Physical Mathematics

KEVIN CAHILL

CAMbridge

Physical Mathematics

Unique in its clarity, examples, and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations, and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics, and the functional derivatives and Feynman path integrals of quantum field theory. Solutions to exercises are available for instructors at www.cambridge.org/cahill

Kevin Cahill is Professor of Physics and Astronomy at the University of New Mexico. He has done research at NIST, Saclay, Ecole Polytechnique, Orsay, Harvard, NIH, LBL, and SLAC, and has worked in quantum optics, quantum field theory, lattice gauge theory, and biophysics. Physical Mathematics is based on courses taught by the author at the University of New Mexico and at Fudan University in Shanghai.

Physical Mathematics

KEVIN CAHILL

University of New Mexico

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York
www.cambridge.org
Information on this title: www.cambridge.org/9781107005211
© K. Cahill 2013
This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013
Printed and bound in the United Kingdom by the MPG Books Group
A catalog record for this publication is available from the British Library
Library of Congress Cataloging in Publication data
Cahill, Kevin, 1941-, author.
Physical mathematics / Kevin Cahill, University of New Mexico.
pages cm
ISBN 978-1-107-00521-1 (hardback)

1. Mathematical physics. I. Title.

QC20.C24 2012
530.15-dc23

2012036027
ISBN 978-1-107-00521-1 Hardback
Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For Ginette, Mike, Sean, Peter, Mia, and James, and in honor of Muntadhar al-Zaidi.

Contents

Preface page xvii
1 Linear algebra 1
1.1 Numbers 1
1.2 Arrays 2
1.3 Matrices 4
1.4 Vectors 7
1.5 Linear operators 9
1.6 Inner products 11
1.7 The Cauchy-Schwarz inequality 14
1.8 Linear independence and completeness 15
1.9 Dimension of a vector space 16
1.10 Orthonormal vectors 16
1.11 Outer products 18
1.12 Dirac notation 19
1.13 The adjoint of an operator 22
1.14 Self-adjoint or hermitian linear operators 23
1.15 Real, symmetric linear operators 23
1.16 Unitary operators 24
1.17 Hilbert space 25
1.18 Antiunitary, antilinear operators 26
1.19 Symmetry in quantum mechanics 26
1.20 Determinants 27
1.21 Systems of linear equations 34
1.22 Linear least squares 34
1.23 Lagrange multipliers 35
1.24 Eigenvectors 37
1.25 Eigenvectors of a square matrix 38
1.26 A matrix obeys its characteristic equation 41
1.27 Functions of matrices 43
1.28 Hermitian matrices 45
1.29 Normal matrices 50
1.30 Compatible normal matrices 52
1.31 The singular-value decomposition 55
1.32 The Moore-Penrose pseudoinverse 63
1.33 The rank of a matrix 65
1.34 Software 66
1.35 The tensor/direct product 66
1.36 Density operators 69
1.37 Correlation functions 69
Exercises 71
2 Fourier series 75
2.1 Complex Fourier series 75
2.2 The interval 77
2.3 Where to put the $2 \pi \mathrm{~s}$ 77
2.4 Real Fourier series for real functions 79
2.5 Stretched intervals 83
2.6 Fourier series in several variables 84
2.7 How Fourier series converge 84
2.8 Quantum-mechanical examples 89
2.9 Dirac notation 96
2.10 Dirac's delta function 97
2.11 The harmonic oscillator 101
2.12 Nonrelativistic strings 103
2.13 Periodic boundary conditions 103
Exercises 105
3 Fourier and Laplace transforms 108
3.1 The Fourier transform 108
3.2 The Fourier transform of a real function 111
3.3 Dirac, Parseval, and Poisson 112
3.4 Fourier derivatives and integrals 115
3.5 Fourier transforms in several dimensions 119
3.6 Convolutions 121
3.7 The Fourier transform of a convolution 123
3.8 Fourier transforms and Green's functions 124
3.9 Laplace transforms 125
3.10 Derivatives and integrals of Laplace transforms 127

CONTENTS

3.11 Laplace transforms and differential equations 128
3.12 Inversion of Laplace transforms 129
3.13 Application to differential equations 129
Exercises 134
4 Infinite series 136
4.1 Convergence 136
4.2 Tests of convergence 137
4.3 Convergent series of functions 138
4.4 Power series 139
4.5 Factorials and the gamma function 141
4.6 Taylor series 145
4.7 Fourier series as power series 146
4.8 The binomial series and theorem 147
4.9 Logarithmic series 148
4.10 Dirichlet series and the zeta function 149
4.11 Bernoulli numbers and polynomials 151
4.12 Asymptotic series 152
4.13 Some electrostatic problems 154
4.14 Infinite products 157
Exercises 158
5 Complex-variable theory 160
5.1 Analytic functions 160
5.2 Cauchy's integral theorem 161
5.3 Cauchy's integral formula 165
5.4 The Cauchy-Riemann conditions 169
5.5 Harmonic functions 170
5.6 Taylor series for analytic functions 171
5.7 Cauchy's inequality 173
5.8 Liouville's theorem 173
5.9 The fundamental theorem of algebra 174
5.10 Laurent series 174
5.11 Singularities 177
5.12 Analytic continuation 179
5.13 The calculus of residues 180
5.14 Ghost contours 182
5.15 Logarithms and cuts 193
5.16 Powers and roots 194
5.17 Conformal mapping 197
5.18 Cauchy's principal value 198
5.19 Dispersion relations 205

CONTENTS

5.20 Kramers-Kronig relations 207
5.21 Phase and group velocities 208
5.22 The method of steepest descent 210
5.23 The Abel-Plana formula and the Casimir effect 212
5.24 Applications to string theory 217
Exercises 219
6 Differential equations 223
6.1 Ordinary linear differential equations 223
6.2 Linear partial differential equations 225
6.3 Notation for derivatives 226
6.4 Gradient, divergence, and curl 228
6.5 Separable partial differential equations 230
6.6 Wave equations 233
6.7 First-order differential equations 235
6.8 Separable first-order differential equations 235
6.9 Hidden separability 238
6.10 Exact first-order differential equations 238
6.11 The meaning of exactness 240
6.12 Integrating factors 242
6.13 Homogeneous functions 243
6.14 The virial theorem 243
6.15 Homogeneous first-order ordinary differential equations 245
6.16 Linear first-order ordinary differential equations 246
6.17 Systems of differential equations 248
6.18 Singular points of second-order ordinary differential equations 250
6.19 Frobenius's series solutions 251
6.20 Fuch's theorem 253
6.21 Even and odd differential operators 254
6.22 Wronski's determinant 255
6.23 A second solution 255
6.24 Why not three solutions? 257
6.25 Boundary conditions 258
6.26 A variational problem 259
6.27 Self-adjoint differential operators 260
6.28 Self-adjoint differential systems 262
6.29 Making operators formally self adjoint 264
6.30 Wronskians of self-adjoint operators 265
6.31 First-order self-adjoint differential operators 266
6.32 A constrained variational problem 267

CONTENTS

6.33 Eigenfunctions and eigenvalues of self-adjoint systems 273
6.34 Unboundedness of eigenvalues 275
6.35 Completeness of eigenfunctions 277
6.36 The inequalities of Bessel and Schwarz 284
6.37 Green's functions 284
6.38 Eigenfunctions and Green's functions 287
6.39 Green's functions in one dimension 288
6.40 Nonlinear differential equations 289
Exercises 293
$7 \quad$ Integral equations 296
7.1 Fredholm integral equations 297
7.2 Volterra integral equations 297
7.3 Implications of linearity 298
7.4 Numerical solutions 299
7.5 Integral transformations 301
Exercises 304
8 Legendre functions 305
8.1 The Legendre polynomials 305
8.2 The Rodrigues formula 306
8.3 The generating function 308
8.4 Legendre's differential equation 309
8.5 Recurrence relations 311
8.6 Special values of Legendre's polynomials 312
8.7 Schlaefli's integral 313
8.8 Orthogonal polynomials 313
8.9 The azimuthally symmetric Laplacian 315
8.10 Laplacian in two dimensions 316
8.11 The Laplacian in spherical coordinates 317
8.12 The associated Legendre functions/polynomials 317
8.13 Spherical harmonics 319
Exercises 323
9 Bessel functions 325
9.1 Bessel functions of the first kind 325
9.2 Spherical Bessel functions of the first kind 335
9.3 Bessel functions of the second kind 341
9.4 Spherical Bessel functions of the second kind 343
Further reading 345
Exercises 345
10 Group theory 348
10.1 What is a group? 348
10.2 Representations of groups 350
10.3 Representations acting in Hilbert space 351
10.4 Subgroups 353
10.5 Cosets 354
10.6 Morphisms 354
10.7 Schur's lemma 355
10.8 Characters 356
10.9 Tensor products 357
10.10 Finite groups 358
10.11 The regular representation 359
10.12 Properties of finite groups 360
10.13 Permutations 360
10.14 Compact and noncompact Lie groups 361
10.15 Lie algebra 361
10.16 The rotation group 366
10.17 The Lie algebra and representations of $S U(2)$ 368
10.18 The defining representation of $S U(2)$ 371
10.19 The Jacobi identity 374
10.20 The adjoint representation 374
10.21 Casimir operators 375
10.22 Tensor operators for the rotation group 376
10.23 Simple and semisimple Lie algebras 376
$10.24 S U(3)$ 377
$10.25 S U(3)$ and quarks 378
10.26 Cartan subalgebra 379
10.27 Quaternions 379
10.28 The symplectic group $S p(2 n)$ 381
10.29 Compact simple Lie groups 383
10.30 Group integration 384
10.31 The Lorentz group 386
10.32 Two-dimensional representations of the Lorentz group 389
10.33 The Dirac representation of the Lorentz group 393
10.34 The Poincaré group 395
Further reading 396
Exercises 397
11 Tensors and local symmetries 400
11.1 Points and coordinates 400
11.2 Scalars 401
11.3 Contravariant vectors 401

CONTENTS

11.4 Covariant vectors 402
11.5 Euclidean space in euclidean coordinates 402
11.6 Summation conventions 404
11.7 Minkowski space 405
11.8 Lorentz transformations 407
11.9 Special relativity 408
11.10 Kinematics 410
11.11 Electrodynamics 411
11.12 Tensors 414
11.13 Differential forms 416
11.14 Tensor equations 419
11.15 The quotient theorem 420
11.16 The metric tensor 421
11.17 A basic axiom 422
11.18 The contravariant metric tensor 422
11.19 Raising and lowering indices 423
11.20 Orthogonal coordinates in euclidean n-space 423
11.21 Polar coordinates 424
11.22 Cylindrical coordinates 425
11.23 Spherical coordinates 425
11.24 The gradient of a scalar field 426
11.25 Levi-Civita's tensor 427
11.26 The Hodge star 428
11.27 Derivatives and affine connections 431
11.28 Parallel transport 433
11.29 Notations for derivatives 433
11.30 Covariant derivatives 434
11.31 The covariant curl 435
11.32 Covariant derivatives and antisymmetry 436
11.33 Affine connection and metric tensor 436
11.34 Covariant derivative of the metric tensor 437
11.35 Divergence of a contravariant vector 438
11.36 The covariant Laplacian 441
11.37 The principle of stationary action 443
11.38 A particle in a gravitational field 446
11.39 The principle of equivalence 447
11.40 Weak, static gravitational fields 449
11.41 Gravitational time dilation 449
11.42 Curvature 451
11.43 Einstein's equations 453
11.44 The action of general relativity 455
11.45 Standard form 455
11.46 Schwarzschild's solution 456
11.47 Black holes 456
11.48 Cosmology 457
11.49 Model cosmologies 463
11.50 Yang-Mills theory 469
11.51 Gauge theory and vectors 471
11.52 Geometry 474
Further reading 475
Exercises 475
12 Forms 479
12.1 Exterior forms 479
12.2 Differential forms 481
12.3 Exterior differentiation 486
12.4 Integration of forms 491
12.5 Are closed forms exact? 496
12.6 Complex differential forms 498
12.7 Frobenius's theorem 499
Further reading 500
Exercises 500
13 Probability and statistics 502
13.1 Probability and Thomas Bayes 502
13.2 Mean and variance 505
13.3 The binomial distribution 508
13.4 The Poisson distribution 511
13.5 The Gaussian distribution 512
13.6 The error function erf 515
13.7 The Maxwell-Boltzmann distribution 518
13.8 Diffusion 519
13.9 Langevin's theory of brownian motion 520
13.10 The Einstein-Nernst relation 523
13.11 Fluctuation and dissipation 524
13.12 Characteristic and moment-generating functions 528
13.13 Fat tails 530
13.14 The central limit theorem and Jarl Lindeberg 532
13.15 Random-number generators 537
13.16 Illustration of the central limit theorem 538
13.17 Measurements, estimators, and Friedrich Bessel 543
13.18 Information and Ronald Fisher 546
13.19 Maximum likelihood 550
13.20 Karl Pearson's chi-squared statistic 551
13.21 Kolmogorov's test 554
Further reading 560
Exercises 560
14 Monte Carlo methods 563
14.1 The Monte Carlo method 563
14.2 Numerical integration 563
14.3 Applications to experiments 566
14.4 Statistical mechanics 572
14.5 Solving arbitrary problems 575
14.6 Evolution 576
Further reading 577
Exercises 577
15 Functional derivatives 578
15.1 Functionals 578
15.2 Functional derivatives 578
15.3 Higher-order functional derivatives 581
15.4 Functional Taylor series 582
15.5 Functional differential equations 583
Exercises 585
16 Path integrals 586
16.1 Path integrals and classical physics 586
16.2 Gaussian integrals 586
16.3 Path integrals in imaginary time 588
16.4 Path integrals in real time 590
16.5 Path integral for a free particle 593
16.6 Free particle in imaginary time 595
16.7 Harmonic oscillator in real time 595
16.8 Harmonic oscillator in imaginary time 597
16.9 Euclidean correlation functions 599
16.10 Finite-temperature field theory 600
16.11 Real-time field theory 603
16.12 Perturbation theory 605
16.13 Application to quantum electrodynamics 609
16.14 Fermionic path integrals 613
16.15 Application to nonabelian gauge theories 619
16.16 The Faddeev-Popov trick 620
16.17 Ghosts 622
Further reading 624
Exercises 624
17 The renormalization group 626
17.1 The renormalization group in quantum field theory 626
17.2 The renormalization group in lattice field theory 630
17.3 The renormalization group in condensed-matter physics 632
Exercises 634
18 Chaos and fractals 635
18.1 Chaos 635
18.2 Attractors 639
18.3 Fractals 639
Further reading 642
Exercises 642
19 Strings 643
19.1 The infinities of quantum field theory 643
19.2 The Nambu-Goto string action 643
19.3 Regge trajectories 646
19.4 Quantized strings 647
19.5 D-branes 647
19.6 String-string scattering 648
19.7 Riemann surfaces and moduli 649
Further reading 650
Exercises 650
References 651
Index 656

Preface

To the students: you will find some physics crammed in amongst the mathematics. Don't let the physics bother you. As you study the math, you'll learn some physics without extra effort. The physics is a freebie. I have tried to explain the math you need for physics and have left out the rest.

To the professors: the book is for students who also are taking mechanics, electrodynamics, quantum mechanics, and statistical mechanics nearly simultaneously and who soon may use probability or path integrals in their research. Linear algebra and Fourier analysis are the keys to physics, so the book starts with them, but you may prefer to skip the algebra or postpone the Fourier analysis. The book is intended to support a one- or two-semester course for graduate students or advanced undergraduates. The first seven, eight, or nine chapters fit in one semester, the others in a second. A list of errata is maintained at panda.unm.edu/cahill, and solutions to all the exercises are available for instructors at www.cambridge.org/cahill.

Several friends - Susan Atlas, Bernard Becker, Steven Boyd, Robert Burckel, Sean Cahill, Colston Chandler, Vageli Coutsias, David Dunlap, Daniel Finley, Franco Giuliani, Roy Glauber, Pablo Gondolo, Igor Gorelov, Jiaxing Hong, Fang Huang, Dinesh Loomba, Yin Luo, Lei Ma, Michael Malik, Kent Morrison, Sudhakar Prasad, Randy Reeder, Dmitri Sergatskov, and David Waxman - have given me valuable advice. Students have helped with questions, ideas, and corrections, especially Thomas Beechem, Marie Cahill, Chris Cesare, Yihong Cheng, Charles Cherqui, Robert Cordwell, Amo-Kwao Godwin, Aram Gragossian, Aaron Hankin, Kangbo Hao, Tiffany Hayes, Yiran Hu, Shanshan Huang, Tyler Keating, Joshua Koch, Zilong Li, Miao Lin, ZuMou Lin, Sheng Liu, Yue Liu, Ben Oliker, Boleszek Osinski, Ravi Raghunathan, Akash Rakholia, Xingyue Tian, Toby Tolley, Jiqun Tu, Christopher Vergien, Weizhen Wang, George Wendelberger, Xukun Xu, Huimin Yang, Zhou Yang, Daniel Young, Mengzhen Zhang, Lu Zheng, Lingjun Zhou, and Daniel Zirzow.

Linear algebra

1.1 Numbers

The natural numbers are the positive integers and zero. Rational numbers are ratios of integers. Irrational numbers have decimal digits d_{n}

$$
\begin{equation*}
x=\sum_{n=m_{x}}^{\infty} \frac{d_{n}}{10^{n}} \tag{1.1}
\end{equation*}
$$

that do not repeat. Thus the repeating decimals $1 / 2=0.50000 \ldots$ and $1 / 3=$ $0 . \overline{3} \equiv 0.33333 \ldots$ are rational, while $\pi=3.141592654 \ldots$ is irrational. Decimal arithmetic was invented in India over 1500 years ago but was not widely adopted in the Europe until the seventeenth century.

The real numbers \mathbb{R} include the rational numbers and the irrational numbers; they correspond to all the points on an infinite line called the real line.

The complex numbers \mathbb{C} are the real numbers with one new number i whose square is -1 . A complex number z is a linear combination of a real number x and a real multiple $i y$ of i

$$
\begin{equation*}
z=x+i y \tag{1.2}
\end{equation*}
$$

Here $x=\operatorname{Re} z$ is the real part of z, and $y=\operatorname{Im} z$ is its imaginary part. One adds complex numbers by adding their real and imaginary parts

$$
\begin{equation*}
z_{1}+z_{2}=x_{1}+i y_{1}+x_{2}+i y_{2}=x_{1}+x_{2}+i\left(y_{1}+y_{2}\right) \tag{1.3}
\end{equation*}
$$

Since $i^{2}=-1$, the product of two complex numbers is

$$
\begin{equation*}
z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=x_{1} x_{2}-y_{1} y_{2}+i\left(x_{1} y_{2}+y_{1} x_{2}\right) \tag{1.4}
\end{equation*}
$$

The polar representation $z=r \exp (i \theta)$ of $z=x+i y$ is

$$
\begin{equation*}
z=x+i y=r e^{i \theta}=r(\cos \theta+i \sin \theta) \tag{1.5}
\end{equation*}
$$

in which r is the modulus or absolute value of z

$$
\begin{equation*}
r=|z|=\sqrt{x^{2}+y^{2}} \tag{1.6}
\end{equation*}
$$

and θ is its phase or argument

$$
\begin{equation*}
\theta=\arctan (y / x) \tag{1.7}
\end{equation*}
$$

Since $\exp (2 \pi i)=1$, there is an inevitable ambiguity in the definition of the phase of any complex number: for any integer n, the phase $\theta+2 \pi n$ gives the same z as θ. In various computer languages, the function atan $2(y, x)$ returns the angle θ in the interval $-\pi<\theta \leq \pi$ for which $(x, y)=r(\cos \theta, \sin \theta)$.

There are two common notations z^{*} and \bar{z} for the complex conjugate of a complex number $z=x+i y$

$$
\begin{equation*}
z^{*}=\bar{z}=x-i y \tag{1.8}
\end{equation*}
$$

The square of the modulus of a complex number $z=x+i y$ is

$$
\begin{equation*}
|z|^{2}=x^{2}+y^{2}=(x+i y)(x-i y)=\bar{z} z=z^{*} z \tag{1.9}
\end{equation*}
$$

The inverse of a complex number $z=x+i y$ is

$$
\begin{equation*}
z^{-1}=(x+i y)^{-1}=\frac{x-i y}{(x-i y)(x+i y)}=\frac{x-i y}{x^{2}+y^{2}}=\frac{z^{*}}{z^{*} z}=\frac{z^{*}}{|z|^{2}} . \tag{1.10}
\end{equation*}
$$

Grassmann numbers θ_{i} are anticommuting numbers, that is, the anticommutator of any two Grassmann numbers vanishes

$$
\begin{equation*}
\left\{\theta_{i}, \theta_{j}\right\} \equiv\left[\theta_{i}, \theta_{j}\right]_{+} \equiv \theta_{i} \theta_{j}+\theta_{j} \theta_{i}=0 \tag{1.11}
\end{equation*}
$$

So the square of any Grassmann number is zero, $\theta_{i}^{2}=0$. We won't use these numbers until chapter 16 , but they do have amusing properties. The highest monomial in N Grassmann numbers θ_{i} is the product $\theta_{1} \theta_{2} \ldots \theta_{N}$. So the most complicated power series in two Grassmann numbers is just

$$
\begin{equation*}
f\left(\theta_{1}, \theta_{2}\right)=f_{0}+f_{1} \theta_{1}+f_{2} \theta_{2}+f_{12} \theta_{1} \theta_{2} \tag{1.12}
\end{equation*}
$$

(Hermann Grassmann, 1809-1877).

1.2 Arrays

An array is an ordered set of numbers. Arrays play big roles in computer science, physics, and mathematics. They can be of any (integral) dimension.

A one-dimensional array $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is variously called an \boldsymbol{n}-tuple, a row vector when written horizontally, a column vector when written vertically, or an n-vector. The numbers a_{k} are its entries or components.

A two-dimensional array $a_{i k}$ with i running from 1 to n and k from 1 to m is an $n \times m$ matrix. The numbers $a_{i k}$ are its entries, elements, or matrix elements.

One can think of a matrix as a stack of row vectors or as a queue of column vectors. The entry $a_{i k}$ is in the i th row and the k th column.

One can add together arrays of the same dimension and shape by adding their entries. Two n-tuples add as

$$
\begin{equation*}
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right) \tag{1.13}
\end{equation*}
$$

and two $n \times m$ matrices a and b add as

$$
\begin{equation*}
(a+b)_{i k}=a_{i k}+b_{i k} \tag{1.14}
\end{equation*}
$$

One can multiply arrays by numbers. Thus z times the three-dimensional array $a_{i j k}$ is the array with entries $z a_{i j k}$. One can multiply two arrays together no matter what their shapes and dimensions. The outer product of an n-tuple a and an m-tuple b is an $n \times m$ matrix with elements

$$
\begin{equation*}
(a b)_{i k}=a_{i} b_{k} \tag{1.15}
\end{equation*}
$$

or an $m \times n$ matrix with entries $(b a)_{k i}=b_{k} a_{i}$. If a and b are complex, then one also can form the outer products $(\bar{a} b)_{i k}=\overline{a_{i}} b_{k},(\bar{b} a)_{k i}=\overline{b_{k}} a_{i}$, and $(\bar{b} \bar{a})_{k i}=$ $\overline{b_{k}} \overline{a_{i}}$. The outer product of a matrix $a_{i k}$ and a three-dimensional array $b_{j l m}$ is a five-dimensional array

$$
\begin{equation*}
(a b)_{i k j l m}=a_{i k} b_{j \ell m} \tag{1.16}
\end{equation*}
$$

An inner product is possible when two arrays are of the same size in one of their dimensions. Thus the inner product $(a, b) \equiv\langle a \mid b\rangle$ or dot-product $a \cdot b$ of two real n-tuples a and b is

$$
\begin{equation*}
(a, b)=\langle a \mid b\rangle=a \cdot b=\left(a_{1}, \ldots, a_{n}\right) \cdot\left(b_{1}, \ldots, b_{n}\right)=a_{1} b_{1}+\cdots+a_{n} b_{n} \tag{1.17}
\end{equation*}
$$

The inner product of two complex n-tuples often is defined as

$$
\begin{equation*}
(a, b)=\langle a \mid b\rangle=\bar{a} \cdot b=\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right) \cdot\left(b_{1}, \ldots, b_{n}\right)=\overline{a_{1}} b_{1}+\cdots+\overline{a_{n}} b_{n} \tag{1.18}
\end{equation*}
$$

or as its complex conjugate

$$
\begin{equation*}
(a, b)^{*}=\langle a \mid b\rangle^{*}=(\bar{a} \cdot b)^{*}=(b, a)=\langle b \mid a\rangle=\bar{b} \cdot a \tag{1.19}
\end{equation*}
$$

so that the inner product of a vector with itself is nonnegative $(a, a) \geq 0$.
The product of an $m \times n$ matrix $a_{i k}$ times an n-tuple b_{k} is the m-tuple b^{\prime} whose i th component is

$$
\begin{equation*}
b_{i}^{\prime}=a_{i 1} b_{1}+a_{i 2} b_{2}+\cdots+a_{i n} b_{n}=\sum_{k=1}^{n} a_{i k} b_{k} \tag{1.20}
\end{equation*}
$$

This product is $b^{\prime}=a b$ in matrix notation.
If the size n of the second dimension of a matrix a matches that of the first dimension of a matrix b, then their product $a b$ is a matrix with entries

$$
\begin{equation*}
(a b)_{i \ell}=a_{i 1} b_{1 \ell}+\cdots+a_{i n} b_{n \ell} \tag{1.21}
\end{equation*}
$$

1.3 Matrices

Apart from n-tuples, the most important arrays in linear algebra are the twodimensional arrays called matrices.

The trace of an $n \times n$ matrix a is the sum of its diagonal elements

$$
\begin{equation*}
\operatorname{Tr} a=\operatorname{tr} a=a_{11}+a_{22}+\cdots+a_{n n}=\sum_{i=1}^{n} a_{i i} \tag{1.22}
\end{equation*}
$$

The trace of two matrices is independent of their order

$$
\begin{equation*}
\operatorname{Tr}(a b)=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k i}=\sum_{k=1}^{n} \sum_{i=1}^{n} b_{k i} a_{i k}=\operatorname{Tr}(b a) \tag{1.23}
\end{equation*}
$$

as long as the matrix elements are numbers that commute with each other. It follows that the trace is cyclic

$$
\begin{equation*}
\operatorname{Tr}(a b \ldots z)=\operatorname{Tr}(b \ldots z a) \tag{1.24}
\end{equation*}
$$

The transpose of an $n \times \ell$ matrix a is an $\ell \times n$ matrix a^{\top} with entries

$$
\begin{equation*}
\left(a^{\top}\right)_{i j}=a_{j i} . \tag{1.25}
\end{equation*}
$$

Some mathematicians use a prime to mean transpose, as in $a^{\prime}=a^{\top}$, but physicists tend to use primes to label different objects or to indicate differentiation. One may show that

$$
\begin{equation*}
(a b)^{\top}=b^{\top} a^{\top} \tag{1.26}
\end{equation*}
$$

A matrix that is equal to its transpose

$$
\begin{equation*}
a=a^{\top} \tag{1.27}
\end{equation*}
$$

is symmetric.
The (hermitian) adjoint of a matrix is the complex conjugate of its transpose (Charles Hermite, 1822-1901). That is, the (hermitian) adjoint a^{\dagger} of an $N \times L$ complex matrix a is the $L \times N$ matrix with entries

$$
\begin{equation*}
\left(a^{\dagger}\right)_{i j}=\left(a_{j i}\right)^{*}=a_{j i}^{*} . \tag{1.28}
\end{equation*}
$$

One may show that

$$
\begin{equation*}
(a b)^{\dagger}=b^{\dagger} a^{\dagger} \tag{1.29}
\end{equation*}
$$

A matrix that is equal to its adjoint

$$
\begin{equation*}
\left(a^{\dagger}\right)_{i j}=\left(a_{j i}\right)^{*}=a_{j i}^{*}=a_{i j} \tag{1.30}
\end{equation*}
$$

(and which must be a square matrix) is hermitian or self adjoint

$$
\begin{equation*}
a=a^{\dagger} \tag{1.31}
\end{equation*}
$$

Example 1.1 (The Pauli matrices)

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{1.32}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \text { and } \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are all hermitian (Wolfgang Pauli, 1900-1958).

A real hermitian matrix is symmetric. If a matrix a is hermitian, then the quadratic form

$$
\begin{equation*}
\langle v| a|v\rangle=\sum_{i=1}^{N} \sum_{j=1}^{N} v_{i}^{*} a_{i j} v_{j} \in \mathbb{R} \tag{1.33}
\end{equation*}
$$

is real for all complex n-tuples v.
The Kronecker delta $\delta_{i k}$ is defined to be unity if $i=k$ and zero if $i \neq k$ (Leopold Kronecker, 1823-1891). The identity matrix I has entries $I_{i k}=\delta_{i k}$.

The inverse a^{-1} of an $n \times n$ matrix a is a square matrix that satisfies

$$
\begin{equation*}
a^{-1} a=a a^{-1}=I \tag{1.34}
\end{equation*}
$$

in which I is the $n \times n$ identity matrix.
So far we have been writing n-tuples and matrices and their elements with lower-case letters. It is equally common to use capital letters, and we will do so for the rest of this section.

A matrix U whose adjoint U^{\dagger} is its inverse

$$
\begin{equation*}
U^{\dagger} U=U U^{\dagger}=I \tag{1.35}
\end{equation*}
$$

is unitary. Unitary matrices are square.
A real unitary matrix O is orthogonal and obeys the rule

$$
\begin{equation*}
O^{\top} O=O O^{\top}=I \tag{1.36}
\end{equation*}
$$

Orthogonal matrices are square.
An $N \times N$ hermitian matrix A is nonnegative

$$
\begin{equation*}
A \geq 0 \tag{1.37}
\end{equation*}
$$

if for all complex vectors V the quadratic form

$$
\begin{equation*}
\langle V| A|V\rangle=\sum_{i=1}^{N} \sum_{j=1}^{N} V_{i}^{*} A_{i j} V_{j} \geq 0 \tag{1.38}
\end{equation*}
$$

is nonnegative. It is positive or positive definite if

$$
\begin{equation*}
\langle V| A|V\rangle>0 \tag{1.39}
\end{equation*}
$$

for all nonzero vectors $|V\rangle$.

Example 1.2 (Kinds of positivity) The nonsymmetric, nonhermitian 2×2 matrix

$$
\left(\begin{array}{cc}
1 & 1 \tag{1.40}\\
-1 & 1
\end{array}\right)
$$

is positive on the space of all real 2-vectors but not on the space of all complex 2-vectors.

Example 1.3 (Representations of imaginary and Grassmann numbers) The 2×2 matrix

$$
\left(\begin{array}{cc}
0 & -1 \tag{1.41}\\
1 & 0
\end{array}\right)
$$

can represent the number i since

$$
\left(\begin{array}{cc}
0 & -1 \tag{1.42}\\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-I .
$$

The 2×2 matrix

$$
\left(\begin{array}{ll}
0 & 0 \tag{1.43}\\
1 & 0
\end{array}\right)
$$

can represent a Grassmann number since

$$
\left(\begin{array}{ll}
0 & 0 \tag{1.44}\\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=0 .
$$

To represent two Grassmann numbers, one needs 4×4 matrices, such as

$$
\theta_{1}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{1.45}\\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad \theta_{2}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

The matrices that represent n Grassmann numbers are $2^{n} \times 2^{n}$.
Example 1.4 (Fermions) The matrices (1.45) also can represent lowering or annihilation operators for a system of two fermionic states. For $a_{1}=\theta_{1}$ and $a_{2}=\theta_{2}$ and their adjoints a_{1}^{\dagger} and a_{2}^{\dagger}, the creation operators satisfy the anticommutation relations

$$
\begin{equation*}
\left\{a_{i}, a_{k}^{\dagger}\right\}=\delta_{i k} \quad \text { and } \quad\left\{a_{i}, a_{k}\right\}=\left\{a_{i}^{\dagger}, a_{k}^{\dagger}\right\}=0 \tag{1.46}
\end{equation*}
$$

where i and k take the values 1 or 2 . In particular, the relation $\left(a_{i}^{\dagger}\right)^{2}=0$ implements Pauli's exclusion principle, the rule that no state of a fermion can be doubly occupied.

1.4 Vectors

Vectors are things that can be multiplied by numbers and added together to form other vectors in the same vector space. So if U and V are vectors in a vector space S over a set F of numbers x and y and so forth, then

$$
\begin{equation*}
W=x U+y V \tag{1.47}
\end{equation*}
$$

also is a vector in the vector space S.
A basis for a vector space S is a set of vectors B_{k} for $k=1, \ldots, N$ in terms of which every vector U in S can be expressed as a linear combination

$$
\begin{equation*}
U=u_{1} B_{1}+u_{2} B_{2}+\cdots+u_{N} B_{N} \tag{1.48}
\end{equation*}
$$

with numbers u_{k} in F. The numbers u_{k} are the components of the vector U in the basis B_{k}.

Example 1.5 (Hardware store) Suppose the vector W represents a certain kind of washer and the vector N represents a certain kind of nail. Then if n and m are natural numbers, the vector

$$
\begin{equation*}
H=n W+m N \tag{1.49}
\end{equation*}
$$

would represent a possible inventory of a very simple hardware store. The vector space of all such vectors H would include all possible inventories of the store. That space is a two-dimensional vector space over the natural numbers, and the two vectors W and N form a basis for it.

Example 1.6 (Complex numbers) The complex numbers are a vector space. Two of its vectors are the number 1 and the number i; the vector space of complex numbers is then the set of all linear combinations

$$
\begin{equation*}
z=x 1+y i=x+i y . \tag{1.50}
\end{equation*}
$$

So the complex numbers are a two-dimensional vector space over the real numbers, and the vectors 1 and i are a basis for it.

The complex numbers also form a one-dimensional vector space over the complex numbers. Here any nonzero real or complex number, for instance the number 1, can be a basis consisting of the single vector 1 . This one-dimensional vector space is the set of all $z=z 1$ for arbitrary complex z.

Example 1.7 (2-space) Ordinary flat two-dimensional space is the set of all linear combinations

$$
\begin{equation*}
r=x \hat{\mathbf{x}}+y \hat{\mathbf{y}} \tag{1.51}
\end{equation*}
$$

in which x and y are real numbers and $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are perpendicular vectors of unit length (unit vectors). This vector space, called \mathbb{R}^{2}, is a 2-d space over the reals.

Note that the same vector \boldsymbol{r} can be described either by the basis vectors $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ or by any other set of basis vectors, such as $-\hat{\mathbf{y}}$ and $\hat{\mathbf{x}}$

$$
\begin{equation*}
\boldsymbol{r}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}=-y(-\hat{\mathbf{y}})+x \hat{\mathbf{x}} . \tag{1.52}
\end{equation*}
$$

So the components of the vector \boldsymbol{r} are (x, y) in the $\{\hat{\mathbf{x}}, \hat{\mathbf{y}}\}$ basis and $(-y, x)$ in the $\{-\hat{\mathbf{y}}, \hat{\mathbf{x}}\}$ basis. Each vector is unique, but its components depend upon the basis.
Example 1.8 (3-space) Ordinary flat three-dimensional space is the set of all linear combinations

$$
\begin{equation*}
\boldsymbol{r}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}} \tag{1.53}
\end{equation*}
$$

in which x, y, and z are real numbers. It is a 3-d space over the reals.
Example 1.9 (Matrices) Arrays of a given dimension and size can be added and multiplied by numbers, and so they form a vector space. For instance, all complex three-dimensional arrays $a_{i j k}$ in which $1 \leq i \leq 3,1 \leq j \leq 4$, and $1 \leq k \leq 5$ form a vector space over the complex numbers.

Example 1.10 (Partial derivatives) Derivatives are vectors, so are partial derivatives. For instance, the linear combinations of x and y partial derivatives taken at $x=y=0$

$$
\begin{equation*}
a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y} \tag{1.54}
\end{equation*}
$$

form a vector space.
Example 1.11 (Functions) The space of all linear combinations of a set of functions $f_{i}(x)$ defined on an interval $[a, b]$

$$
\begin{equation*}
f(x)=\sum_{i} z_{i} f_{i}(x) \tag{1.55}
\end{equation*}
$$

is a vector space over the natural, real, or complex numbers $\left\{z_{i}\right\}$.
Example 1.12 (States) In quantum mechanics, a state is represented by a vector, often written as ψ or in Dirac's notation as $|\psi\rangle$. If c_{1} and c_{2} are complex numbers, and $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ are any two states, then the linear combination

$$
\begin{equation*}
|\psi\rangle=c_{1}\left|\psi_{1}\right\rangle+c_{2}\left|\psi_{2}\right\rangle \tag{1.56}
\end{equation*}
$$

also is a possible state of the system.

1.5 Linear operators

A linear operator A maps each vector U in its domain into a vector $U^{\prime}=A(U) \equiv$ $A U$ in its range in a way that is linear. So if U and V are two vectors in its domain and b and c are numbers, then

$$
\begin{equation*}
A(b U+c V)=b A(U)+c A(V)=b A U+c A V \tag{1.57}
\end{equation*}
$$

If the domain and the range are the same vector space S, then A maps each basis vector B_{i} of S into a linear combination of the basis vectors B_{k}

$$
\begin{equation*}
A B_{i}=a_{1 i} B_{1}+a_{2 i} B_{2}+\cdots+a_{N i} B_{N}=\sum_{k=1}^{N} a_{k i} B_{k} \tag{1.58}
\end{equation*}
$$

The square matrix $a_{k i}$ represents the linear operator A in the B_{k} basis. The effect of A on any vector $U=u_{1} B_{1}+u_{2} B_{2}+\cdots+u_{N} B_{N}$ in S then is

$$
\begin{align*}
A U & =A\left(\sum_{i=1}^{N} u_{i} B_{i}\right)=\sum_{i=1}^{N} u_{i} A B_{i}=\sum_{i=1}^{N} u_{i} \sum_{k=1}^{N} a_{k i} B_{k} \\
& =\sum_{k=1}^{N}\left(\sum_{i=1}^{N} a_{k i} u_{i}\right) B_{k} . \tag{1.59}
\end{align*}
$$

So the k th component u_{k}^{\prime} of the vector $U^{\prime}=A U$ is

$$
\begin{equation*}
u_{k}^{\prime}=a_{k 1} u_{1}+a_{k 2} u_{2}+\cdots+a_{k N} u_{N}=\sum_{i=1}^{N} a_{k i} u_{i} \tag{1.60}
\end{equation*}
$$

Thus the column vector u^{\prime} of the components u_{k}^{\prime} of the vector $U^{\prime}=A U$ is the product $u^{\prime}=a u$ of the matrix with elements $a_{k i}$ that represents the linear operator A in the B_{k} basis and the column vector with components u_{i} that represents the vector U in that basis. So in each basis, vectors and linear operators are represented by column vectors and matrices.

Each linear operator is unique, but its matrix depends upon the basis. If we change from the B_{k} basis to another basis B_{k}^{\prime}

$$
\begin{equation*}
B_{k}=\sum_{\ell=1}^{N} u_{\ell k} B_{\ell}^{\prime} \tag{1.61}
\end{equation*}
$$

in which the $N \times N$ matrix $u_{\ell k}$ has an inverse matrix $u_{k i}^{-1}$ so that

$$
\begin{equation*}
\sum_{k=1}^{N} u_{k i}^{-1} B_{k}=\sum_{k=1}^{N} u_{k i}^{-1} \sum_{\ell=1}^{N} u_{\ell k} B_{\ell}^{\prime}=\sum_{\ell=1}^{N}\left(\sum_{k=1}^{N} u_{\ell k} u_{k i}^{-1}\right) B_{\ell}^{\prime}=\sum_{\ell=1}^{N} \delta_{\ell i} B_{\ell}^{\prime}=B_{i}^{\prime} \tag{1.62}
\end{equation*}
$$

then the new basis vectors B_{i}^{\prime} are given by

$$
\begin{equation*}
B_{i}^{\prime}=\sum_{k=1}^{N} u_{k i}^{-1} B_{k} \tag{1.63}
\end{equation*}
$$

Thus (exercise 1.9) the linear operator A maps the basis vector B_{i}^{\prime} to

$$
\begin{equation*}
A B_{i}^{\prime}=\sum_{k=1}^{N} u_{k i}^{-1} A B_{k}=\sum_{j, k=1}^{N} u_{k i}^{-1} a_{j k} B_{j}=\sum_{j, k, \ell=1}^{N} u_{\ell j} a_{j k} u_{k i}^{-1} B_{\ell}^{\prime} . \tag{1.64}
\end{equation*}
$$

So the matrix a^{\prime} that represents A in the B^{\prime} basis is related to the matrix a that represents it in the B basis by a similarity transformation

$$
\begin{equation*}
a_{\ell i}^{\prime}=\sum_{j k=1}^{N} u_{\ell j} a_{j k} u_{k i}^{-1} \quad \text { or } \quad a^{\prime}=u a u^{-1} \tag{1.65}
\end{equation*}
$$

in matrix notation.

Example 1.13 (Change of basis) Let the action of the linear operator A on the basis vectors $\left\{B_{1}, B_{2}\right\}$ be $A B_{1}=B_{2}$ and $A B_{2}=0$. If the column vectors

$$
\begin{equation*}
b_{1}=\binom{1}{0} \quad \text { and } \quad b_{2}=\binom{0}{1} \tag{1.66}
\end{equation*}
$$

represent the basis vectors B_{1} and B_{2}, then the matrix

$$
a=\left(\begin{array}{ll}
0 & 0 \tag{1.67}\\
1 & 0
\end{array}\right)
$$

represents the linear operator A. But if we use the basis vectors

$$
\begin{equation*}
B_{1}^{\prime}=\frac{1}{\sqrt{2}}\left(B_{1}+B_{2}\right) \quad \text { and } \quad B_{2}^{\prime}=\frac{1}{\sqrt{2}}\left(B_{1}-B_{2}\right) \tag{1.68}
\end{equation*}
$$

then the vectors

$$
\begin{equation*}
b_{1}^{\prime}=\frac{1}{\sqrt{2}}\binom{1}{1} \quad \text { and } \quad b_{2}^{\prime}=\frac{1}{\sqrt{2}}\binom{1}{-1} \tag{1.69}
\end{equation*}
$$

would represent B_{1} and B_{2}, and the matrix

$$
a^{\prime}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \tag{1.70}\\
-1 & -1
\end{array}\right)
$$

would represent the linear operator A (exercise 1.10).

A linear operator A also may map a vector space S with basis B_{k} into a different vector space T with its own basis C_{k}. In this case, A maps the basis vector B_{i} into a linear combination of the basis vectors C_{k}

$$
\begin{equation*}
A B_{i}=\sum_{k=1}^{M} a_{k i} C_{k} \tag{1.71}
\end{equation*}
$$

and an arbitrary vector $U=u_{1} B_{1}+\cdots+u_{N} B_{N}$ in S into the vector

$$
\begin{equation*}
A U=\sum_{k=1}^{M}\left(\sum_{i=1}^{N} a_{k i} u_{i}\right) C_{k} \tag{1.72}
\end{equation*}
$$

in T.

1.6 Inner products

Most of the vector spaces used by physicists have an inner product. A positivedefinite inner product associates a number (f, g) with every ordered pair of vectors f and g in the vector space V and satisfies the rules

$$
\begin{align*}
& (f, g)=(g, f)^{*} \tag{1.73}\\
& (f, z g+w h)=z(f, g)+w(f, h) \tag{1.74}\\
& (f, f) \geq 0 \text { and }(f, f)=0 \Longleftrightarrow f=0 \tag{1.75}
\end{align*}
$$

in which f, g, and h are vectors, and z and w are numbers. The first rule says that the inner product is hermitian; the second rule says that it is linear in the second vector $z g+w h$ of the pair; and the third rule says that it is positive definite. The first two rules imply that (exercise 1.11) the inner product is antilinear in the first vector of the pair

$$
\begin{equation*}
(z g+w h, f)=z^{*}(g, f)+w^{*}(h, f) \tag{1.76}
\end{equation*}
$$

A Schwarz inner product satisfies the first two rules $(1.73,1.74)$ for an inner product and the fourth (1.76) but only the first part of the third (1.75)

$$
\begin{equation*}
(f, f) \geq 0 \tag{1.77}
\end{equation*}
$$

This condition of nonnegativity implies (exercise 1.15) that a vector f of zero length must be orthogonal to all vectors g in the vector space V

$$
\begin{equation*}
(f, f)=0 \Longrightarrow(g, f)=0 \text { for all } g \in V \tag{1.78}
\end{equation*}
$$

So a Schwarz inner product is almost positive definite.
Inner products of 4-vectors can be negative. To accommodate them we define an indefinite inner product without regard to positivity as one that satisfies the first two rules ($1.73 \& 1.74$) and therefore also the fourth rule (1.76) and that instead of being positive definite is nondegenerate

$$
\begin{equation*}
(f, g)=0 \text { for all } f \in V \Longrightarrow g=0 \tag{1.79}
\end{equation*}
$$

This rule says that only the zero vector is orthogonal to all the vectors of the space. The positive-definite condition (1.75) is stronger than and implies nondegeneracy (1.79) (exercise 1.14).

Apart from the indefinite inner products of 4-vectors in special and general relativity, most of the inner products physicists use are Schwarz inner products or positive-definite inner products. For such inner products, we can define the norm $|f|=\|f\|$ of a vector f as the square-root of the nonnegative inner product (f, f)

$$
\begin{equation*}
\|f\|=\sqrt{(f, f)} \tag{1.80}
\end{equation*}
$$

The distance between two vectors f and g is the norm of their difference

$$
\begin{equation*}
\|f-g\| \tag{1.81}
\end{equation*}
$$

Example 1.14 (Euclidean space) The space of real vectors U, V with N components U_{i}, V_{i} forms an N-dimensional vector space over the real numbers with an inner product

$$
\begin{equation*}
(U, V)=\sum_{i=1}^{N} U_{i} V_{i} \tag{1.82}
\end{equation*}
$$

that is nonnegative when the two vectors are the same

$$
\begin{equation*}
(U, U)=\sum_{i=1}^{N} U_{i} U_{i}=\sum_{i=1}^{N} U_{i}^{2} \geq 0 \tag{1.83}
\end{equation*}
$$

and vanishes only if all the components U_{i} are zero, that is, if the vector $U=0$. Thus the inner product (1.82) is positive definite. When (U, V) is zero, the vectors U and V are orthogonal.

Example 1.15 (Complex euclidean space) The space of complex vectors with N components U_{i}, V_{i} forms an N-dimensional vector space over the complex numbers with inner product

$$
\begin{equation*}
(U, V)=\sum_{i=1}^{N} U_{i}^{*} V_{i}=(V, U)^{*} \tag{1.84}
\end{equation*}
$$

The inner product (U, U) is nonnegative and vanishes

$$
\begin{equation*}
(U, U)=\sum_{i=1}^{N} U_{i}^{*} U_{i}=\sum_{i=1}^{N}\left|U_{i}\right|^{2} \geq 0 \tag{1.85}
\end{equation*}
$$

only if $U=0$. So the inner product (1.84) is positive definite. If (U, V) is zero, then U and V are orthogonal.

Example 1.16 (Complex matrices) For the vector space of $N \times L$ complex matrices A, B, \ldots, the trace of the adjoint (1.28) of A multiplied by B is an inner product

$$
\begin{equation*}
(A, B)=\operatorname{Tr} A^{\dagger} B=\sum_{i=1}^{N} \sum_{j=1}^{L}\left(A^{\dagger}\right)_{j i} B_{i j}=\sum_{i=1}^{N} \sum_{j=1}^{L} A_{i j}^{*} B_{i j} \tag{1.86}
\end{equation*}
$$

that is nonnegative when the matrices are the same

$$
\begin{equation*}
(A, A)=\operatorname{Tr} A^{\dagger} A=\sum_{i=1}^{N} \sum_{j=1}^{L} A_{i j}^{*} A_{i j}=\sum_{i=1}^{N} \sum_{j=1}^{L}\left|A_{i j}\right|^{2} \geq 0 \tag{1.87}
\end{equation*}
$$

and zero only when $A=0$. So this inner product is positive definite.

A vector space with a positive-definite inner product (1.73-1.77) is called an inner-product space, a metric space, or a pre-Hilbert space.

A sequence of vectors f_{n} is a Cauchy sequence if for every $\epsilon>0$ there is an integer $N(\epsilon)$ such that $\left\|f_{n}-f_{m}\right\|<\epsilon$ whenever both n and m exceed $N(\epsilon)$. A sequence of vectors f_{n} converges to a vector f if for every $\epsilon>0$ there is an integer $N(\epsilon)$ such that $\left\|f-f_{n}\right\|<\epsilon$ whenever n exceeds $N(\epsilon)$. An innerproduct space with a norm defined as in (1.80) is complete if each of its Cauchy sequences converges to a vector in that space. A Hilbert space is a complete inner-product space. Every finite-dimensional inner-product space is complete and so is a Hilbert space. But the term Hilbert space more often is used to describe infinite-dimensional complete inner-product spaces, such as the space of all square-integrable functions (David Hilbert, 1862-1943).

Example 1.17 (The Hilbert space of square-integrable functions) For the vector space of functions (1.55), a natural inner product is

$$
\begin{equation*}
(f, g)=\int_{a}^{b} d x f^{*}(x) g(x) \tag{1.88}
\end{equation*}
$$

The squared norm $\|f\|$ of a function $f(x)$ is

$$
\begin{equation*}
\|f\|^{2}=\int_{a}^{b} d x|f(x)|^{2} \tag{1.89}
\end{equation*}
$$

A function is square integrable if its norm is finite. The space of all squareintegrable functions is an inner-product space; it also is complete and so is a Hilbert space.

Example 1.18 (Minkowski inner product) The Minkowski or Lorentz inner product (p, x) of two 4 -vectors $p=\left(E / c, p_{1}, p_{2}, p_{3}\right)$ and $x=\left(c t, x_{1}, x_{2}, x_{3}\right)$ is
$\boldsymbol{p} \cdot \boldsymbol{x}-E t$. It is indefinite, nondegenerate, and invariant under Lorentz transformations, and often is written as $p \cdot x$ or as $p x$. If p is the 4 -momentum of a freely moving physical particle of mass m, then

$$
\begin{equation*}
p \cdot p=\boldsymbol{p} \cdot \boldsymbol{p}-E^{2} / c^{2}=-c^{2} m^{2} \leq 0 \tag{1.90}
\end{equation*}
$$

The Minkowski inner product satisfies the rules (1.73, 1.75, and 1.79), but it is not positive definite, and it does not satisfy the Schwarz inequality (Hermann Minkowski, 1864-1909; Hendrik Lorentz, 1853-1928).

1.7 The Cauchy-Schwarz inequality

For any two vectors f and g, the Schwarz inequality

$$
\begin{equation*}
(f, f)(g, g) \geq|(f, g)|^{2} \tag{1.91}
\end{equation*}
$$

holds for any Schwarz inner product (and so for any positive-definite inner product). The condition (1.77) of nonnegativity ensures that for any complex number λ the inner product of the vector $f-\lambda g$ with itself is nonnegative

$$
\begin{equation*}
(f-\lambda g, f-\lambda g)=(f, f)-\lambda^{*}(g, f)-\lambda(f, g)+|\lambda|^{2}(g, g) \geq 0 . \tag{1.92}
\end{equation*}
$$

Now if $(g, g)=0$, then for $(f-\lambda g, f-\lambda g)$ to remain nonnegative for all complex values of λ it is necessary that $(f, g)=0$ also vanish (exercise 1.15). Thus if $(g, g)=0$, then the Schwarz inequality (1.91) is trivially true because both sides of it vanish. So we assume that $(g, g)>0$ and set $\lambda=(g, f) /(g, g)$. The inequality (1.92) then gives us

$$
(f-\lambda g, f-\lambda g)=\left(f-\frac{(g, f)}{(g, g)} g, f-\frac{(g, f)}{(g, g)} g\right)=(f, f)-\frac{(f, g)(g, f)}{(g, g)} \geq 0
$$

which is the Schwarz inequality (1.91) (Hermann Schwarz, 1843-1921)

$$
\begin{equation*}
(f, f)(g, g) \geq|(f, g)|^{2} \tag{1.93}
\end{equation*}
$$

Taking the square-root of each side, we get

$$
\begin{equation*}
\|f\|\|g\| \geq|(f, g)| \tag{1.94}
\end{equation*}
$$

Example 1.19 (Some Schwarz inequalities) For the dot-product of two real 3 -vectors \boldsymbol{r} and \boldsymbol{R}, the Cauchy-Schwarz inequality is

$$
\begin{equation*}
(\boldsymbol{r} \cdot \boldsymbol{r})(\boldsymbol{R} \cdot \boldsymbol{R}) \geq(\boldsymbol{r} \cdot \boldsymbol{R})^{2}=(\boldsymbol{r} \cdot \boldsymbol{r})(\boldsymbol{R} \cdot \boldsymbol{R}) \cos ^{2} \theta \tag{1.95}
\end{equation*}
$$

where θ is the angle between \boldsymbol{r} and \boldsymbol{R}.
The Schwarz inequality for two real n-vectors \boldsymbol{x} is

$$
\begin{equation*}
(x \cdot x)(y \cdot y) \geq(x \cdot y)^{2}=(x \cdot x)(y \cdot y) \cos ^{2} \theta \tag{1.96}
\end{equation*}
$$

and it implies (Exercise 1.16) that

$$
\begin{equation*}
\|x\|+\|y\| \geq\|x+y\| . \tag{1.97}
\end{equation*}
$$

For two complex n-vectors \boldsymbol{u} and \boldsymbol{v}, the Schwarz inequality is

$$
\begin{equation*}
\left(\boldsymbol{u}^{*} \cdot \boldsymbol{u}\right)\left(\boldsymbol{v}^{*} \cdot \boldsymbol{v}\right) \geq\left|\boldsymbol{u}^{*} \cdot \boldsymbol{v}\right|^{2}=\left(\boldsymbol{u}^{*} \cdot \boldsymbol{u}\right)\left(\boldsymbol{v}^{*} \cdot \boldsymbol{v}\right) \cos ^{2} \theta \tag{1.98}
\end{equation*}
$$

and it implies (exercise 1.17) that

$$
\begin{equation*}
\|\boldsymbol{u}\|+\|\boldsymbol{v}\| \geq\|\boldsymbol{u}+\boldsymbol{v}\| . \tag{1.99}
\end{equation*}
$$

The inner product (1.88) of two complex functions f and g provides a somewhat different instance

$$
\begin{equation*}
\int_{a}^{b} d x|f(x)|^{2} \int_{a}^{b} d x|g(x)|^{2} \geq\left|\int_{a}^{b} d x f^{*}(x) g(x)\right|^{2} \tag{1.100}
\end{equation*}
$$

of the Schwarz inequality.

1.8 Linear independence and completeness

A set of N vectors $V_{1}, V_{2}, \ldots, V_{N}$ is linearly dependent if there exist numbers c_{i}, not all zero, such that the linear combination

$$
\begin{equation*}
c_{1} V_{1}+\cdots+c_{N} V_{N}=0 \tag{1.101}
\end{equation*}
$$

vanishes. A set of vectors is linearly independent if it is not linearly dependent.
A set $\left\{V_{i}\right\}$ of linearly independent vectors is maximal in a vector space S if the addition of any other vector U in S to the set $\left\{V_{i}\right\}$ makes the enlarged set $\left\{U, V_{i}\right\}$ linearly dependent.

A set of N linearly independent vectors $V_{1}, V_{2}, \ldots, V_{N}$ that is maximal in a vector space S can represent any vector U in the space S as a linear combination of its vectors, $U=u_{1} V_{1}+\cdots+u_{N} V_{N}$. For if we enlarge the maximal set $\left\{V_{i}\right\}$ by including in it any vector U not already in it, then the bigger set $\left\{U, V_{i}\right\}$ will be linearly dependent. Thus there will be numbers c, c_{1}, \ldots, c_{N}, not all zero, that make the sum

$$
\begin{equation*}
c U+c_{1} V_{1}+\cdots+c_{N} V_{N}=0 \tag{1.102}
\end{equation*}
$$

vanish. Now if c were 0 , then the set $\left\{V_{i}\right\}$ would be linearly dependent. Thus $c \neq 0$, and so we may divide by c and express the arbitrary vector U as a linear combination of the vectors V_{i}

$$
\begin{equation*}
U=-\frac{1}{c}\left(c_{1} V_{1}+\cdots+c_{N} V_{N}\right)=u_{1} V_{1}+\cdots+u_{N} V_{N} \tag{1.103}
\end{equation*}
$$

with $u_{k}=-c_{k} / c$. So a set of linearly independent vectors $\left\{V_{i}\right\}$ that is maximal in a space S can represent every vector U in S as a linear combination
$U=u_{1} V_{1}+\ldots+u_{N} V_{N}$ of its vectors. The set $\left\{V_{i}\right\}$ spans the space S; it is a complete set of vectors in the space S.

A set of vectors $\left\{V_{i}\right\}$ that spans a vector space S provides a basis for that space because the set lets us represent an arbitrary vector U in S as a linear combination of the basis vectors $\left\{V_{i}\right\}$. If the vectors of a basis are linearly dependent, then at least one of them is superfluous, and so it is convenient to have the vectors of a basis be linearly independent.

1.9 Dimension of a vector space

If V_{1}, \ldots, V_{N} and W_{1}, \ldots, W_{M} are two maximal sets of N and M linearly independent vectors in a vector space S, then $N=M$.

Suppose $M<N$. Since the U s are complete, they span S, and so we may express each of the N vectors V_{i} in terms of the M vectors W_{j}

$$
\begin{equation*}
V_{i}=\sum_{j=1}^{M} A_{i j} W_{j} \tag{1.104}
\end{equation*}
$$

Let A_{j} be the vector with components $A_{i j}$. There are $M<N$ such vectors, and each has $N>M$ components. So it is always possible to find a nonzero N-dimensional vector C with components c_{i} that is orthogonal to all M vectors A_{j}

$$
\begin{equation*}
\sum_{i=1}^{N} c_{i} A_{i j}=0 \tag{1.105}
\end{equation*}
$$

Thus the linear combination

$$
\begin{equation*}
\sum_{i=1}^{N} c_{i} V_{i}=\sum_{i=1}^{N} \sum_{j=1}^{M} c_{i} A_{i j} W_{j}=0 \tag{1.106}
\end{equation*}
$$

vanishes, which implies that the N vectors V_{i} are linearly dependent. Since these vectors are by assumption linearly independent, it follows that $N \leq M$.

Similarly, one may show that $M \leq N$. Thus $M=N$.
The number of vectors in a maximal set of linearly independent vectors in a vector space S is the dimension of the vector space. Any N linearly independent vectors in an N-dimensional space form a basis for it.

1.10 Orthonormal vectors

Suppose the vectors $V_{1}, V_{2}, \ldots, V_{N}$ are linearly independent. Then we can make out of them a set of N vectors U_{i} that are orthonormal

$$
\begin{equation*}
\left(U_{i}, U_{j}\right)=\delta_{i j} . \tag{1.107}
\end{equation*}
$$

There are many ways to do this, because there are many such sets of orthonormal vectors. We will use the Gram-Schmidt method. We set

$$
\begin{equation*}
U_{1}=\frac{V_{1}}{\sqrt{\left(V_{1}, V_{1}\right)}} \tag{1.108}
\end{equation*}
$$

so the first vector U_{1} is normalized. Next we set $u_{2}=V_{2}+c_{12} U_{1}$ and require that u_{2} be orthogonal to U_{1}

$$
\begin{equation*}
0=\left(U_{1}, u_{2}\right)=\left(U_{1}, c_{12} U_{1}+V_{2}\right)=c_{12}+\left(U_{1}, V_{2}\right) \tag{1.109}
\end{equation*}
$$

Thus $c_{12}=-\left(U_{1}, V_{2}\right)$, and so

$$
\begin{equation*}
u_{2}=V_{2}-\left(U_{1}, V_{2}\right) U_{1} . \tag{1.110}
\end{equation*}
$$

The normalized vector U_{2} then is

$$
\begin{equation*}
U_{2}=\frac{u_{2}}{\sqrt{\left(u_{2}, u_{2}\right)}} \tag{1.111}
\end{equation*}
$$

We next set $u_{3}=V_{3}+c_{13} U_{1}+c_{23} U_{2}$ and ask that u_{3} be orthogonal to U_{1}

$$
\begin{equation*}
0=\left(U_{1}, u_{3}\right)=\left(U_{1}, c_{13} U_{1}+c_{23} U_{2}+V_{3}\right)=c_{13}+\left(U_{1}, V_{3}\right) \tag{1.112}
\end{equation*}
$$

and also to U_{2}

$$
\begin{equation*}
0=\left(U_{2}, u_{3}\right)=\left(U_{2}, c_{13} U_{1}+c_{23} U_{2}+V_{3}\right)=c_{23}+\left(U_{2}, V_{3}\right) \tag{1.113}
\end{equation*}
$$

So $c_{13}=-\left(U_{1}, V_{3}\right)$ and $c_{23}=-\left(U_{2}, V_{3}\right)$, and we have

$$
\begin{equation*}
u_{3}=V_{3}-\left(U_{1}, V_{3}\right) U_{1}-\left(U_{2}, V_{3}\right) U_{2} . \tag{1.114}
\end{equation*}
$$

The normalized vector U_{3} then is

$$
\begin{equation*}
U_{3}=\frac{u_{3}}{\sqrt{\left(u_{3}, u_{3}\right)}} \tag{1.115}
\end{equation*}
$$

We may continue in this way until we reach the last of the N linearly independent vectors. We require the k th unnormalized vector u_{k}

$$
\begin{equation*}
u_{k}=V_{k}+\sum_{i=1}^{k-1} c_{i k} U_{i} \tag{1.116}
\end{equation*}
$$

to be orthogonal to the $k-1$ vectors U_{i} and find that $c_{i k}=-\left(U_{i}, V_{k}\right)$ so that

$$
\begin{equation*}
u_{k}=V_{k}-\sum_{i=1}^{k-1}\left(U_{i}, V_{k}\right) U_{i} \tag{1.117}
\end{equation*}
$$

The normalized vector then is

$$
\begin{equation*}
U_{k}=\frac{u_{k}}{\sqrt{\left(u_{k}, u_{k}\right)}} \tag{1.118}
\end{equation*}
$$

A basis is more convenient if its vectors are orthonormal.

1.11 Outer products

From any two vectors f and g, we may make an operator A that takes any vector h into the vector f with coefficient (g, h)

$$
\begin{equation*}
A h=f(g, h) \tag{1.119}
\end{equation*}
$$

Since for any vectors e, h and numbers z, w

$$
\begin{equation*}
A(z h+w e)=f(g, z h+w e)=z f(g, h)+w f(g, e)=z A h+w A e \tag{1.120}
\end{equation*}
$$

it follows that A is linear.
If in some basis f, g, and h are vectors with components f_{i}, g_{i}, and h_{i}, then the linear transformation is

$$
\begin{equation*}
(A h)_{i}=\sum_{j=1}^{N} A_{i j} h_{j}=f_{i} \sum_{j=1}^{N} g_{j}^{*} h_{j} \tag{1.121}
\end{equation*}
$$

and in that basis A is the matrix with entries

$$
\begin{equation*}
A_{i j}=f_{i} g_{j}^{*} \tag{1.122}
\end{equation*}
$$

It is the outer product of the vectors f and g.

Example 1.20 (Outer product) If in some basis the vectors f and g are

$$
f=\binom{2}{3} \quad \text { and } \quad g=\left(\begin{array}{c}
i \tag{1.123}\\
1 \\
3 i
\end{array}\right)
$$

then their outer product is the matrix

$$
A=\binom{2}{3}\left(\begin{array}{lll}
-i & 1 & -3 i
\end{array}\right)=\left(\begin{array}{lll}
-2 i & 2 & -6 i \tag{1.124}\\
-3 i & 3 & -9 i
\end{array}\right)
$$

Dirac developed a notation that handles outer products very easily.
Example 1.21 (Outer products) If the vectors $f=|f\rangle$ and $g=|g\rangle$ are

$$
|f\rangle=\left(\begin{array}{l}
a \tag{1.125}\\
b \\
c
\end{array}\right) \quad \text { and } \quad|g\rangle=\binom{z}{w}
$$

then their outer products are

$$
|f\rangle\langle g|=\left(\begin{array}{ll}
a z^{*} & a w^{*} \tag{1.126}\\
b z^{*} & b w^{*} \\
c z^{*} & c w^{*}
\end{array}\right) \quad \text { and } \quad|g\rangle\langle f|=\left(\begin{array}{ccc}
z a^{*} & z b^{*} & z c^{*} \\
w a^{*} & w b^{*} & w c^{*}
\end{array}\right)
$$

as well as

$$
|f\rangle\langle f|=\left(\begin{array}{lll}
a a^{*} & a b^{*} & a c^{*} \tag{1.127}\\
b a^{*} & b b^{*} & b c^{*} \\
c a^{*} & c b^{*} & c c^{*}
\end{array}\right) \quad \text { and } \quad|g\rangle\langle g|=\left(\begin{array}{cc}
z z^{*} & z w^{*} \\
w z^{*} & w w^{*}
\end{array}\right)
$$

Students should feel free to write down their own examples.

1.12 Dirac notation

Outer products are important in quantum mechanics, and so Dirac invented a notation for linear algebra that makes them easy to write. In his notation, a vector f is a ket $f=|f\rangle$. The new thing in his notation is the bra $\langle g|$. The inner product of two vectors (g, f) is the bracket $(g, f)=\langle g \mid f\rangle$. A matrix element ($g, A f$) is then $(g, A f)=\langle g| A|f\rangle$ in which the bra and ket bracket the operator. In Dirac notation, the outer product $A h=f(g, h)$ reads $A|h\rangle=|f\rangle\langle g \mid h\rangle$, so that the outer product A itself is $A=|f\rangle\langle g|$. Before Dirac, bras were implicit in the definition of the inner product, but they did not appear explicitly; there was no way to write the bra $\langle g|$ or the operator $|f\rangle\langle g|$.

If the kets $|n\rangle$ form an orthonormal basis in an N-dimensional vector space, then we can expand an arbitrary ket in the space as

$$
\begin{equation*}
|f\rangle=\sum_{n=1}^{N} c_{n}|n\rangle \tag{1.128}
\end{equation*}
$$

Since the basis vectors are orthonormal $\langle\ell \mid n\rangle=\delta_{\ell n}$, we can identify the coefficients c_{n} by forming the inner product

$$
\begin{equation*}
\langle\ell \mid f\rangle=\sum_{n=1}^{N} c_{n}\langle\ell \mid n\rangle=\sum_{n=1}^{N} c_{n} \delta_{\ell, n}=c_{\ell} \tag{1.129}
\end{equation*}
$$

The original expansion (1.128) then must be

$$
\begin{equation*}
|f\rangle=\sum_{n=1}^{N} c_{n}|n\rangle=\sum_{n=1}^{N}\langle n \mid f\rangle|n\rangle=\sum_{n=1}^{N}|n\rangle\langle n \mid f\rangle=\left(\sum_{n=1}^{N}|n\rangle\langle n|\right)|f\rangle . \tag{1.130}
\end{equation*}
$$

Since this equation must hold for every vector $|f\rangle$ in the space, it follows that the sum of outer products within the parentheses is the identity operator for the space

$$
\begin{equation*}
I=\sum_{n=1}^{N}|n\rangle\langle n| \tag{1.131}
\end{equation*}
$$

Every set of kets $\left|\alpha_{n}\right\rangle$ that forms an orthonormal basis $\left\langle\alpha_{n} \mid \alpha_{\ell}\right\rangle=\delta_{n \ell}$ for the space gives us an equivalent representation of the identity operator

$$
\begin{equation*}
I=\sum_{n=1}^{N}\left|\alpha_{n}\right\rangle\left\langle\alpha_{n}\right|=\sum_{n=1}^{N}|n\rangle\langle n| . \tag{1.132}
\end{equation*}
$$

Before Dirac, one could not write such equations. They provide for every vector $|f\rangle$ in the space the expansions

$$
\begin{equation*}
|f\rangle=\sum_{n=1}^{N}\left|\alpha_{n}\right\rangle\left\langle\alpha_{n} \mid f\right\rangle=\sum_{n=1}^{N}|n\rangle\langle n \mid f\rangle . \tag{1.133}
\end{equation*}
$$

Example 1.22 (Inner-product rules) In Dirac's notation, the rules (1.73-1.76) of a positive-definite inner product are

$$
\begin{align*}
&\langle f \mid g\rangle=\langle g \mid f\rangle^{*} \tag{1.134}\\
&\left\langle f \mid z_{1} g_{1}+z_{2} g_{2}\right\rangle=z_{1}\left\langle f \mid g_{1}\right\rangle+z_{2}\left\langle f \mid g_{2}\right\rangle \tag{1.135}\\
&\left\langle z_{1} f_{1}+z_{2} f_{2} \mid g\right\rangle=z_{1}^{*}\left\langle f_{1} \mid g\right\rangle+z_{2}^{*}\left\langle f_{2} \mid g\right\rangle \tag{1.136}\\
&\langle f \mid f\rangle \geq 0 \text { and }\langle f \mid f\rangle=0 \Longleftrightarrow f=0 . \tag{1.137}
\end{align*}
$$

Usually states in Dirac notation are labeled $|\psi\rangle$ or by their quantum numbers $|n, l, m\rangle$, and one rarely sees plus signs or complex numbers or operators inside bras or kets. But one should.

Example 1.23 (Gram-Schmidt) In Dirac notation, the formula (1.117) for the k th orthogonal linear combination of the vectors $\left|V_{\ell}\right\rangle$ is

$$
\begin{equation*}
\left|u_{k}\right\rangle=\left|V_{k}\right\rangle-\sum_{i=1}^{k-1}\left|U_{i}\right\rangle\left\langle U_{i} \mid V_{k}\right\rangle=\left(I-\sum_{i=1}^{k-1}\left|U_{i}\right\rangle\left\langle U_{i}\right|\right)\left|V_{k}\right\rangle \tag{1.138}
\end{equation*}
$$

and the formula (1.118) for the k th orthonormal linear combination of the vectors $\left|V_{\ell}\right\rangle$ is

$$
\begin{equation*}
\left|U_{k}\right\rangle=\frac{\left|u_{k}\right\rangle}{\sqrt{\left\langle u_{k} \mid u_{k}\right\rangle}} . \tag{1.139}
\end{equation*}
$$

The vectors $\left|U_{k}\right\rangle$ are not unique; they vary with the order of the $\left|V_{k}\right\rangle$.

Vectors and linear operators are abstract. The numbers we compute with are inner products like $\langle g \mid f\rangle$ and $\langle g| A|f\rangle$. In terms of N orthonormal basis vectors $|n\rangle$ with $f_{n}=\langle n \mid f\rangle$ and $g_{n}^{*}=\langle g \mid n\rangle$, we can use the expansion (1.131) to write these inner products as

