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Preface
In the 22 years since the first edition appeared, nuclear power systems have regained 
favor worldwide as a scalable, dependable, and environmentally desirable energy 
supply technology. While water-cooled reactor types promise to dominate the 
deployment of nuclear power systems well into this century, several alternate cooled 
reactors among the six Generation IV proposed designs are now under intensive 
development for deployment in the next decades.

Consequently, while this new edition continues to emphasize pressurized and 
boiling light water reactor technologies, the principal characteristics and analysis 
approaches for the Generation IV designs of most international interest, the liquid-
metal- and gas-cooled options, are introduced as well.

To accomplish this, the content of most chapters has been amplified by introduc-
ing both new analysis approaches and correlation methods which have gained the 
favor of experts over the past several decades. Nevertheless, these enhancements 
have been introduced into the sequence of chapters of the first edition, a sequence 
which has proven to be pedagogically effective. This organization of text chapters is 
shown in Table 0.1.

The content of these chapters emphasizing new material in particular is summa-
rized below:

•	 Chapter 1 surveys the characteristics of all current principal reactor types: 
operating and advanced light water-cooled designs as well as the six 
Generation IV designs.

•	 Chapter 2 emphasizes the relations that integrate the performance of the 
core nuclear steam supply system and balance of plant. In doing so, the 
performance measures of the multiple disciplines—neutronics, thermal 
hydraulics, fuel behavior, structural mechanics, and reactor operations—
are introduced and interrelated. In particular, power density and specific 
power measures are thoroughly developed for standard fuel pin arrays as 
well as inverted (fuel and coolant are spatially interchanged) assembly 
configurations.

•	 Chapter 3 presents a thorough description of the magnitude and spatial 
distribution of the generation and deposition of energy within the reactor 
vessel assembly. Emphasis is given to the evolution of the American Nuclear 
Society Decay Heat Generation Standard up to 2005. Multiple other sources 
of stored energy are present in reactor systems such as those associated with 
elevated temperature and pressure conditions of the primary and secondary 
reactor coolants and the chemical reactions of materials of construction 
under extreme temperatures characteristic of accident conditions. The 
stored energy and the energy liberated by the chemical reactions character-
istic of the light water reactor materials are now presented in detail.
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•	 Chapters 4 and 5, which present the mass, momentum, energy, and entropy 
conservation equations for single- and two-phase coolants in differential 
and control volume formulations, are unchanged from the first edition.

•	 Chapter 6 presents the analysis of power generation cycles, both Rankine 
and Brayton types. The analysis of the supercritical carbon dioxide (SCO2) 
cycle, which has recently been introduced as a performance and cost-
efficient option for Generation IV systems, is presented. Of note, this pre-
sentation is designed to clearly illustrate how this recompression cycle must 
be designed and analyzed, a subtlety which otherwise easily confounds the 
inexperienced analyst.

•	 Chapter 7 applies thermodynamic principles for analysis of the fuel and 
coolant mixture in a severe accident, for analysis of containment design and 
accident performance, and for analysis of PWR pressurizer performance. 
The chapter remains as in the first edition with the fundamentals of pressur-
izer performance becoming the focus now by deletion of the more complex 
multiregion pressurizer model introduced in the first edition.

•	 Chapter 8 significantly amplifies the discussion of fuel pin materials and 
thermal analysis of various fuel geometries in the first edition. Extensive 
fuel and cladding material properties for thermal and fast neutron spectrum 
reactors are now included. Additionally, the case of annular fuel geometry, 
which is cooled inside and outside, is fully analyzed. Finally, the correla-
tions for cladding-coolant surface oxidation are now included.

•	 Chapters 9 and 10 present the fluid flow and thermal analysis techniques 
for single-phase coolant in laminar and turbulent flow. Noteworthy new 

TABLE 0.1
Text Contents by Chapter and Subject

1—Reactor-Type Overview

2—Core and Plant Performance Measures

3—Fission Energy Generation and Deposition

Conservation 
Equations Thermodynamics Fluid Flow Heat Transfer

Single-Phase 
Coolant

4—Differential and 
Integral 
Formulations

8—Fuel Pins and Assemblies
   9—Single     10—Single
  Channels       Channels

Two-Phase 
Coolant

5—Differential and 
Integral 
Formulations; 
2φ Parameter 
Definitions

11—Single 
Channels

12—Pool Boiling
13—Flow Boiling in 
Single Channel

Single-Phase 
and Two-Phase 
Coolants

6—Power Cycles
7—Components and 
Containment

14—Single-Channel Examples
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material presents the analysis of geometries configured for enhanced heat 
transfer albeit with pressure loss penalty.

•	 Chapters 11 and 12 along with Chapter 13 present fluid flow and thermal 
analysis techniques for two-phase flow. Chapter 11 now has expanded 
coverage of critical flow and new coverage of flow instabilities and con-
densation. Boiling heat transfer is now separated into pool boiling and 
flow boiling in Chapters 12 and 13, respectively. The entire two-phase 
flow treatment in these three chapters has been expanded to include recent 
correlations of current usage, particularly for void fraction, pressure loss, 
and the critical condition.

•	 Chapter 14 has been thoroughly restructured to present a systematic analy-
sis of heated flow channel performance for single- and two-phase flow uti-
lizing the methods and correlations of Chapters 9 through 13. Specific focus 
is directed to conditions of equilibrium and nonequilibrium for both equal/
unequal phasic temperatures (thermal equilibrium) and equal phasic flow 
velocities (mechanical equilibrium).

Finally, throughout the text we refer as appropriate to further elaboration of relevant 
technical information which appears in the companion Volume II of this text.* 

*	 Todreas, N. E. and Kazimi, M. S., Nuclear Systems II: Elements of Thermal Hydraulic Design. 
New York: Taylor & Francis, 2001.
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Preface to the First Edition
This book can serve as a textbook for two to three courses at the advanced under-
graduate and graduate student level. It is also suitable as a basis for the continuing 
education of engineers in the nuclear power industry who wish to expand their 
knowledge of the principles of thermal analysis of nuclear systems. The book, in 
fact, was an outgrowth of the course notes used for teaching several classes at MIT 
over a period of nearly 15 years.

The book is meant to cover more than thermal hydraulic design and analysis of 
the core of a nuclear reactor. Thus, in several parts and examples, other components 
of the nuclear power plant, such as the pressurizer, the containment, and the entire 
primary coolant system, are addressed. In this respect the book reflects the impor-
tance of such considerations in thermal engineering of a modern nuclear power plant. 
The traditional concentration on the fuel element in earlier textbooks was appropri-
ate when the fuel performance had a higher share of the cost of electricity than in 
modern plants. The cost and performance of nuclear power plants has proved to be 
more influenced by the steam supply system and the containment building than pre-
viously anticipated.

The desirability of providing in one book basic concepts as well as complex formu-
lations for advanced applications has resulted in a more comprehensive textbook than 
those previously authored in the field. The basic ideas of both fluid flow and heat 
transfer as applicable to nuclear reactors are discussed in Volume I. No assumption is 
made about the degree to which the reader is already familiar with the subject. 
Therefore, various reactor types, energy source distribution, and fundamental laws of 
conservation of mass, momentum, and energy are presented in early chapters. 
Engineering methods for analysis of flow hydraulics and heat transfer in single-phase 
as well as two-phase coolants are presented in later chapters. In Volume II, applica-
tions of these fundamental ideas to multi-channel flow conditions in the reactor are 
described as well as specific design considerations such as natural convection and 
core thermal reliability. They are presented in a way that renders it possible to use the 
analytical development in simple exercises and as the bases for numerical computa-
tions similar to those commonly practiced in the industry.

A consistent nomenclature is used throughout the text and a table of the nomen-
clature is included in the Appendix. Each chapter includes problems identified as to 
their topic and the section from which they are drawn. While the SI unit system is 
principally used, British Engineering Units are given in brackets for those results 
commonly still reported in the United States in this system.
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1 Principal Characteristics 
of Power Reactors

1.1 I ntroduction

This chapter presents the basic characteristics of power reactors. These character-
istics, along with more detailed thermal hydraulic parameters presented in further 
chapters, enable the student to apply the specialized techniques presented in the 
remainder of the text to a range of reactor types. Water-, gas-, and sodium-cooled 
reactor types, identified in Table 1.1, encompass the principal nuclear power reac-
tor designs that have been employed in the world. The thermal hydraulic character-
istics of these reactors are presented in Sections 1.2 through 1.5 as part of the 
description of the power cycle, primary coolant system, core, and fuel assembly 
design of these reactor types. Three classes of advanced reactors are also presented 
in subsequent sections, the Generation III, III+, and IV designs. The Generation III 
designs are advanced water reactors that have already been brought into operation 
(ABWR) or are under construction (EPR). The Generation III+ designs are 
advanced water- and gas-cooled reactors, several of which are being licensed and 
brought into service in the 2010 decade [12]. These Generation III and III+ designs 
are discussed in Section 1.6. The Generation IV reactors described in Section 1.7 
were selected by an international roadmapping process and are being pursued 
through an internationally coordinated research and development activity for 
deployment in the period 2020–2040 [13]. Figure 1.1 presents the evolution and 
categorization by the generation of the world’s reactor types. Tables in Chapters 1 
and 2 and Appendix K provide detailed information on reactor characteristics 
useful for application to specific illustrative examples and homework problems in 
the text.

1.2  Power Cycles

In these plants, a primary coolant is circulated through the reactor core to extract 
energy for ultimate conversion to electricity in a turbine connected to an electric gen-
erator. Depending on the reactor design, the turbine may be driven directly by the 
primary coolant or by a secondary coolant that has received energy from the primary 
coolant. The number of coolant systems in a plant equals the sum of the one primary 
and one or more secondary systems. For the boiling water reactor (BWR) and the 
high-temperature gas reactor (HTGR) systems, which produce steam and hot 
helium by passage of a primary coolant through the core, direct use of these primary 
coolants in the turbine is possible, leading to a single-coolant system. The BWR 
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Table 1.1
Basic Features of Major Power Reactor Types

Fuel

Reactor Type
Neutron 
Spectrum Moderator Coolant

Chemical 
Form

Approximate Fissile 
Content (All 235U Except the 

Sodium-Cooled Reactors)

Water-cooled Thermal

  PWR H2O H2O UO2 3–5% enrichment

  BWR H2O H2O UO2 3–5% enrichment

  PHWR
  (CANDU)

D2O D2O UO2 Natural

  SGHWRa D2O H2O UO2 ~3% enrichment

Gas-cooled Thermal Graphite

  Magnox CO2 U metal Natural

  AGR CO2 UO2 ~3% enrichment

  HTGR Helium UO2 ~7–20% enrichmentb

Sodium-cooled Fast None Sodium

  SFBRc UO2/PuO2 ~15–20% of HM is Pue

  SFRd NU–TRU–Zrf 
metal or oxide

~15% of HM is TRU

a	 Steam-generating heavy water reactor.
b	 Older operating plants have enrichments of more than 90% and used a variety of thorium and carbide 

fuel forms.
c	 Sodium-cooled fast-breeder reactor.
d	 Sodium fast reactor operating on a closed cycle.
e	 Heavy metal (HM).
f	 Natural uranium (NU), transuranic elements (TRU), and zirconium (Zr).

Early prototypes

Generation I

- Shippingport
- Dresden
- Magnox

1950 1960 1970 1980 1990 2000 2010 2020 2030

Gen I Gen II Gen III+ Gen IVGen III

Commercial reactors

Generation II

- PWR
- BWR
- CANDU

Advanced LWRs

Generation III

- CANDU 6 
- EPR
- ABWR 

Generation III+

Evolutionary designs

- ACR1000
- AP1000
- APWR
- ESBWR
- PBMR
- PMGR

- SFR
- LFR
- GFR
- LSFR

Generation IV

Revolutionary
designs

- Peach bottom
- SCWR
- VHTR
- MSR- APR1400

Figure 1.1  The evolution of nuclear power. (Adopted from U.S. Department of Energy, 
http://www.gen-4.org/Technology/evolution.htm.)
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single-coolant system, based on the Rankine cycle (Figure 1.2), is in common use. The 
Fort St. Vrain HTGR plant used a secondary water system in a Rankine cycle because 
the technology did not exist to produce a large, high-temperature, helium-driven tur-
bine. Although the HTGR direct turbine system has not yet been built for a commercial 
reactor, it would use the Brayton cycle, as illustrated in Figure 1.3. Thermodynamic 
analyses for typical Rankine and Brayton cycles are presented in Chapter 6.

The pressurized water reactor (PWR) and the pressurized heavy water reactor 
(PHWR) are two-coolant systems. This design is necessary to maintain the primary 
coolant conditions at a nominal subcooled liquid state while the turbine is driven by 
steam in the secondary system. Figure 1.4 illustrates the PWR two-coolant steam 
cycle.

The sodium-cooled fast reactors (both SFRs and SFBR) employ three-coolant 
systems: a primary sodium coolant system, an intermediate sodium coolant system, 
and a steam–water, turbine−condenser coolant system (Figure 1.5). The sodium-to-
sodium heat exchange is accomplished in an intermediate heat exchanger (IHX), and 
the sodium-to-water/steam heat exchange in a steam generator. Three-coolant 
systems were specified to isolate the radioactive primary sodium coolant from the 

Steam line

Turbine generator

Condenser

Pump

Reactor
Core

Condenser
cooling water

Figure 1.2  Direct, single-coolant Rankine cycle. (Adopted from U.S. Department of Energy.)

Reactor

Gas
turbine

Cooler

Compressor
Core

Electric
generator

Figure 1.3  Direct, single-coolant Brayton cycle. (Adopted from U.S. Department of 
Energy.)
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steam–water circulating through the turbine, condenser, and associated conventional 
plant components. The SFR concept being developed in the United States draws on 
this worldwide SFR technology and the operational experience base, but it is not 
designed as a breeder. Sodium-cooled reactor characteristics and examples presented 
in this chapter are for both the SFBRs, which were built in the late 1900s, and the 
SFR, which is currently under development and design.

The significant characteristics of the thermodynamic cycles and coolant systems 
used in these reference reactor types are summarized in Table 1.2.

1.3  Primary Coolant Systems

The Generation II BWR single-loop primary coolant system is illustrated in 
Figure 1.6, while Figure 1.7 highlights the flow paths within the reactor vessel. The 

Steam
generator

Water

Fuel

Water

Reactor
Water

Steam

Figure 1.4  Two-coolant system steam cycle. (From Shultis, J. K. and Faw, R. E., 
Fundamentals of Nuclear Science and Engineering, 2nd Ed. CRC Press, Boca Raton, 
FL, 2008.)

Pump

Pump

Sodium

Sodium

Sodium

Sodium

Steam

Water

Fuel

Figure 1.5  Three-coolant system steam cycle. (From Shultis, J. K. and Faw, R. E., 
Fundamentals of Nuclear Science and Engineering, 2nd Ed. CRC Press, Boca Raton, 
FL, 2008.)
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steam–water mixture first enters the steam separators after exiting the core. After 
subsequent passage through a steam separator and dryer assembly located in the 
upper portion of the reactor vessel, dry saturated steam flows directly to the turbine. 
Saturated water, which is separated from the steam, flows downward in the periphery 
of the reactor vessel and mixes with the incoming main feed flow from the condenser. 
This combined flow stream is pumped into the lower plenum through jet pumps 
mounted around the inside periphery of the reactor vessel. The jet pumps are driven 

Output steam

Feed water

Jet pumpCore

Recirculation pump

Driving flow

Steam
separators

Steam dryers

Figure 1.7  Steam and recirculation water flow paths in the Generation II BWR. (From 
Shultis, J. K. and Faw, R. E., Fundamentals of Nuclear Science and Engineering, 2nd Ed. 
CRC Press, Boca Raton, FL, 2008.)

Feedwater
pumps Extraction

steam
Demineralizers

Condensate
pumps

Condenser

HP LP LP
Generator

Reheater

Turbine
Steam

Reactor vessel

Core

Recirculation
pumps

Feedwater
heaters

Water

Figure 1.6  BWR single-loop primary coolant system. (From Shultis, J. K. and Faw, R. E., 
Fundamentals of Nuclear Science and Engineering, 2nd Ed. CRC Press, Boca Raton, 
FL, 2008.)



8	 Nuclear Systems

by flow from recirculation pumps located in relatively small-diameter (~50 cm) exter-
nal recirculation loops, which draw flow from the plenum just above the jet pump 
discharge location. In the ABWR, all external recirculation loops are eliminated and 
replaced with recirculation pumps placed internal to the reactor vessel. In the eco-
nomic simplified boiling water reactor (ESBWR), all jet pumps as well as external 
recirculation pumps were eliminated by the natural circulation flow design.

In all BWRs the core flowrate is much greater than the feed water flowrate, reflect-
ing the fact that the average core exit quality xe is about 15%. Hence, the recirculation 
ratio (RR) is obtained as

	
RR

Mass flowrate of recirculated liquid
Mass flowrate of vapor pro

≡
dduced

exit

exit

= − = =1 0 85
0 15

5 7
x

x
.
.

.
	

(1.1)

The primary coolant system of a PWR consists of a multiloop arrangement 
arrayed around the reactor vessel. Higher power reactor ratings are achieved by add-
ing loops of identical design. Designs of two, three, and four loops have been built 
with three- and four-loop reactors being the most common. In a typical four-loop 
configuration (Figure 1.8), each loop has a vertically oriented steam generator* and 

*	Russian VVERs employ horizontal steam generators.

Feedwater from
condenser

Steam outlet
to turbine

Steam outlet
to turbine

Steam generator

Feedwater inlet
from condenser

Coolant
pump

Pressurizer

Reactor pressure vessel

Figure 1.8  Arrangement of the primary system for a Generation II PWR. (From Shultis, 
J. K. and Faw, R. E., Fundamentals of Nuclear Science and Engineering, 2nd Ed. CRC Press, 
Boca Raton, FL, 2008.)
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coolant pump. The coolant flows through the steam generator within an array of U 
tubes that connect the inlet and outlet plena located at the bottom of the steam 
generator. The system’s single pressurizer is connected to the hot leg of one of the 
loops. The hot (reactor vessel to steam generator inlet) and cold (steam generator 
outlet to reactor vessel) leg pipes are typically 31–42 and 29–30 in. (78.7–106.7 and 
73.7–76.2 cm) in diameter, respectively.

The flow path through the PWR reactor vessel is illustrated in Figure 1.9. The 
inlet nozzles communicate with an annulus formed between the inside of the reactor 
vessel and the outside of the core support barrel. The coolant entering this annulus 
flows downward into the inlet plenum formed by the lower head of the reactor vessel. 
Here it turns upward and flows through the core into the upper plenum that commu-
nicates with the reactor vessel’s outlet nozzles.

The HTGR primary system is composed of several loops, each housed within a 
large cylinder of prestressed concrete. A compact HTGR arrangement as embodied 
in the modular high-temperature gas-cooled reactor (MHTGR) is illustrated in 

Control rod drive
mechanism

Control rod

Outlet plenum

Water outlet nozzleWater inlet nozzle

Control rod
shroud tubes

Presure vessel

Fuel assembly
alignment plate

Fuel assembly

Core support barrel

Core shroud
Core support
assembly

Instrumentation
guide tubes

Figure 1.9  Flow path through a PWR reactor vessel. (From Shultis, J. K. and Faw, R. E., 
Fundamentals of Nuclear Science and Engineering, 2nd Ed. CRC Press, Boca Raton, 
FL, 2008.)
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Figure 1.10. In this 588 MWe MHTGR arrangement [2], the flow is directed down-
ward through the core by a circulator mounted above the steam generator in the cold 
leg. The reactor vessel and steam generator are connected by a short, horizontal 
cross duct, which channels two oppositely directed coolant streams. The coolant 
from the core exit plenum is directed laterally through the 47 in. (119.4 cm) interior 
diameter region of the cross duct into the inlet of the steam generator. The coolant 
from the steam generator and circulator is directed laterally through the outer annu-
lus (equivalent pipe diameter of approximately 46 in. [116.8 cm]) of the cross duct 
into the core inlet plenum and then upward through the reactor vessel’s outer annulus 
into the inlet core plenum at the top of the reactor vessel.

SFBR and SFR primary systems have been of the loop and pool types. The pool-
type configuration of the Superphenix reactor [14] is shown in Figure 1.11. Its char-
acteristics are detailed in Table 1.2. The coolant flow path is upward through the 
reactor core into the upper sodium pool of the main vessel. The coolant from this 
pool flows downward by gravity through the IHX and discharges into a low-pressure 

Control rod drive/
refueling
penetrations

Reactor
vessel

Reactor
core

Main
circulator

Steam
generator
vessel

Steam
generator

Shutdown
circulator

Shutdown
heat
exchanger

Figure 1.10  Modular HTGR primary coolant flow path. (Courtesy of U.S. Department of 
Energy.)



Principal Characteristics of Power Reactors	 11

toroidal plenum located in the periphery of the lower portion of the main vessel. 
Vertically oriented primary pumps draw the coolant from this low-pressure plenum 
and discharge it into the core inlet plenum.

1.4  Reactor Cores

The reactor cores of all these reactors, except for the HTGR, are composed of assem-
blies of cylindrical fuel rods surrounded by the coolant that flows along the rod length. 
The prismatic HTGR core consists of graphite moderator hexagonal blocks that func-
tion as fuel assemblies. The blocks or assemblies are described in detail in Section 1.5.

There are two design features that establish the principal thermal hydraulic char-
acteristics of reactor cores: the orientation and the degree of hydraulic isolation of an 
assembly from its neighbors. It is simple to adopt a reference case and describe the 
exceptions. Let us take as the reference case a vertical array of assemblies that com-
municate only at inlet and exit plena. This reference case describes the BWR, SFBR, 
and the advanced gas reactor (AGR) systems. The HTGR is nominally configured in 
this manner also, although leakage between the graphite blocks that are stacked to 
create the proper core length creates a substantial degree of communication between 
coolant passages within the core. The PHWR core consists of horizontal pressure 

+ 22 500 mm

Figure 1.11  Primary system sodium flow path in the Superphenix reactor. (Courtesy of 
Électricité de France.)
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tubes penetrating a low-pressure calandria tank filled with a heavy water moderator. 
The fuel assemblies housed within the pressure tubes are cooled by high-pressure 
heavy water, which is directed to and from the tubes by an array of inlet and outlet 
headers. The more advanced Canadian reactors use light water for cooling within the 
pressure tubes but retain heavy water in the calandria tank. Both the PHWR and the 
AGR are designed for online refueling.

The PWR and BWR assemblies are vertical, but unlike the BWR design, the 
PWR assemblies are not isolated hydraulically by enclosing the fuel rod array within 
ducts (called fuel channels in the BWR) over the core length. Hence, PWR fuel rods 
are grouped into assemblies only for handling and other structural purposes.

1.5  Fuel Assemblies

The principal characteristics of power reactor fuel bundles are the array (geometric 
layout and rod spacing) and the method of fuel pin separation and support along their 
span. The light water reactors (BWR and PWR), PHWR, AGR, and SFBR/SFR all 
use fuel rods. The HTGR has graphite moderator blocks in which adjacent penetrat-
ing holes for fuel and flowing helium coolant exist.

Light water reactors (LWRs), where the coolant also serves as the moderator, have 
small fuel-to-water volume ratios (commonly called the metal-to-water ratio) and 
consequently rather large fuel rod centerline-to-centerline spacing (commonly called 
the rod pitch, P). This moderate packing fraction permits the use of a simple square 
array and requires a rod support scheme of moderately small frontal area to yield 
low-pressure drops. The one LWR exception is the VVER, which uses a hexagonal 
array. A variety of grid support schemes have evolved for these applications.

Heavy water reactors and advanced gas reactors are designed for online refueling 
and consequently consist of fuel assemblies stacked within circular pressure tubes. 
This circular boundary leads to an assembly design with an irregular geometric 
array of rods. The online refueling approach has led to short fuel bundles in which 
the rods are supported at the assembly ends and by a center brace rather than by 
LWR-type grid spacers.

SFRs require no moderator and achieve high-power densities by compact hexago-
nal fuel rod array packing. With this tight rod-to-rod spacing, a lower pressure drop 
is obtained using spiral wire wrapping around each rod than could be obtained with 
a grid-type spacer. This wire wrap serves a dual function: as a spacer and as a pro-
moter of coolant mixing within the fuel bundle. However, some SFR assemblies do 
use grid spacers.

The principal characteristics of the fuel for the six reference power reactor types 
are summarized in Table 1.3. The HTGR does not consist of an array of fuel rods 
within a coolant continuum. Rather, the HTGR blocks that contain fuel compacts, a 
coolant, and a moderator are designated as inverted fuel assemblies. In these blocks, 
the fuel–moderator combination is the continuum that is penetrated by isolated, 
cylindrically shaped coolant channels.

The LWRs (PWR and BWR), PHWR, AGR, and SFBR utilize an array of fuel 
rods surrounded by the coolant. For each of these arrays, the useful geometric char-
acteristics are given in Table 1.3 and typical subchannels identified in Figure 1.12. 
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