SECOND EDITION-REVISED PRINTING

NUCLEAR SYSTEMS

VOLUME 1

THERMAL HYDRAULIC FUNDAMENTALS

NEIL E. TODREAS • MUJID S. KAZIMI

VOLUME 1 THERMAL HYDRAULIC FUNDAMENTALS

VOLUME 1 THERMAL HYDRAULIC FUNDAMENTALS

NEIL E. TODREAS • MUJID S. KAZIMI

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2011 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20150603

International Standard Book Number-13: 978-1-4398-0888-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

To our families for their support in this endeavor Carol, Tim, and Ian Nazik, Yasmeen, Marwan, and Omar

Contents

Preface to the First Edition	Preface			xxi				
Acknowledgments xxvii Authors xxix Chapter 1 Principal Characteristics of Power Reactors 1 1.1 Introduction 1 1.2 Power Cycles 1 1.3 Primary Coolant Systems 4 1.4 Reactor Cores 11 1.5 Fuel Assemblies 12 1.5.1 LWR Fuel Bundles: Square Arrays 16 1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays 18 1.6 Advanced Water- and Gas-Cooled Reactors (Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced 29 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Clading 37 2.4.1 Fuel Pins with Metallic Clading 37 2.4.1 Fuel Pins with Metallic Clading 37 2.6.1	Preface to th	ne Firs	t Edition	xxv				
Authors xxix Chapter 1 Principal Characteristics of Power Reactors 1 1.1 Introduction 1 1.2 Power Cycles 1 1.3 Primary Coolant Systems 4 1.4 Reactor Cores 11 1.5 Fuel Assemblies 12 1.5.1 LWR Fuel Bundles: Square Arrays 16 1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays 18 1.5.3 SFBR/SFR Fuel Bundles: Mixed Arrays 18 1.6 Advanced Water- and Gas-Cooled Reactors (Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 References 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 2.4 Thermal Design Limits 37 <td< td=""><td>Acknowledg</td><td>gments</td><td>5</td><td>xxvii</td></td<>	Acknowledg	gments	5	xxvii				
Chapter 1 Principal Characteristics of Power Reactors 1 1.1 Introduction 1 1.2 Power Cycles 1 1.3 Primary Coolant Systems 4 1.4 Reactor Cores 11 1.5 Fuel Assemblies 12 1.5.1 LWR Fuel Bundles: Square Arrays 16 1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays 18 1.6 Advanced Water and Gas-Cooled Reactors (Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 References 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Imits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 <	Authors	•••••		xxix				
1.1 Introduction 1 1.2 Power Cycles 1 1.3 Primary Coolant Systems 4 1.4 Reactor Cores 11 1.5 Fuel Assemblies 12 1.5.1 LWR Fuel Bundles: Square Arrays 16 1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays 18 1.5.3 SFBR/SFR Fuel Bundles: Hexagonal Arrays 18 1.6 Advanced Water- and Gas-Cooled Reactors (Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 References 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles	Chapter 1	Princ	cipal Characteristics of Power Reactors	1				
1.2 Power Cycles 1 1.3 Primary Coolant Systems 4 1.4 Reactor Cores 11 1.5 Fuel Assemblies 12 1.5.1 LWR Fuel Bundles: Square Arrays 16 1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays 18 1.5.3 SFBR/SFR Fuel Bundles: Hexagonal Arrays 18 1.6 Advanced Water- and Gas-Cooled Reactors (Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 References 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design M		11	Introduction	1				
1.3 Primary Coolant Systems 4 1.4 Reactor Cores 11 1.5 Fuel Assemblies 12 1.5.1 LWR Fuel Bundles: Square Arrays 16 1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays 18 1.5.3 SFBR/SFR Fuel Bundles: Hexagonal Arrays 18 1.6 Advanced Water- and Gas-Cooled Reactors (Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 References 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45		1.1	Power Cycles	1 1				
1.4 Reactor Cores 11 1.5 Fuel Assemblies 12 1.5.1 LWR Fuel Bundles: Square Arrays 16 1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays 18 1.5.3 SFBR/SFR Fuel Bundles: Hexagonal Arrays 18 1.6 Advanced Water- and Gas-Cooled Reactors (Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle		1.2	Primary Coolant Systems	1				
1.5 Fuel Assemblies. 12 1.5.1 LWR Fuel Bundles: Square Arrays 16 1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays 18 1.5.3 SFBR/SFR Fuel Bundles: Hexagonal Arrays 18 1.6 Advanced Water- and Gas-Cooled Reactors (Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46<		1.5	Reactor Cores	1				
1.5.1 LWR Fuel Bundles: Square Arrays 16 1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays 18 1.5.3 SFBR/SFR Fuel Bundles: Hexagonal Arrays 18 1.6 Advanced Water- and Gas-Cooled Reactors (Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power		1.1	Fuel Assemblies					
1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays 18 1.5.3 SFBR/SFR Fuel Bundles: Hexagonal Arrays 18 1.6 Advanced Water- and Gas-Cooled Reactors (Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 References 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density. 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle Operational Parameters 51 2.7 The I		1.0	1.5.1 LWR Fuel Bundles: Square Arrays					
1.5.3 SFBR/SFR Fuel Bundles: Hexagonal Arrays 18 1.6 Advanced Water- and Gas-Cooled Reactors (Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 References 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density. 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle Operational Parameters 51 2.7 The Inverted Fuel Array 58 2.8 76 2.8 </td <td></td> <td></td> <td>1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays</td> <td></td>			1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays					
1.6 Advanced Water- and Gas-Cooled Reactors (Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density. 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship. 49 2.6.4 Specific Power in Terms of Fuel Cycle Operational Parameters 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62			1.5.3 SFBR/SFR Fuel Bundles: Hexagonal Arrays					
(Generations III and III+) 20 1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle Operational Parameters 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 67		1.6	Advanced Water- and Gas-Cooled Reactors					
1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV) 20 Problem 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density. 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship. 49 2.6.4 Specific Power in Terms of Fuel Cycle Operational Parameters 51 2.7 The Inverted Fuel Array 58 2.8 58 2.8 The Equivalent Annulus Approximation 62 63 Problems 67 67 67			(Generations III and III+)	20				
Reactors (Generation IV) 20 Problem 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced 29 2.3 Energy Production and Transfer Parameters 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle 0perational Parameters 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 67		1.7	Advanced Thermal and Fast Neutron Spectrum					
Problem 28 References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density. 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship. 49 2.6.4 Specific Power in Terms of Fuel Cycle Operational Parameters 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 67			Reactors (Generation IV)	20				
References 28 Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced 29 2.3 Energy Production and Transfer Parameters 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density. 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship. 49 2.6.4 Specific Power in Terms of Fuel Cycle 0perational Parameters 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 67		Prob	lem					
Chapter 2 Thermal Design Principles and Application 29 2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle 0perational Parameters 51 2.7 The Inverted Fuel Array 58 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 69		Refe	rences					
2.1 Introduction 29 2.2 Overall Plant Characteristics Influenced 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle 0perational Parameters 51 2.7 The Inverted Fuel Array 58 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 69	Chapter 2	Ther	Thermal Design Principles and Application					
2.1 Infroduction 29 2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 69	•	2.1	Introduction	20				
2.2 Overall Plant Characteristics influenced by Thermal Hydraulic Considerations 29 2.3 Energy Production and Transfer Parameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 69 <td></td> <td>2.1</td> <td>Overall Plant Characteristics Influenced</td> <td></td>		2.1	Overall Plant Characteristics Influenced					
2.3 Energy Production and Transfer Parameters. 25 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle 0 Operational Parameters 51 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 69		2.2	by Thermal Hydroulia Considerations	20				
2.3 Energy Froduction and Transfer Farameters 35 2.4 Thermal Design Limits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 69		23	Energy Production and Transfer Parameters					
2.4 Thermal Design Emits 37 2.4.1 Fuel Pins with Metallic Cladding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 69		2.5	Thermal Design Limits					
2.4.1 Fuel Fills with Metallic Clauding 37 2.4.2 Graphite-Coated Fuel Particles 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 69		2.4	2.4.1 Fuel Ding with Metallic Cladding					
2.4.2 Graphic-Coacd Full Fatters 41 2.5 Thermal Design Margin 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 69			2.4.1 Fuel I his with Netanic Clauding					
2.5 Figures of Merit for Core Thermal Performance 42 2.6 Figures of Merit for Core Thermal Performance 45 2.6.1 Power Density 45 2.6.2 Specific Power 46 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 69		25	Thermal Design Margin					
2.6 Power Density		2.5	Figures of Merit for Core Thermal Performance					
2.6.1 Fower Density 45 2.6.2 Specific Power		2.0	2.6.1 Power Density					
2.6.2 Specific Power In Specific Power Relationship 40 2.6.3 Power Density and Specific Power Relationship 49 2.6.4 Specific Power in Terms of Fuel Cycle 0 Operational Parameters 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 69			2.6.1 Fower Density					
2.6.4 Specific Power in Terms of Fuel Cycle Operational Parameters 51 2.7 The Inverted Fuel Array 58 2.8 The Equivalent Annulus Approximation 62 Problems 67 References 69			2.6.2 Specific Power Density and Specific Power Relationship					
Operational Parameters			2.6.4 Specific Power in Terms of Fuel Cycle					
2.7 The Inverted Fuel Array			Operational Parameters	51				
2.8 The Equivalent Annulus Approximation		2.7	The Inverted Fuel Array	58				
Problems		2.8	The Equivalent Annulus Approximation					
References		Proh	lems					
		Refe	rences	69				

Chapter 3	React	tor Energ	y Distribution		71
	3.1	Introdu	ction		71
	3.2	Energy	Generation and	Deposition	
		3.2.1	Forms of Energ	y Generation	
		3.2.2	Energy Deposit	ion	
	3.3	Fission	Power and Calo	rimetric (Core Thermal) Pow	ver 75
	3.4	Energy	Generation Para	meters	
		3.4.1	Energy Generat	tion and Neutron Flux in	
			Thermal Reacto	ors	
		3.4.2	Relation betwee	en Heat Flux, Volumetric	
			Energy Generat	tion, and Core Power	
			3.4.2.1 Single	e Pin Parameters	
			3.4.2.2 Core	Power and Fuel Pin Paramete	ers84
	3.5	Power	Profiles in React	or Cores	
		3.5.1	Homogeneous V	Unreflected Core	
		3.5.2	Homogeneous (Core with Reflector	
		3.5.3	Heterogeneous	Core	
		3.5.4	Effect of Contro	ol Rods	
	3.6	Energy	Generation Rate	e within a Fuel Pin	
		3.6.1	Fuel Pins of Th	ermal Reactors	
		3.6.2	Fuel Pins of Fas	st Reactors	
	3.7	Energy	Deposition Rate	within the Moderator	
	3.8	Energy	Deposition in th	e Structure	
		3.8.1	γ-Ray Absorption	on	
	•	3.8.2	Neutron Slowin	g Down	
	3.9	Decay	Energy during O	peration and Post Shutdown.	
		3.9.1	Fission Power a	itter Reactivity Insertion	101
		3.9.2	Power from Fis	sion Product Decay	
		3.9.3	ANS Standard	Decay Power	
			3.9.3.1 0.021	n Light water Reactors	105
			3.9.3.2 Alteri	hative Fuels in Light water	110
	2 10	Stored		ast Reactors	
	5.10	2 10 1	The Zireelow W	Watar Departion	
		3.10.1	The Sodium W	Vater Reaction	
		3.10.2	The Sodium C	arbon Diovida Pagation	
		3.10.3	The Corium C	oncrete Interaction	
	Droh1	5.10.4			120 124
	Refer	ences			124 127
	Kelef	chees	•••••		121

Trans	Transport Equations for Single-Phase Flow				
4.1	Introdu	action	129		
	4.1.1	Equation Forms	129		
	4.1.2	Intensive and Extensive Properties	131		
	Trans	Transport Equ 4.1 Introdu 4.1.1 4.1.2	 Transport Equations for Single-Phase Flow		

	4.2	Mathe	matical Re	elations	131
		4.2.1	Time an	d Spatial Derivative	131
		4.2.2	Gauss's	Divergence Theorem	134
		4.2.3	Leibnitz	's Rules	134
	4.3	Lumpe	ed Parame	ter Integral Approach	137
		4.3.1	Control	Mass Formulation	137
			4.3.1.1	Mass	137
			4.3.1.2	Momentum	138
			4.3.1.3	Energy	138
			4.3.1.4	Entropy	140
		4.3.2	Control	Volume Formulation	142
			4.3.2.1	Mass	142
			4.3.2.2	Momentum	142
			4.3.2.3	Energy	143
			4.3.2.4	Entropy	145
	4.4	Distrib	outed Para	meter Integral Approach	148
	4.5	Differ	ential Con	servation Equations	151
		4.5.1	Conserv	ation of Mass	153
		4.5.2	Conserv	ation of Momentum	155
		4.5.3	Conserv	ation of Energy	161
			4.5.3.1	Stagnation Internal	
				Energy Equation	161
			4.5.3.2	Stagnation Enthalpy Equation	164
			4.5.3.3	Kinetic Energy Equation	165
			4.5.3.4	Thermodynamic Energy Equations	166
			4.5.3.5	Special Forms	167
		4.5.4	Summar	y of Equations	169
	4.6	Turbul	ent Flow		169
	Prob	lems			177
	Refe	rences			181
Chapter 5	Trong	aport Fa	untions for	r Two Dhase Flow	183
Chapter 5	man	sport Lq	uations io		105
	5.1	Introd	uction		183
		5.1.1	Macrosc	copic versus Microscopic Information	183
		5.1.2	Multicon	nponent versus Multiphase Systems	184
		5.1.3	Mixture	versus Multifluid Models	184
	5.2	Averag	ging Opera	ators for Two-Phase Flow	185
		5.2.1	Phase D	ensity Function	187
		5.2.2	Volume-	Averaging Operators	187
		5.2.3	Area-Av	eraging Operators	187
		5.2.4	Local Ti	me-Averaging Operators	187
		5.2.5	Commu	tativity of Space- and Time-Averaging	
			Operatio	ons	188
	5.3	Volum	e-Average	d Properties	188
		5.3.1	Void Fra	ection	188

		5.3.1.1	Instantaneous Space-Averaged	
			Void Fraction	. 188
		5.3.1.2	Local Time-Averaged Void Fraction	. 189
		5.3.1.3	Space- and Time-Averaged	
			Void Fraction	. 189
	5.3.2	Volumetr	ric Phase Averaging	. 190
		5.3.2.1	Instantaneous Volumetric Phase	
			Averaging	. 190
		5.3.2.2	Time Averaging of Volume-Averaged	
			Quantities	. 190
	5.3.3	Static Qu	ality	. 191
	5.3.4	Mixture	Density	. 192
5.4	Area-A	veraged P	roperties	. 192
	5.4.1	Area-Ave	eraged Phase Fraction	. 192
	5.4.2	Flow Qu	ality	. 197
	5.4.3	Mass Flu	Ixes	. 198
	5.4.4	Volumet	ric Fluxes and Flow Rates	. 199
	5.4.5	Velocity	(Slip) Ratio	.200
	5.4.6	Mixture	Density Over an Area	.200
	5.4.7	Volumet	ric Flow Ratio	.201
	548	Flow The	ermodynamic Quality	201
	549	Summar	v of Useful Relations for	. 201
	5.1.5	One-Din	nensional Flow	201
5.5	Mixtur	e Equation	is for One-Dimensional Flow	.203
0.0	5.5.1	Mass Co	ntinuity Equation	.204
	5.5.2	Momenti	1m Equation	.205
	5.5.3	Energy F	Equation	206
5.6	Control	-Volume 1	Integral Transport Equations	.207
0.0	5.6.1	Mass Ba	lance	.208
		5.6.1.1	Mass Balance for Volume V.	.208
		5612	Mass Balance in the Entire Volume V	209
		5613	Interfacial Jump Condition	210
		5614	Simplified Form of the	. 210
		5.0.1.1	Mixture Equation	211
	562	Momenti	im Balance	211
	0.0.2	5621	Momentum Balance for Volume V.	211
		5622	Momentum Balance in the	. 211
		5.0.2.2	Entire Volume V	213
		5623	Interfacial Jump Condition	213
		5624	Common Assumptions	214
		5625	Simplified Forms of the	. 215
		5.0.2.5	Mixture Equation	215
	563	Energy E	Ralance	. 21J 219
	5.0.5	5621	Energy Balance for the Volume V	· 210
		5622	Energy Equations for the Total Volume V_k	. 210
		5622	Energy Equations for the Total volume V	
		5.0.5.5	Jump Condition	. ∠∠∠

	5.7	One-D	Dimension	al Space-Averaged Transport Equations	223
		5.7.1	Mass Ec	quations	223
		5.7.2	Moment	tum Equations	224
		5.7.3	Energy	Equations	225
	Prob	lems		1	228
	Refe	rences			232
	TT 1				
Chapter 6	Ther	modyna	mics of N	uclear Energy Conversion	
	Syste	ems: Nor	iflow and	Steady Flow: First- and	
	Seco	nd-Law	Applicatio	ons	233
	6.1	Introd	uction		233
	6.2	Nonflo	w Proces	S	235
		6.2.1	A Fuel-	Coolant Thermal Interaction	236
			6.2.1.1	Step I: Coolant and Fuel Equilibration	
				at Constant Volume	236
			6.2.1.2	Step II: Coolant and Fuel Expanded as	
				Two Independent Systems, Isentropically	v
				and Adjabatically	
			6213	Step III: Coolant and Fuel Expanded	0)
			0.2.1.5	as One System in Thermal Equilibrium	
				Adiabatically and Isentropically	243
	63	Therm	odvnamia	A nalysis of Nuclear Power Plants	245
	6.J	Therm	odynamic	Analysis of a Simplified PWP System	254
	0.4	6 4 1	First L o	w Analysis of a Simplified	234
		0.4.1		vstom	254
		612	Combin	ad First and Second Law on Availability	234
		0.4.2	A malanai	ed First and Second Law of Availability	262
			Analysis	s of a Simplified PWR System	203
			0.4.2.1	Turbine and Pump	204
			6.4.2.2	Steam Generator and Condenser	264
			6.4.2.3	Reactor Irreversibility	266
			6.4.2.4	Plant Irreversibility	268
	6.5	More (Complex I	Rankine Cycles: Superheat, Reheat,	
		Regen	eration, ar	nd Moisture Separation	272
	6.6	Simple	e Brayton	Cycle	281
	6.7	More (Complex I	Brayton Cycles	285
	6.8	Superc	critical Ca	rbon Dioxide Brayton Cycles	296
		6.8.1	Simple	S-CO ₂ Brayton Cycle	297
		6.8.2	S-CO ₂ H	Brayton Cycle with Ideal Components	
			and Reg	eneration	298
		6.8.3	S-CO ₂ F	Recompression Brayton Cycle with	
			Ideal Co	omponents	300
		6.8.4	S-CO ₂ F	Recompression Brayton Cycle with	
			Real Co	mponents and Pressure Losses	305
	Prob	lems		-	308
	Refe	rences			317

Chapter 7	Thermodynamics of Nuclear Energy Conversion Systems:					
	Nons	steady Fl	low First I	Law Analysis	319	
	71	Introd	uction		319	
	7.2	Contai	inment Pr	essurization Process		
		7.2.1	Analysi	s of Transient Conditions	321	
			7.2.1.1	Control Mass Approach	321	
			7.2.1.2	Control Volume Approach		
		7.2.2	Analysi	s of Final Equilibrium		
			Pressure	e Conditions	325	
			7.2.2.1	Control Mass Approach	325	
			7.2.2.2	Control Volume Approach	326	
			7.2.2.3	Governing Equations for		
			/121210	Determination of Final		
				Conditions		
			7.2.2.4	Individual Cases	329	
	7.3	Respo	nse of a P	WR Pressurizer to Load Changes	338	
	110	7.3.1	Equilib	rium Single-Region Formulation	338	
		732	Analysi	s of Final Equilibrium		
		7.3.2	Pressure	e Conditions	340	
	Prob	lems	11055011			
	1100	•••••				
Chapter 8	Thermal Analysis of Fuel Elements					
	8.1	Introd	uction		359	
	8.2	Heat C	Conduction	n in Fuel Elements		
		8.2.1	General	Equation of Heat Conduction		
		8.2.2	Therma	1 Conductivity Approximations		
	8.3	Therm	al Proper	ties of UO ₂ and MOX		
		8.3.1	Therma	l Conductivity		
			8.3.1.1	Temperature Effects		
			8.3.1.2	Porosity (Density) Effects	367	
			8.3.1.3	Oxygen-to-Metal Atomic Ratio	371	
			8.3.1.4	Plutonium Content	371	
			8.3.1.5	Effects of Pellet Cracking		
			8.3.1.6	Burnup	373	
		8.3.2	Fission	Gas Release	374	
		8.3.3	Melting	Point	375	
		8.3.4	Specific	Heat	375	
		8.3.5	The Rin	n Effect		
	8.4	Tempe	rature Dis	stribution in Plate		
		Fuel E	lements			
		8.4.1	Heat Co	nduction in Fuel	381	
		8.4.2	Heat Co	nduction in Cladding		
		8.4.3	Therma	1 Resistances		
		8.4.4	Conditio	ons for Symmetric		
			Temper	ature Distributions		
			1			

Contents

	8.5	Tempe	erature Distribution in Cylindrical Fuel Pins	390
		8.5.1	General Conduction Equation for	
			Cylindrical Geometry	390
		8.5.2	Solid Fuel Pellet	391
		8.5.3	Annular Fuel Pellet (Cooled Only on the	
			Outside Surface R_c)	392
		854	Annular Fuel Pellet (Cooled on Both Surfaces)	393
		855	Solid versus Annular Pellet Performance	397
		856	Annular Fuel Pellet (Cooled Only on the	
		0.5.0	Inside Surface R)	300
	86	Tempe	$\frac{1}{1}$	
	0.0	Fuel F	lements	403
		261	Mass Balance	404
		0.0.1 960	Power Density Polations	404
		0.0.2	Host Conduction in Zone 2	403
		8.0.3	Heat Conduction in Zone 3	400
		8.6.4	Heat Conduction in Zone 2	407
		8.6.5	Heat Conduction in Zone 1	408
		8.6.6	Solution of the Pellet Problem	
		8.6.7	Two-Zone Sintering	409
		8.6.8	Design Implications of Restructured Fuel	416
	8.7	Therm	al Resistance Between the Fuel and Coolant	416
		8.7.1	Gap Conductance Models	418
			8.7.1.1 As-Fabricated Gap	418
			8.7.1.2 Gap Closure Effects	
		8.7.2	Cladding Corrosion: Oxide Film Buildup	
			and Hydrogen Consequences	422
		8.7.3	Overall Thermal Resistance	425
	Prob	lems		427
	Refe	rences		435
Chapter 0	Sing	a Dhaca	Fluid Machanics	420
Chapter 9	Sing	le-r nase		439
	9.1	Appro	ach to Simplified Flow Analysis	439
		9.1.1	Solution of the Flow Field Problem	439
		9.1.2	Possible Simplifications	440
	9.2	Invisc	id Flow	442
		9.2.1	Dynamics of Inviscid Flow	442
		9.2.2	Bernoulli's Integral	
			9.2.2.1 Time-Dependent Flow	
			9222 Steady-State Flow	450
		923	Compressible Inviscid Flow	454
		1.2.3	9.2.3.1 Flow in a Constant-A rea Duct	+3 - 454
			9232 Flow through a Suddan Expansion	
			or Contraction	156
	02	Visco	is Flow	+50 //56
	2.5	0 2 1	Viscosity Fundamentals	+JU
		2.2.1	viscosity runuamentais	+0

	9.3.2	Viscosity	Changes with Temperature	
		and Pres	sure	
	9.3.3	Boundar	y Layer	
	9.3.4	Turbulen	ce	
	9.3.5	Dimensi	onless Analysis	
	9.3.6	Pressure	Drop in Channels	
	9.3.7	Summar	y of Pressure Changes in Inviscid/Vi	scid
		and in C	ompressible/Incompressible Flows	
9.4	Lamin	ar Flow In	side a Channel	
	9.4.1	Fully De	veloped Laminar Flow in a	
		Circular	Tube	
	9.4.2	Fully De	veloped Laminar Flow in	
		Noncircu	ılar Geometries	
	9.4.3	Laminar	Developing Flow Length	
	9.4.4	Form Lo	sses in Laminar Flow	
9.5	Turbul	ent Flow I	nside a Channel	476
	9.5.1	Turbulen	t Diffusivity	
	9.5.2	Turbulen	t Velocity Distribution	
	9.5.3	Turbulen	t Friction Factors in Adiabatic	
		and Diab	patic Flows	
		9.5.3.1	Turbulent Friction Factor:	
			Adiabatic Flow	
		9.5.3.2	Turbulent Friction Factor: Diabatic F	low 481
	9.5.4	Fully De	veloped Turbulent Flow with	
		Noncircu	ılar Geometries	
	9.5.5	Turbulen	t Developing Flow Length	
	9.5.6	Turbulen	t Friction Factors—Geometries	
		for Enha	nced Heat Transfer	
		9.5.6.1	Extended Surfaces	
		9.5.6.2	Twisted Tape Inserts	491
	9.5.7	Turbulen	t Form Losses	
9.6	Pressu	re Drop in	Rod Bundles	
	9.6.1	Friction	Loss along Bare Rod Bundles	
		9.6.1.1	Laminar Flow	
		9.6.1.2	Turbulent Flow	501
	9.6.2	Pressure	Loss at Fuel Pin Spacer and	
		Support	Structures	
		9.6.2.1	Grid Spacers	
		9.6.2.2	Wire Wrap Spacers	513
		9.6.2.3	Grid versus Wire Wrap Pressure Lo	oss 514
	9.6.3	Pressure	Loss for Cross Flow	515
		9.6.3.1	Across Bare Rod Arrays	515
		9.6.3.2	Across Wire-Wrapped Rod Bundles	518
	9.6.4	Form Lo	sses for Abrupt Area Changes	521
		9.6.4.1	Method of Calculation	
		9.6.4.2	Loss Coefficient Values	

	Proble Refer	ems ences		
Chapter 10	Single	e-Phase	Heat Transfer	535
	10.1	Fundar	nentals of Heat Transfer Analysis	535
		10.1.1	Objectives of the Analysis	535
		10.1.2	Approximations to the Energy Equation	535
		10.1.3	Dimensional Analysis	537
		10.1.4	Thermal Conductivity	538
		10.1.5	Engineering Approach to Heat	
			Transfer Analysis	539
	10.2	Lamina	ar Heat Transfer in a Pipe	
		10.2.1	Fully Developed Flow in a	
			Circular Tube	
		10.2.2	Developed Flow in Other Geometries	
		10.2.3	Developing Laminar Flow Region	
	10.3	Turbule	ent Heat Transfer: Mixing Length Approach	551
		10.3.1	Equations for Turbulent Flow in	
			Circular Coordinates	551
		10.3.2	Relation between $\varepsilon_{\rm M}$, $\varepsilon_{\rm H}$, and	
			Mixing Lengths	555
		10.3.3	Turbulent Temperature Profile	556
	10.4	Turbule	ent Heat Transfer: Differential Approach	562
		10.4.1	Basic Models	562
		10.4.2	Transport Equations for the $k_t - \varepsilon_t$ Model	
		10.4.3	One-Equation Model	
		10.4.4	Effect of Turbulence on the Energy Equation	
		10.4.5	Summary	
	10.5	Heat Tr	ansfer Correlations in Turbulent Flow	
		10.5.1	Nonmetallic Fluids—Smooth Heat	
			Transfer Surfaces	
			10.5.1.1 Fully Developed Turbulent Flow	
			10.5.1.2 Entrance Region Effect	573
		10.5.2	Nonmetallic Fluids: Geometries for	
			Enhanced Heat Transfer	578
			10.5.2.1 Ribbed Surfaces	578
			10.5.2.2 Twisted Tape Inserts	
		10.5.3	Metallic Fluids—Smooth Heat Transfer	
			Surfaces: Fully Developed Flow	
			10.5.3.1 Circular Tube	
			10.5.3.2 Parallel Plates	
			10.5.3.3 Concentric Annuli	
			10.5.3.4 Rod Bundles	
	Probl	ems		593
	Refer	ences		600

Chapter 11	Two-Phase Flow Dynamics			
	11.1	Introdu	ction	603
	11.2	Flow R	egimes	604
		11.2.1	Regime Identification	604
		11.2.2	Flow Regime Maps	605
			11.2.2.1 Vertical Flow	607
			11.2.2.2 Horizontal Flow	613
		11.2.3	Flooding and Flow Reversal	615
	11.3	Flow M	odels	619
	11.4	Overvie	ew of Void Fraction and Pressure	
		Loss Co	prrelations	620
	11.5	Void Fr	action Correlations	620
		11.5.1	The Fundamental Void Fraction-	
			Quality-Slip Relation	622
		11.5.2	Homogeneous Equilibrium Model	622
		11.5.3	Drift Flux Model	625
		11.5.4	Chexal and Lellouche Correlation	628
		11.5.5	Premoli Correlation	632
		11.5.6	Bestion Correlation	633
	11.6	Pressur	e–Drop Relations	638
		11.6.1	The Acceleration, Friction, and	
			Gravity Components	638
		11.6.2	Homogeneous Equilibrium Models	641
		11.6.3	Separate Flow Models	645
			11.6.3.1 Lockhart–Martinelli Correlation	646
			11.6.3.2 Thom Correlation	649
			11.6.3.3 Baroczy Correlation	652
			11.6.3.4 Friedel Correlation	652
		11.6.4	Two-Phase Pressure Drop	657
			11.6.4.1 Pressure Drop for Inlet Quality $x = 0$	657
			11.6.4.2 Pressure Drop for Nonzero	
			Inlet Quality	661
		11.6.5	Relative Accuracy of Various Friction	
			Pressure Loss Models	661
	11.7	11.6.6	Pressure Losses across Singularities	663
	11.7	Critical	Flow	665
		11.7.1	Background	665
		11.7.2	Single-Phase Critical Flow	666
		11./.3	Iwo-Phase Critical Flow	
			11.7.3.1 Thermal Equilibrium Models	669
			11.7.2.2 Inermal Nonequilibrium Models	0/2
	11.0	Tu DI	11.7.5.5 Practical Guidelines for Calculations	0/3
	11.8	IWO-Ph	The arms al Hardward in Instabilities	0/9
		11.8.1	11.9.1.1. Ledinara Instabilities	0/9
			11.8.1.1 Leainegg instabilities	080

			11.8.1.2 Density Wave Oscillations	684
		11.8.2	Thermal-Hydraulic Instabilities with	
			Neutronic Feedback	686
	Proble	ems		687
	Refer	ences		693
Chapter 12	Pool I	Boiling		697
	12.1	Introdu	ction	
	12.2	Nuclea	tion	
		12.2.1	Equilibrium Bubble Radius	
		12.2.2	Homogeneous and Heterogeneous Nucleation	700
		12.2.3	Vapor Trapping and Retention	701
		12.2.4	Vapor Growth from Microcavities	
		12.2.5	Bubble Dynamics—Growth and Detachment	705
		12.2.6	Nucleation Summary	706
	12.3	The Po	ol Boiling Curve	706
	12.4	Heat Tr	ransfer Regimes	707
		12.4.1	Nucleate Boiling Heat Transfer (between	
			Points B–C of the Boiling Curve of Figure 12.8)	707
		12.4.2	Transition Boiling (between Points C–D of	
			the Boiling Curve of Figure 12.8)	709
		12.4.3	Film Boiling (between Points D–F of the	
			Boiling Curve of Figure 12.8)	709
	12.5	Limitir	g Conditions on the Boiling Curve	717
		12.5.1	Critical Heat Flux (Point C of the Boiling	
			Curve of Figure 12.8)	717
		12.5.2	Minimum Stable Film Boiling Temperature	
			(Point D of the Boiling Curve of Figure 12.8)	719
	12.6	Surface	Effects in Pool Boiling	722
	12.7	Conder	sation Heat Transfer	724
		12.7.1	Filmwise Condensation	725
			12.7.1.1 Condensation on a Vertical Wall	725
			12.7.1.2 Condensation on or in a Tube	726
		12.7.2	Dropwise Condensation	729
		12.7.3	The Effect of Noncondensable Gases	729
	Probl	ems		732
	Refer	ences		737
Chapter 13	Flow	Boiling.		741
	13.1	Introdu	ction	741
	13.2	Heat Tr	ransfer Regions and Void Fraction/Ouality	
		Develo	pment	741
		13.2.1	Heat Transfer Regions	741
			13.2.1.1 Onset of Nucleate Boiling, Z_{ONB}	746
			C: OID	

			13.2.1.2	Net Vapor Generation, Z _{NVG}	748
			13.2.1.3	Onset of Saturated Boiling, Z_{OSB}	751
			13.2.1.4	Location of Thermal Equilibrium, $Z_{\rm E}$	751
			13.2.1.5	Void Fraction Profile, $\alpha(z)$	751
	13.3	Heat T	ransfer Coo	efficient Correlations	752
		13.3.1	Subcoole	d Boiling Heat Transfer	752
			13.3.1.1	Multiple Author Correlations	754
			13.3.1.2	Chen Correlation	755
		13.3.2	Bjorge, H	all, and Rohsenow Correlation	759
		13.3.3	Post-CHI	F Heat Transfer	763
			13.3.3.1	Both Film Boiling Regimes (Inverted	
				and Dispersed Annular Flow)	764
			13.3.3.2	Inverted Annular Flow Film	
				Boiling (Only)	765
			13.3.3.3	Dispersed Annular or Liquid	
				Deficient Flow Film Boiling (Only)	766
			13.3.3.4	Transition Boiling	770
		13.3.4	Refloodin	g of a Core Which Has Been Uncovered	771
	13.4	Critica	l Condition	or Boiling Crisis	772
		13.4.1	Critical C	Condition Mechanisms and	
			Limiting	Values	773
		13.4.2	The Criti	cal Condition Mechanisms	775
			13.4.2.1	Models for DNB	775
			13.4.2.2	Model for Dryout	776
			13.4.2.3	Variation of the Critical Condition	
				with Key Parameters	776
		13.4.3	Correlatio	ons for the Critical Condition	777
			13.4.3.1	Correlations for Tube Geometry	779
			13.4.3.2	Correlations for Rod	
				Bundle Geometry	787
		13.4.4	Design M	largin in Critical Condition Correlation	810
			13.4.4.1	Characterization of the	
				Critical Condition	810
			13.4.4.2	Margin to the Critical Condition	811
			13.4.4.3	Comparison of Various Correlations	811
			13.4.4.4	Design Considerations	816
	Probl	ems			816
	Refer	ences			819
Chapter 14	Singl	e Heated	Channel:	Steady-State Analysis	823
	14.1	Introdu	ction		823
	14.2	Formul	ation of O	ne-Dimensional Flow Equations	823
		14.2.1	Nonunifo	rm Velocities	823
		14.2.2	Uniform	and Equal Phase Velocities	826
	14.3	Deline	ation of Be	havior Modes	827

14.4	• The L	WR Cases Analyzed in Subsequent Sections	828
14.5	Steady	-State Single-Phase Flow in a Heated Channel	829
	14.5.1	Solution of the Energy Equation for a Single-Pha	se
		Coolant and Fuel Rod (PWR Case)	829
		14.5.1.1 Coolant Temperature	831
		14.5.1.2 Cladding Temperature	832
		14 5 1 3 Fuel Centerline Temperature	833
	1452	Solution of the Energy Equation for a Single-	
	11.5.2	Phase Coolant with Roughened Cladding	
		Surface (Gas East Reactor)	835
	1/ 5 3	Solution of the Momentum Equation to Obtain	055
	14.5.5	Single Phase Pressure Drop	836
14.6	Standy	State Two Phase Flow in a Heated Channel	850
14.0	Under	Fully Equilibrium (Thermal and	
	Macha	nicel) Conditions	020
	1461	Solution of the Energy Equation for	030
	14.0.1	True Dhace Elere (DWD Case with Single Dhace	
		Two-Phase Flow (BwR Case with Single-Phase	020
	14 ()	Entry Region)	838
	14.6.2	Solution of the Momentum Equation for Fully	
		Equilibrium Iwo-Phase Flow Conditions to	
		Obtain Channel Pressure Drop (BWR Case	0.4.4
		with Single-Phase Entry Region)	844
		14.6.2.1 $\Delta p_{\rm acc}$	845
		14.6.2.2 Δp_{grav}	846
		14.6.2.3 Δp_{fric}	847
		14.6.2.4 Δp_{form}	848
14.7	Steady	-State Two-Phase Flow in a Heated Channel	
	Under	Nonequilibrium Conditions	851
	14.7.1	Solution of the Energy Equation for	
		Nonequilibrium Conditions	
		(BWR and PWR Cases)	852
		14.7.1.1 Prescribed Wall Heat Flux	852
		14.7.1.2 Prescribed Coolant Temperature	859
	14.7.2	Solution of the Momentum Equation for	
		Channel Nonequilibrium Conditions to	
		Obtain Pressure Drop (BWR Case)	868
Prot	olems		876
Refe	erences		884
Appendix A: Sel	ected No	menclature	887
Appendix B: Phy	ysical and	l Mathematical Constants	905
Appendix C: Un	it System	S	907
Appendix D: Ma	thematic	al Tables	
rr			

Appendix E: Thermodynamic Properties	
Appendix F: Thermophysical Properties of Some Substances	
Appendix G: Dimensionless Groups of Fluid Mechanics and Heat Transfer	959
Appendix H: Multiplying Prefixes	
Appendix I: List of Elements	
Appendix J: Square and Hexagonal Rod Array Dimensions	
Appendix K: Parameters for Typical BWR-5 and PWR Reactors	
Index	977

Preface

In the 22 years since the first edition appeared, nuclear power systems have regained favor worldwide as a scalable, dependable, and environmentally desirable energy supply technology. While water-cooled reactor types promise to dominate the deployment of nuclear power systems well into this century, several alternate cooled reactors among the six Generation IV proposed designs are now under intensive development for deployment in the next decades.

Consequently, while this new edition continues to emphasize pressurized and boiling light water reactor technologies, the principal characteristics and analysis approaches for the Generation IV designs of most international interest, the liquidmetal- and gas-cooled options, are introduced as well.

To accomplish this, the content of most chapters has been amplified by introducing both new analysis approaches and correlation methods which have gained the favor of experts over the past several decades. Nevertheless, these enhancements have been introduced into the sequence of chapters of the first edition, a sequence which has proven to be pedagogically effective. This organization of text chapters is shown in Table 0.1.

The content of these chapters emphasizing new material in particular is summarized below:

- Chapter 1 surveys the characteristics of all current principal reactor types: operating and advanced light water-cooled designs as well as the six Generation IV designs.
- Chapter 2 emphasizes the relations that integrate the performance of the core nuclear steam supply system and balance of plant. In doing so, the performance measures of the multiple disciplines—neutronics, thermal hydraulics, fuel behavior, structural mechanics, and reactor operations— are introduced and interrelated. In particular, power density and specific power measures are thoroughly developed for standard fuel pin arrays as well as inverted (fuel and coolant are spatially interchanged) assembly configurations.
- Chapter 3 presents a thorough description of the magnitude and spatial distribution of the generation and deposition of energy within the reactor vessel assembly. Emphasis is given to the evolution of the American Nuclear Society Decay Heat Generation Standard up to 2005. Multiple other sources of stored energy are present in reactor systems such as those associated with elevated temperature and pressure conditions of the primary and secondary reactor coolants and the chemical reactions of materials of construction under extreme temperatures characteristic of accident conditions. The stored energy and the energy liberated by the chemical reactions characteristic of the light water reactor materials are now presented in detail.

TABLE 0.1 Text Contents by Chapter and Subject

1—Reactor-Type Overview

2—Core and Plant Performance Measures

3—Fission Energy Generation and Deposition

	Conservation Equations	Thermodynamics	Fluid Flow	Heat Transfer
Single-Phase	4-Differential and		8—Fuel Pins	and Assemblies
Coolant	Integral		9—Single	10—Single
	Formulations		Channels	Channels
Two-Phase	5—Differential and		11—Single	12—Pool Boiling
Coolant	Integral		Channels	13—Flow Boiling in
	Formulations;			Single Channel
	2 parameter			
	Definitions			
Single-Phase		6—Power Cycles	14—Single-C	hannel Examples
and Two-Phase		7-Components and		
Coolants		Containment		

- Chapters 4 and 5, which present the mass, momentum, energy, and entropy conservation equations for single- and two-phase coolants in differential and control volume formulations, are unchanged from the first edition.
- Chapter 6 presents the analysis of power generation cycles, both Rankine and Brayton types. The analysis of the supercritical carbon dioxide (SCO₂) cycle, which has recently been introduced as a performance and cost-efficient option for Generation IV systems, is presented. Of note, this presentation is designed to clearly illustrate how this recompression cycle must be designed and analyzed, a subtlety which otherwise easily confounds the inexperienced analyst.
- Chapter 7 applies thermodynamic principles for analysis of the fuel and coolant mixture in a severe accident, for analysis of containment design and accident performance, and for analysis of PWR pressurizer performance. The chapter remains as in the first edition with the fundamentals of pressurizer performance becoming the focus now by deletion of the more complex multiregion pressurizer model introduced in the first edition.
- Chapter 8 significantly amplifies the discussion of fuel pin materials and thermal analysis of various fuel geometries in the first edition. Extensive fuel and cladding material properties for thermal and fast neutron spectrum reactors are now included. Additionally, the case of annular fuel geometry, which is cooled inside and outside, is fully analyzed. Finally, the correlations for cladding-coolant surface oxidation are now included.
- Chapters 9 and 10 present the fluid flow and thermal analysis techniques for single-phase coolant in laminar and turbulent flow. Noteworthy new

material presents the analysis of geometries configured for enhanced heat transfer albeit with pressure loss penalty.

- Chapters 11 and 12 along with Chapter 13 present fluid flow and thermal analysis techniques for two-phase flow. Chapter 11 now has expanded coverage of critical flow and new coverage of flow instabilities and condensation. Boiling heat transfer is now separated into pool boiling and flow boiling in Chapters 12 and 13, respectively. The entire two-phase flow treatment in these three chapters has been expanded to include recent correlations of current usage, particularly for void fraction, pressure loss, and the critical condition.
- Chapter 14 has been thoroughly restructured to present a systematic analysis of heated flow channel performance for single- and two-phase flow utilizing the methods and correlations of Chapters 9 through 13. Specific focus is directed to conditions of equilibrium and nonequilibrium for both equal/ unequal phasic temperatures (thermal equilibrium) and equal phasic flow velocities (mechanical equilibrium).

Finally, throughout the text we refer as appropriate to further elaboration of relevant technical information which appears in the companion *Volume II* of this text.*

^{*} Todreas, N. E. and Kazimi, M. S., Nuclear Systems II: Elements of Thermal Hydraulic Design. New York: Taylor & Francis, 2001.

Preface to the First Edition

This book can serve as a textbook for two to three courses at the advanced undergraduate and graduate student level. It is also suitable as a basis for the continuing education of engineers in the nuclear power industry who wish to expand their knowledge of the principles of thermal analysis of nuclear systems. The book, in fact, was an outgrowth of the course notes used for teaching several classes at MIT over a period of nearly 15 years.

The book is meant to cover more than thermal hydraulic design and analysis of the core of a nuclear reactor. Thus, in several parts and examples, other components of the nuclear power plant, such as the pressurizer, the containment, and the entire primary coolant system, are addressed. In this respect the book reflects the importance of such considerations in thermal engineering of a modern nuclear power plant. The traditional concentration on the fuel element in earlier textbooks was appropriate when the fuel performance had a higher share of the cost of electricity than in modern plants. The cost and performance of nuclear power plants has proved to be more influenced by the steam supply system and the containment building than previously anticipated.

The desirability of providing in one book basic concepts as well as complex formulations for advanced applications has resulted in a more comprehensive textbook than those previously authored in the field. The basic ideas of both fluid flow and heat transfer as applicable to nuclear reactors are discussed in *Volume I*. No assumption is made about the degree to which the reader is already familiar with the subject. Therefore, various reactor types, energy source distribution, and fundamental laws of conservation of mass, momentum, and energy are presented in early chapters. Engineering methods for analysis of flow hydraulics and heat transfer in single-phase as well as two-phase coolants are presented in later chapters. In *Volume II*, applications of these fundamental ideas to multi-channel flow conditions in the reactor are described as well as specific design considerations such as natural convection and core thermal reliability. They are presented in a way that renders it possible to use the analytical development in simple exercises and as the bases for numerical computations similar to those commonly practiced in the industry.

A consistent nomenclature is used throughout the text and a table of the nomenclature is included in the Appendix. Each chapter includes problems identified as to their topic and the section from which they are drawn. While the SI unit system is principally used, British Engineering Units are given in brackets for those results commonly still reported in the United States in this system.

Acknowledgments

The authors are indebted to several fellow faculty, professional associates, staff, and students who provided significant assistance in preparing and reviewing this second edition of *Nuclear Systems Volume I*. Besides those named here, there were many who sent us notes and comments over the years, which we took into consideration in this second edition.

Our faculty colleague, Jacopo Buongiorno, provided essential insights on a number of technical topics introduced or expanded upon in this new edition. Also, he provided a collection of solved problems drawn from MIT courses taught using this text, which have been integrated into the exercises at the end of each chapter. Our faculty colleagues, Arthur Bergles, Michael Driscoll, and Eugene Shwageraus, as well as our professional associates, Mahmoud Massoud, Tom Newton, Aydin Karadin, and Charles Kling, carefully proofed major portions of the text and offered materials and comments for our consideration.

The following students greatly assisted in the preparation of the text by researching the technical literature as well as preparing figures and example solutions: Muhammed Ayanoglu, Tom Conboy, Jacob DeWitte, Paolo Ferroni, Giancarlo Lenci, and Wenfeng Liu. Bryan Herman prepared the manual of solutions to all homework problems in the text. In the proofreading of the final manuscript we were greatly assisted by the following students: Nathan Andrews, Tyrell Arment, Ramsey Arnold, Jacob DeWitte, Mihai Diaconeasa, You Ho Lee, Giancarlo Lenci, Alexander Mieloszyk, Stefano Passerini, Joshua Richard, Koroush Shirvan, John Stempien, and Francesco Vitillo.

The Problemsolver software was developed by Dr. Massoud, and several Excel spreadsheets were developed by Giancarlo Lenci for critical heat flux application. We convey our additional thanks to both for providing these useful problem-solving tools to enhance our text.

The preparation of the manuscript was expertly and conscientiously done by Richard St. Clair, who tirelessly worked on the iterations of insertions and deletions of material in the text. We also extend our gratitude to Paula Cornelio who prepared the majority of the new figures for this edition as she equally did for the original text.

We also acknowledge the review of our proposed plan for the technical content of this second edition by Professors Samim Anghaie, Fred Best, Larry Hockreiter, and Michel Giot. Their observations and suggestions were influential in our final selection of topics to be rewritten, added, and deleted, although the final selection was made by us.

PREPARATION OF THE SECOND EDITION-REVISED PRINTING

The students, Giancarlo Lenci and Pierre Guenoun, and faculty, Jacopo Buongiorno and Yuksel Parlatan, were of great assistance in identifying needed edits for this revised edition. Their efforts are greatly appreciated.

PROBLEMSOLVER SOFTWARE AND ERRATA

The CRC book website, found at https://www.crcpress.com/product/isbn/ 9781439808870 (Downloads/Updates tab), contains the Problemsolver software and book Errata. It also contains information on how to access the updated online listing of errata, on how to report newly identified errata to the authors, and on how to access extra technical content related to a future Third Edition.

Authors

Neil E. Todreas is Professor Emeritus in the Departments of Nuclear Science and Engineering and Mechanical Engineering at the Massachusetts Institute of Technology. He held the Korea Electric Power Corporation (KEPCO) chair in Nuclear Engineering from 1992 until his retirement to part-time activities in 2006. He served an 8-year period from 1981 to 1989 as the Nuclear Engineering Department Head. Since 1975 he has been a codirector of the MIT Nuclear Power Reactor Safety summer course, which presents current issues of reactor safety significant to an international group of nuclear engineering professionals. His area of technical expertise includes thermal and hydraulic aspects of nuclear reactor engineering and safety analysis. He started his career at Naval Reactors working on submarine and surface nuclear vessels after earning the B.Eng. and the M.S. in mechanical engineering from Cornell University. Following his Sc.D. in Nuclear Engineering at MIT, he worked for the Atomic Energy Commission (AEC) on organic cooled/heavy watermoderated and sodium-cooled reactors until he returned as a faculty member to MIT in 1970. He has an extensive record of service for government (Department of Energy (DOE), U.S. Nuclear Regulatory Commission (USNRC), and national laboratories) and utility industry review committees including INPO, and international scientific review groups. He has authored more than 200 publications and a reference book on safety features of light water reactors. He is a member of the U.S. National Academy of Engineering and a fellow of the American Nuclear Society (ANS) and the American Society of Mechanical Engineers (ASME). He has received the American Nuclear Society Thermal Hydraulics Technical Achievement Award, its Arthur Holly Compton Award in Education, and its jointly conferred (with the Nuclear Energy Institute) Henry DeWolf Smyth Nuclear Statesman Award.

Mujid S. Kazimi is Professor in the Departments of Nuclear Science and Engineering and Mechanical Engineering at the Massachusetts Institute of Technology. He is the director of the Center for Advanced Nuclear Energy Systems (CANES) and holds the Tokyo Electric Power Company (TEPCO) chair in Nuclear Engineering at MIT. Prior to joining the MIT faculty in 1976, Dr. Kazimi worked for a brief period at the Advanced Reactors Division of Westinghouse Electric Corporation and at Brookhaven National Laboratory. At MIT he was head of the Department of Nuclear Engineering from 1989 to 1997 and Chair of the Safety Committee of the MIT Research Reactor from 1998 to 2009. He has served since 1990 as the codirector of the MIT Nuclear Power Reactor Safety summer course. He is active in the development of innovative designs of fuel and other components of nuclear power plants and in analysis of the nuclear fuel cycle options for sustainable nuclear energy. He cochaired the 3-year MIT interdisciplinary study on the Future of the Nuclear Fuel *Cycle*, published in 2011. He has served on scientific advisory committees at the U.S. National Academy of Engineering and several other national agencies and laboratories in the United States, Japan, Spain, Switzerland, Kuwait, the United Arab Emirates, and the International Atomic Energy Agency. He has authored more than 200 articles and papers that have been published in journals and presented at international conferences. Dr. Kazimi holds a B.Eng. degree from Alexandria University in Egypt, and M.S. and Ph.D. degrees from MIT, all in nuclear engineering. He is a fellow of the American Nuclear Society and the American Association for the Advancement of Science. Among his honors is the Technical Achievement Award in Thermal Hydraulics by the American Nuclear Society.

1 Principal Characteristics of Power Reactors

1.1 INTRODUCTION

This chapter presents the basic characteristics of power reactors. These characteristics, along with more detailed thermal hydraulic parameters presented in further chapters, enable the student to apply the specialized techniques presented in the remainder of the text to a range of reactor types. Water-, gas-, and sodium-cooled reactor types, identified in Table 1.1, encompass the principal nuclear power reactor designs that have been employed in the world. The thermal hydraulic characteristics of these reactors are presented in Sections 1.2 through 1.5 as part of the description of the power cycle, primary coolant system, core, and fuel assembly design of these reactor types. Three classes of advanced reactors are also presented in subsequent sections, the Generation III, III+, and IV designs. The Generation III designs are advanced water reactors that have already been brought into operation (ABWR) or are under construction (EPR). The Generation III+ designs are advanced water- and gas-cooled reactors, several of which are being licensed and brought into service in the 2010 decade [12]. These Generation III and III+ designs are discussed in Section 1.6. The Generation IV reactors described in Section 1.7 were selected by an international roadmapping process and are being pursued through an internationally coordinated research and development activity for deployment in the period 2020-2040 [13]. Figure 1.1 presents the evolution and categorization by the generation of the world's reactor types. Tables in Chapters 1 and 2 and Appendix K provide detailed information on reactor characteristics useful for application to specific illustrative examples and homework problems in the text.

1.2 POWER CYCLES

In these plants, a primary coolant is circulated through the reactor core to extract energy for ultimate conversion to electricity in a turbine connected to an electric generator. Depending on the reactor design, the turbine may be driven directly by the primary coolant or by a secondary coolant that has received energy from the primary coolant. The number of coolant systems in a plant equals the sum of the one primary and one or more secondary systems. For the boiling water reactor (BWR) and the high-temperature gas reactor (HTGR) systems, which produce steam and hot helium by passage of a primary coolant through the core, direct use of these primary coolants in the turbine is possible, leading to a single-coolant system. The BWR

TABLE 1.1Basic Features of Major Power Reactor Types

					Fuel
Reactor Type	Neutron Spectrum	Moderator	Coolant	Chemical Form	Approximate Fissile Content (All ²³⁵ U Except the Sodium-Cooled Reactors)
Water-cooled	Thermal				
PWR		H_2O	H_2O	UO_2	3-5% enrichment
BWR		H_2O	H_2O	UO_2	3-5% enrichment
PHWR (CANDU)		D_2O	D_2O	UO ₂	Natural
SGHWR ^a		D_2O	H_2O	UO ₂	~3% enrichment
Gas-cooled	Thermal	Graphite			
Magnox			CO_2	U metal	Natural
AGR			CO_2	UO_2	~3% enrichment
HTGR			Helium	UO_2	~7-20% enrichment ^b
Sodium-cooled	Fast	None	Sodium		
SFBR ^c				UO ₂ /PuO ₂	~15–20% of HM is Pu^e
SFR ^d				NU-TRU-Zr ^f metal or oxide	~15% of HM is TRU

^a Steam-generating heavy water reactor.

^b Older operating plants have enrichments of more than 90% and used a variety of thorium and carbide fuel forms.

^c Sodium-cooled fast-breeder reactor.

^d Sodium fast reactor operating on a closed cycle.

^e Heavy metal (HM).

^f Natural uranium (NU), transuranic elements (TRU), and zirconium (Zr).

Gener	ation I	Gene	eration II	Gene	ration III	Genera	ation III+	Gener	ation IV
Early pr	ototypes	Comme	rcial reactors	Advan	ced LWRs	Evolution	ary designs	Revolu de:	utionary signs
- Shippin - Dresde - Magno - Peach	ngport ≥n)x bottom	- PWR - BWR - CAN	DU	- CAN - EPR - ABW	DU 6 7R	- ACR1 - AP10 - APW - ESBW - PBMI - PMG - APR1	1000 00 R V R R R 1400	- SFR - LFR - GFF - LSF - SCV - VHT - MSI	R R VR TR R
1950	1960	1970	1980	1990	2000	2010	2020	2030	
				<u> </u>					
Ge	n I		Gen II		Gen I	II	Gen III+		Gen IV

FIGURE 1.1 The evolution of nuclear power. (Adopted from U.S. Department of Energy, http://www.gen-4.org/Technology/evolution.htm.)

FIGURE 1.2 Direct, single-coolant Rankine cycle. (Adopted from U.S. Department of Energy.)

single-coolant system, based on the Rankine cycle (Figure 1.2), is in common use. The Fort St. Vrain HTGR plant used a secondary water system in a Rankine cycle because the technology did not exist to produce a large, high-temperature, helium-driven turbine. Although the HTGR direct turbine system has not yet been built for a commercial reactor, it would use the Brayton cycle, as illustrated in Figure 1.3. Thermodynamic analyses for typical Rankine and Brayton cycles are presented in Chapter 6.

The pressurized water reactor (PWR) and the pressurized heavy water reactor (PHWR) are two-coolant systems. This design is necessary to maintain the primary coolant conditions at a nominal subcooled liquid state while the turbine is driven by steam in the secondary system. Figure 1.4 illustrates the PWR two-coolant steam cycle.

The sodium-cooled fast reactors (both SFRs and SFBR) employ three-coolant systems: a primary sodium coolant system, an intermediate sodium coolant system, and a steam–water, turbine–condenser coolant system (Figure 1.5). The sodium-to-sodium heat exchange is accomplished in an intermediate heat exchanger (IHX), and the sodium-to-water/steam heat exchange in a steam generator. Three-coolant systems were specified to isolate the radioactive primary sodium coolant from the

FIGURE 1.3 Direct, single-coolant Brayton cycle. (Adopted from U.S. Department of Energy.)

FIGURE 1.4 Two-coolant system steam cycle. (From Shultis, J. K. and Faw, R. E., *Fundamentals of Nuclear Science and Engineering*, 2nd Ed. CRC Press, Boca Raton, FL, 2008.)

steam–water circulating through the turbine, condenser, and associated conventional plant components. The SFR concept being developed in the United States draws on this worldwide SFR technology and the operational experience base, but it is not designed as a breeder. Sodium-cooled reactor characteristics and examples presented in this chapter are for both the SFBRs, which were built in the late 1900s, and the SFR, which is currently under development and design.

The significant characteristics of the thermodynamic cycles and coolant systems used in these reference reactor types are summarized in Table 1.2.

1.3 PRIMARY COOLANT SYSTEMS

The Generation II BWR single-loop primary coolant system is illustrated in Figure 1.6, while Figure 1.7 highlights the flow paths within the reactor vessel. The

FIGURE 1.5 Three-coolant system steam cycle. (From Shultis, J. K. and Faw, R. E., *Fundamentals of Nuclear Science and Engineering*, 2nd Ed. CRC Press, Boca Raton, FL, 2008.)

TABLE 1.2 Typical Characteristics o	f the Thermodyna	mic Cycle for Si	ix Reference Powe	er Reactor Types		
Characteristics	BWR	PWR	PHWR	HTGR	AGR	SFBR
		Rei	ference Design			
Manufacturer	General Electric	Westinghouse	Atomic Energy of Canada, Ltd.	General Atomic	National Nuclear Corp.	Novatome
System (reactor station) Steam cycle	BWR/5 (NMP2)	(Seabrook)	CANDU-600	(Fulton) ^a	(Heysham 2)	(Superphenix-1)
No. coolant systems	1	2	2	2	2	3
Primary coolant	H_2O	H_2O	D_2O	He	CO_2	Liq. Na
Secondary coolant	Ą	H_2O	H_2O	H_2O	H_2O	Liq. Na/H_2O
		Ene	rgy Conversion			
Thermal power, MW _t	3323	3411	2180	3000	1551	3000
Electric power, MW _e	1062	1148	638	1160	660	1240
Efficiency (%)	32.0	33.7	29.3	38.6	42.5	41.3
		Heat	Transport System			
No. of primary loops/pumps	2/2	4/4	2/2	6/6	8/8	Pool with 4 pumps
No. of IHXs	0	0	0	0	0	8
No. of steam generators	Ą	4	4	6	8	4
Steam generator type	þ	U tube	U tube	Helical coil	Helical coil	Helical coil
						continued

TABLE 1.2 (continue) Typical Characteristics	d) s of the Thermody	namic Cycle for :	Six Reference Po	wer Reactor Type	S	
Characteristics	BWR	PWR	PHWR	HTGR	AGR	SFBR
		Т	ermal Hydraulics			
Primary coolant						
Pressure (MPa)	7.14	15.51	10.0	5.0	4.27	~0.1
Inlet temp. (°C)	278.3	293.1	267	318	292	395
Ave. outlet temp. (°C)	286.1	326.8	310	741	638	545
Core flow rate (Mg/s)	13.671	17.476	7.6	1.41	3.92	15.7
Volume or mass	I	336 m ³	120 m^3	7850 kg	5300 m^3	$3.2 \times 10^6 \text{ kg}$
						Na/H ₂ O
Secondary coolant						
Pressure (MPa)	þ	6.89	4.7	17.3	17.0	~0.1/17.7
Inlet temp. (°C)	þ	227	187	188	157.0	345/237
Outlet temp. (°C)	ф	285	260	513	543.0	525/490
Source: BWR and PWR: Adc	pted from Seabrook Pow	ver Station Updated Sa	fety Analysis Report, R	evision 8, Seabrook Sta	ttion, Seabrook, NH, 2	002; Appendix K. PHWR:
Adopted from Knief,	R.A. Nuclear Engineer	ing: Theory and Techno	ology of Commercial N	uclear Power, pp. 707-	717. American Nuclea	r Society, La Grange Park,
IL, 2008. HTGR: Ac	lopted from Breher, W.,	Neyland, A., and Shen	oy, A. Modular High-	Temperature Gas-Cool	ed Reactor (MHTGR)	Status. GA Technologies,
GA-A18878, May 19	987. AGR-Heysham 2: A	dopted from AEAT/R/I	PSEG/0405 Issue 3. Ma	iin Characteristics of N	luclear Power Plants i	n the European Union and
Candidate Countries	. Report for the Europea	n Commission, Septen	nber 2001; Nuclear En	gineering Internationa	I. Supplement. August	1982; Alderson, M. A. H.
G. (UKAEA, pers. c	omm., October 6, 1983 a	und December 6, 1983)). SuperPhenix-1: Adol	oted from IAEA-TECD	OC-1531. Fast Reacto	or Database 2006 Update.
International Atomic	Energy Agency. Decem	ber 2006. The Russian	VVER is similar to the	US PWR while their	RBMK, which is no le	nger being built, is a low-
enriched uranium ox	ide-fueled, light water-co	ooled, graphite-moders	tted pressure tube desig	çn.		
^a Designed but not built.						
^b Not applicable.						

Nuclear Systems

6

FIGURE 1.6 BWR single-loop primary coolant system. (From Shultis, J. K. and Faw, R. E., *Fundamentals of Nuclear Science and Engineering*, 2nd Ed. CRC Press, Boca Raton, FL, 2008.)

steam-water mixture first enters the steam separators after exiting the core. After subsequent passage through a steam separator and dryer assembly located in the upper portion of the reactor vessel, dry saturated steam flows directly to the turbine. Saturated water, which is separated from the steam, flows downward in the periphery of the reactor vessel and mixes with the incoming main feed flow from the condenser. This combined flow stream is pumped into the lower plenum through jet pumps mounted around the inside periphery of the reactor vessel. The jet pumps are driven

FIGURE 1.7 Steam and recirculation water flow paths in the Generation II BWR. (From Shultis, J. K. and Faw, R. E., *Fundamentals of Nuclear Science and Engineering*, 2nd Ed. CRC Press, Boca Raton, FL, 2008.)

by flow from recirculation pumps located in relatively small-diameter (~50 cm) external recirculation loops, which draw flow from the plenum just above the jet pump discharge location. In the ABWR, all external recirculation loops are eliminated and replaced with recirculation pumps placed internal to the reactor vessel. In the economic simplified boiling water reactor (ESBWR), all jet pumps as well as external recirculation pumps were eliminated by the natural circulation flow design.

In all BWRs the core flowrate is much greater than the feed water flowrate, reflecting the fact that the average core exit quality \bar{x}_e is about 15%. Hence, the recirculation ratio (RR) is obtained as

$$RR = \frac{Mass \text{ flowrate of recirculated liquid}}{Mass \text{ flowrate of vapor produced}} = \frac{1 - \overline{x}_{exit}}{\overline{x}_{exit}} = \frac{0.85}{0.15} = 5.7$$
(1.1)

The primary coolant system of a PWR consists of a multiloop arrangement arrayed around the reactor vessel. Higher power reactor ratings are achieved by adding loops of identical design. Designs of two, three, and four loops have been built with three- and four-loop reactors being the most common. In a typical four-loop configuration (Figure 1.8), each loop has a vertically oriented steam generator* and

FIGURE 1.8 Arrangement of the primary system for a Generation II PWR. (From Shultis, J. K. and Faw, R. E., *Fundamentals of Nuclear Science and Engineering*, 2nd Ed. CRC Press, Boca Raton, FL, 2008.)

^{*} Russian VVERs employ horizontal steam generators.

coolant pump. The coolant flows through the steam generator within an array of U tubes that connect the inlet and outlet plena located at the bottom of the steam generator. The system's single pressurizer is connected to the hot leg of one of the loops. The hot (reactor vessel to steam generator inlet) and cold (steam generator outlet to reactor vessel) leg pipes are typically 31–42 and 29–30 in. (78.7–106.7 and 73.7–76.2 cm) in diameter, respectively.

The flow path through the PWR reactor vessel is illustrated in Figure 1.9. The inlet nozzles communicate with an annulus formed between the inside of the reactor vessel and the outside of the core support barrel. The coolant entering this annulus flows downward into the inlet plenum formed by the lower head of the reactor vessel. Here it turns upward and flows through the core into the upper plenum that communicates with the reactor vessel's outlet nozzles.

The HTGR primary system is composed of several loops, each housed within a large cylinder of prestressed concrete. A compact HTGR arrangement as embodied in the modular high-temperature gas-cooled reactor (MHTGR) is illustrated in

FIGURE 1.9 Flow path through a PWR reactor vessel. (From Shultis, J. K. and Faw, R. E., *Fundamentals of Nuclear Science and Engineering*, 2nd Ed. CRC Press, Boca Raton, FL, 2008.)

Figure 1.10. In this 588 MWe MHTGR arrangement [2], the flow is directed downward through the core by a circulator mounted above the steam generator in the cold leg. The reactor vessel and steam generator are connected by a short, horizontal cross duct, which channels two oppositely directed coolant streams. The coolant from the core exit plenum is directed laterally through the 47 in. (119.4 cm) interior diameter region of the cross duct into the inlet of the steam generator. The coolant from the steam generator and circulator is directed laterally through the outer annulus (equivalent pipe diameter of approximately 46 in. [116.8 cm]) of the cross duct into the core inlet plenum and then upward through the reactor vessel's outer annulus into the inlet core plenum at the top of the reactor vessel.

SFBR and SFR primary systems have been of the loop and pool types. The pooltype configuration of the Superphenix reactor [14] is shown in Figure 1.11. Its characteristics are detailed in Table 1.2. The coolant flow path is upward through the reactor core into the upper sodium pool of the main vessel. The coolant from this pool flows downward by gravity through the IHX and discharges into a low-pressure

FIGURE 1.10 Modular HTGR primary coolant flow path. (Courtesy of U.S. Department of Energy.)

FIGURE 1.11 Primary system sodium flow path in the Superphenix reactor. (Courtesy of Électricité de France.)

toroidal plenum located in the periphery of the lower portion of the main vessel. Vertically oriented primary pumps draw the coolant from this low-pressure plenum and discharge it into the core inlet plenum.

1.4 REACTOR CORES

The reactor cores of all these reactors, except for the HTGR, are composed of assemblies of cylindrical fuel rods surrounded by the coolant that flows along the rod length. The prismatic HTGR core consists of graphite moderator hexagonal blocks that function as fuel assemblies. The blocks or assemblies are described in detail in Section 1.5.

There are two design features that establish the principal thermal hydraulic characteristics of reactor cores: the orientation and the degree of hydraulic isolation of an assembly from its neighbors. It is simple to adopt a reference case and describe the exceptions. Let us take as the reference case a vertical array of assemblies that communicate only at inlet and exit plena. This reference case describes the BWR, SFBR, and the advanced gas reactor (AGR) systems. The HTGR is nominally configured in this manner also, although leakage between the graphite blocks that are stacked to create the proper core length creates a substantial degree of communication between coolant passages within the core. The PHWR core consists of horizontal pressure tubes penetrating a low-pressure calandria tank filled with a heavy water moderator. The fuel assemblies housed within the pressure tubes are cooled by high-pressure heavy water, which is directed to and from the tubes by an array of inlet and outlet headers. The more advanced Canadian reactors use light water for cooling within the pressure tubes but retain heavy water in the calandria tank. Both the PHWR and the AGR are designed for online refueling.

The PWR and BWR assemblies are vertical, but unlike the BWR design, the PWR assemblies are not isolated hydraulically by enclosing the fuel rod array within ducts (called fuel channels in the BWR) over the core length. Hence, PWR fuel rods are grouped into assemblies only for handling and other structural purposes.

1.5 FUEL ASSEMBLIES

The principal characteristics of power reactor fuel bundles are the array (geometric layout and rod spacing) and the method of fuel pin separation and support along their span. The light water reactors (BWR and PWR), PHWR, AGR, and SFBR/SFR all use fuel rods. The HTGR has graphite moderator blocks in which adjacent penetrating holes for fuel and flowing helium coolant exist.

Light water reactors (LWRs), where the coolant also serves as the moderator, have small fuel-to-water volume ratios (commonly called the *metal-to-water ratio*) and consequently rather large fuel rod centerline-to-centerline spacing (commonly called the *rod pitch*, *P*). This moderate packing fraction permits the use of a simple square array and requires a rod support scheme of moderately small frontal area to yield low-pressure drops. The one LWR exception is the VVER, which uses a hexagonal array. A variety of grid support schemes have evolved for these applications.

Heavy water reactors and advanced gas reactors are designed for online refueling and consequently consist of fuel assemblies stacked within circular pressure tubes. This circular boundary leads to an assembly design with an irregular geometric array of rods. The online refueling approach has led to short fuel bundles in which the rods are supported at the assembly ends and by a center brace rather than by LWR-type grid spacers.

SFRs require no moderator and achieve high-power densities by compact hexagonal fuel rod array packing. With this tight rod-to-rod spacing, a lower pressure drop is obtained using spiral wire wrapping around each rod than could be obtained with a grid-type spacer. This wire wrap serves a dual function: as a spacer and as a promoter of coolant mixing within the fuel bundle. However, some SFR assemblies do use grid spacers.

The principal characteristics of the fuel for the six reference power reactor types are summarized in Table 1.3. The HTGR does not consist of an array of fuel rods within a coolant continuum. Rather, the HTGR blocks that contain fuel compacts, a coolant, and a moderator are designated as inverted fuel assemblies. In these blocks, the fuel–moderator combination is the continuum that is penetrated by isolated, cylindrically shaped coolant channels.

The LWRs (PWR and BWR), PHWR, AGR, and SFBR utilize an array of fuel rods surrounded by the coolant. For each of these arrays, the useful geometric characteristics are given in Table 1.3 and typical subchannels identified in Figure 1.12.

TABLE 1.3 Typical Characteristi	cs of the Fuel for Six	Reference Powe	r Reactor Types			
Characteristics	BWR	PWR	PHWR	HTGR	AGR	SFBR
		Re	ference Design			
Manufacturer	General Electric	Westinghouse	Atomic Energy of Canada. Ltd.	General Atomic	National Nuclear Corp.	Novatome
System (reactor station)	BWR/5 (NMP2)	(Seabrook)	CANDU-600	(Fulton)	(Heysham 2)	(Superphenix 1)
Moderator Neutron energy	H_2O Thermal	H ₂ O Thermal	D_2O Thermal	Graphite Thermal	Graphite Thermal	None Fast
Fuel production	Converter	Converter	Converter	Converter	Converter	Breeder
			Fuel ^b			
Geometry	Cylindrical pellet	Cylindrical pellet	Cylindrical pellet	Microspheres ^c	Cylindrical pellet	Cylindrical pellet
Dimensions (mm)	$9.60D \times 10.0L$	$8.192D \times 9.8L$	$12.2D \times 16.4L$	$400-800 \ \mu m D$	$14.51D \times 14.51L$	7.14 D
Chemical form	UO_2	UO_2	UO_2	UC/ThO_2	UO_2	PuO ₂ /UO ₂
Fissile (first core avg. wt%	²³⁵ U (3.5 eq. core)	²³⁵ U (3.57 avg.	²³⁵ U (0.711)	²³⁵ U (93)	²³⁵ U (2 zones at	²³⁹ Pu (2 zones at 16 and
unless designated as equilibrium core)		eq. core)			2.1 and 2.7)	19.7)
Fertile	238U	²³⁸ U	238 U	Th	238 U	Depleted U
			Fuel Rods			
Geometry	Pellet stack in clad tube	Pellet stack in	Pellet stack in	Cylindrical fuel	Pellet stack in	Pellet stack in clad tube
		clad tube	clad tube	compacts	clad tube	continued