are not isolated hydraulically by enclosing the fuel rod array within
ducts (called fuel channels in the BWR) over the core length. Hence, PWR fuel rods
are grouped into assemblies only for handling and other structural purposes.

1.5 FUEL ASSEMBLIES

The principal characteristics of power reactor fuel bundles are the array (geometric
layout and rod spacing) and the method of fuel pin separation and support along their
span. The light water reactors (BWR and PWR), PHWR, AGR, and SFBR/SFR all
use fuel rods. The HTGR has graphite moderator blocks in which adjacent penetrat-
ing holes for fuel and flowing helium coolant exist.

Light water reactors (LWRs), where the coolant also serves as the moderator, have
small fuel-to-water volume ratios (commonly called the metal-to-water ratio) and
consequently rather large fuel rod centerline-to-centerline spacing (commonly called
the rod pitch, P). This moderate packing fraction permits the use of a simple square
array and requires a rod support scheme of moderately small frontal area to yield
low-pressure drops. The one LWR exception is the VVER, which uses a hexagonal
array. A variety of grid support schemes have evolved for these applications.

Heavy water reactors and advanced gas reactors are designed for online refueling
and consequently consist of fuel assemblies stacked within circular pressure tubes.
This circular boundary leads to an assembly design with an irregular geometric
array of rods. The online refueling approach has led to short fuel bundles in which
the rods are supported at the assembly ends and by a center brace rather than by
LWR-type grid spacers.

SFRs require no moderator and achieve high-power densities by compact hexago-
nal fuel rod array packing. With this tight rod-to-rod spacing, a lower pressure drop
is obtained using spiral wire wrapping around each rod than could be obtained with
a grid-type spacer. This wire wrap serves a dual function: as a spacer and as a pro-
moter of coolant mixing within the fuel bundle. However, some SFR assemblies do
use grid spacers.

The principal characteristics of the fuel for the six reference power reactor types
are summarized in Table 1.3. The HTGR does not consist of an array of fuel rods
within a coolant continuum. Rather, the HTGR blocks that contain fuel compacts, a
coolant, and a moderator are designated as inverted fuel assemblies. In these blocks,
the fuel-moderator combination is the continuum that is penetrated by isolated,
cylindrically shaped coolant channels.

The LWRs (PWR and BWR), PHWR, AGR, and SFBR utilize an array of fuel
rods surrounded by the coolant. For each of these arrays, the useful geometric char-
acteristics are given in Table 1.3 and typical subchannels identified in Figure 1.12.
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