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1

Linear algebra

1.1 Numbers

The natural numbers are the positive integers and zero. Rational numbers are
ratios of integers. Irrational numbers have decimal digits dn

x =
∞∑

n=mx

dn

10n (1.1)

that do not repeat. Thus the repeating decimals 1/2 = 0.50000 . . . and 1/3 =
0.3̄ ≡ 0.33333 . . . are rational, while π = 3.141592654 . . . is irrational. Deci-
mal arithmetic was invented in India over 1500 years ago but was not widely
adopted in the Europe until the seventeenth century.

The real numbers R include the rational numbers and the irrational numbers;
they correspond to all the points on an infinite line called the real line.

The complex numbers C are the real numbers with one new number i whose
square is −1. A complex number z is a linear combination of a real number x
and a real multiple i y of i

z = x+ iy. (1.2)

Here x = Rez is the real part of z, and y = Imz is its imaginary part. One adds
complex numbers by adding their real and imaginary parts

z1 + z2 = x1 + iy1 + x2 + iy2 = x1 + x2 + i(y1 + y2). (1.3)

Since i2 = −1, the product of two complex numbers is

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i(x1y2 + y1x2). (1.4)

The polar representation z = r exp(iθ) of z = x+ iy is

z = x+ iy = reiθ = r(cos θ + i sin θ) (1.5)
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LINEAR ALGEBRA

in which r is the modulus or absolute value of z

r = |z| =
√

x2 + y2 (1.6)

and θ is its phase or argument

θ = arctan (y/x). (1.7)

Since exp(2π i) = 1, there is an inevitable ambiguity in the definition of
the phase of any complex number: for any integer n, the phase θ + 2πn gives
the same z as θ . In various computer languages, the function atan2(y, x) returns
the angle θ in the interval −π < θ ≤ π for which (x, y) = r(cos θ , sin θ).

There are two common notations z∗ and z̄ for the complex conjugate of a
complex number z = x+ iy

z∗ = z̄ = x− iy. (1.8)

The square of the modulus of a complex number z = x+ iy is

|z|2 = x2 + y2 = (x+ iy)(x− iy) = z̄z = z∗z. (1.9)

The inverse of a complex number z = x+ iy is

z−1 = (x+ iy)−1 = x− iy
(x− iy)(x+ iy)

= x− iy
x2 + y2 =

z∗

z∗z
= z∗

|z|2 . (1.10)

Grassmann numbers θi are anticommuting numbers, that is, the anti-
commutator of any two Grassmann numbers vanishes

{θi, θj} ≡ [θi, θj]+ ≡ θiθj + θjθi = 0. (1.11)

So the square of any Grassmann number is zero, θ2
i = 0. We won’t use these

numbers until chapter 16, but they do have amusing properties. The highest
monomial in N Grassmann numbers θi is the product θ1θ2 . . . θN . So the most
complicated power series in two Grassmann numbers is just

f (θ1, θ2) = f0 + f1 θ1 + f2 θ2 + f12 θ1θ2 (1.12)

(Hermann Grassmann, 1809–1877).

1.2 Arrays

An array is an ordered set of numbers. Arrays play big roles in computer science,
physics, and mathematics. They can be of any (integral) dimension.

A one-dimensional array (a1, a2, . . . , an) is variously called an n-tuple, a row
vector when written horizontally, a column vector when written vertically, or an
n-vector. The numbers ak are its entries or components.

A two-dimensional array aik with i running from 1 to n and k from 1 to m is
an n × m matrix. The numbers aik are its entries, elements, or matrix elements.
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1.2 ARRAYS

One can think of a matrix as a stack of row vectors or as a queue of column
vectors. The entry aik is in the ith row and the kth column.

One can add together arrays of the same dimension and shape by adding
their entries. Two n-tuples add as

(a1, . . . , an)+ (b1, . . . , bn) = (a1 + b1, . . . , an + bn) (1.13)

and two n×m matrices a and b add as

(a+ b)ik = aik + bik. (1.14)

One can multiply arrays by numbers. Thus z times the three-dimensional
array aijk is the array with entries z aijk. One can multiply two arrays together
no matter what their shapes and dimensions. The outer product of an n-tuple a
and an m-tuple b is an n×m matrix with elements

(a b)ik = ai bk (1.15)

or an m× n matrix with entries (ba)ki = bkai. If a and b are complex, then one
also can form the outer products (a b)ik = ai bk, (b a)ki = bk ai, and (b a)ki =
bk ai. The outer product of a matrix aik and a three-dimensional array bj�m is a
five-dimensional array

(a b)ikj�m = aik bj�m. (1.16)

An inner product is possible when two arrays are of the same size in one of
their dimensions. Thus the inner product (a, b) ≡ 〈a|b〉 or dot-product a · b of
two real n-tuples a and b is

(a, b) = 〈a|b〉 = a · b = (a1, . . . , an) · (b1, . . . , bn) = a1b1 + · · · + anbn. (1.17)

The inner product of two complex n-tuples often is defined as

(a, b) = 〈a|b〉 = a · b = (a1, . . . , an) · (b1, . . . , bn) = a1 b1 + · · · + an bn (1.18)

or as its complex conjugate

(a, b)∗ = 〈a|b〉∗ = (a · b)∗ = (b, a) = 〈b|a〉 = b · a (1.19)

so that the inner product of a vector with itself is nonnegative (a, a) ≥ 0.
The product of an m×n matrix aik times an n-tuple bk is the m-tuple b′ whose

ith component is

b′i = ai1b1 + ai2b2 + · · · + ainbn =
n∑

k=1

aikbk. (1.20)

This product is b′ = a b in matrix notation.
If the size n of the second dimension of a matrix a matches that of the first

dimension of a matrix b, then their product a b is a matrix with entries

(a b)i� = ai1 b1� + · · · + ain bn�. (1.21)

3
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1.3 Matrices

Apart from n-tuples, the most important arrays in linear algebra are the two-
dimensional arrays called matrices.

The trace of an n× n matrix a is the sum of its diagonal elements

Tr a = tr a = a11 + a22 + · · · + ann =
n∑

i=1

aii. (1.22)

The trace of two matrices is independent of their order

Tr (a b) =
n∑

i=1

n∑
k=1

aikbki =
n∑

k=1

n∑
i=1

bkiaik = Tr (ba) (1.23)

as long as the matrix elements are numbers that commute with each other. It
follows that the trace is cyclic

Tr (a b . . . z) = Tr (b . . . z a) . (1.24)

The transpose of an n× � matrix a is an �× n matrix aT with entries(
aT
)

ij = aji. (1.25)

Some mathematicians use a prime to mean transpose, as in a′ = aT , but physi-
cists tend to use primes to label different objects or to indicate differentiation.
One may show that

(a b) T = bT aT . (1.26)

A matrix that is equal to its transpose

a = aT (1.27)

is symmetric.
The (hermitian) adjoint of a matrix is the complex conjugate of its transpose

(Charles Hermite, 1822–1901). That is, the (hermitian) adjoint a† of an N × L
complex matrix a is the L×N matrix with entries

(a†)ij = (aji)∗ = a∗ji. (1.28)

One may show that

(a b)† = b† a†. (1.29)

A matrix that is equal to its adjoint

(a†)ij = (aji)∗ = a∗ji = aij (1.30)

4



1.3 MATRICES

(and which must be a square matrix) is hermitian or self adjoint

a = a†. (1.31)

Example 1.1 (The Pauli matrices)

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
(1.32)

are all hermitian (Wolfgang Pauli, 1900–1958).

A real hermitian matrix is symmetric. If a matrix a is hermitian, then the
quadratic form

〈v|a|v〉 =
N∑

i=1

N∑
j=1

v∗i aijvj ∈ R (1.33)

is real for all complex n-tuples v.
The Kronecker delta δik is defined to be unity if i= k and zero if

i �= k (Leopold Kronecker, 1823–1891). The identity matrix I has entries
Iik = δik.

The inverse a−1 of an n× n matrix a is a square matrix that satisfies

a−1 a = a a−1 = I (1.34)

in which I is the n× n identity matrix.
So far we have been writing n-tuples and matrices and their elements with

lower-case letters. It is equally common to use capital letters, and we will do so
for the rest of this section.

A matrix U whose adjoint U† is its inverse

U†U = UU† = I (1.35)

is unitary. Unitary matrices are square.
A real unitary matrix O is orthogonal and obeys the rule

OTO = OOT = I . (1.36)

Orthogonal matrices are square.
An N ×N hermitian matrix A is nonnegative

A ≥ 0 (1.37)

if for all complex vectors V the quadratic form

〈V |A|V〉 =
N∑

i=1

N∑
j=1

V∗i AijVj ≥ 0 (1.38)
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is nonnegative. It is positive or positive definite if

〈V |A|V〉 > 0 (1.39)

for all nonzero vectors |V〉.

Example 1.2 (Kinds of positivity) The nonsymmetric, nonhermitian 2 × 2
matrix (

1 1
−1 1

)
(1.40)

is positive on the space of all real 2-vectors but not on the space of all complex
2-vectors.

Example 1.3 (Representations of imaginary and Grassmann numbers) The
2× 2 matrix (

0 −1
1 0

)
(1.41)

can represent the number i since(
0 −1
1 0

)(
0 −1
1 0

)
=
(−1 0

0 −1

)
= −I . (1.42)

The 2 × 2 matrix (
0 0
1 0

)
(1.43)

can represent a Grassmann number since(
0 0
1 0

)(
0 0
1 0

)
=
(

0 0
0 0

)
= 0. (1.44)

To represent two Grassmann numbers, one needs 4 × 4 matrices, such as

θ1 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ and θ2 =

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ . (1.45)

The matrices that represent n Grassmann numbers are 2n × 2n.

Example 1.4 (Fermions) The matrices (1.45) also can represent lowering or
annihilation operators for a system of two fermionic states. For a1 = θ1

and a2 = θ2 and their adjoints a†1 and a†2, the creation operators satisfy the
anticommutation relations

{ai, a†k} = δik and {ai, ak} = {a†i , a†k} = 0 (1.46)
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where i and k take the values 1 or 2. In particular, the relation (a†i )2 = 0 imple-
ments Pauli’s exclusion principle, the rule that no state of a fermion can be doubly
occupied.

1.4 Vectors

Vectors are things that can be multiplied by numbers and added together to
form other vectors in the same vector space. So if U and V are vectors in a
vector space S over a set F of numbers x and y and so forth, then

W = x U + y V (1.47)

also is a vector in the vector space S.
A basis for a vector space S is a set of vectors Bk for k = 1, . . . , N in terms

of which every vector U in S can be expressed as a linear combination

U = u1B1 + u2B2 + · · · + uNBN (1.48)

with numbers uk in F . The numbers uk are the components of the vector U in
the basis Bk.

Example 1.5 (Hardware store) Suppose the vector W represents a certain kind
of washer and the vector N represents a certain kind of nail. Then if n and m are
natural numbers, the vector

H = nW +mN (1.49)

would represent a possible inventory of a very simple hardware store. The vector
space of all such vectors H would include all possible inventories of the store.
That space is a two-dimensional vector space over the natural numbers, and the
two vectors W and N form a basis for it.

Example 1.6 (Complex numbers) The complex numbers are a vector space.
Two of its vectors are the number 1 and the number i; the vector space of
complex numbers is then the set of all linear combinations

z = x1+ yi = x+ iy. (1.50)

So the complex numbers are a two-dimensional vector space over the real
numbers, and the vectors 1 and i are a basis for it.

The complex numbers also form a one-dimensional vector space over the
complex numbers. Here any nonzero real or complex number, for instance the
number 1, can be a basis consisting of the single vector 1. This one-dimensional
vector space is the set of all z = z1 for arbitrary complex z.

7
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Example 1.7 (2-space) Ordinary flat two-dimensional space is the set of all
linear combinations

r = xx̂+ yŷ (1.51)

in which x and y are real numbers and x̂ and ŷ are perpendicular vectors of unit
length (unit vectors). This vector space, called R

2, is a 2-d space over the reals.
Note that the same vector r can be described either by the basis vectors x̂ and

ŷ or by any other set of basis vectors, such as −ŷ and x̂

r = xx̂+ yŷ = −y(−ŷ)+ xx̂. (1.52)

So the components of the vector r are (x, y) in the
{
x̂, ŷ
}

basis and (−y, x) in the{−ŷ, x̂
}

basis. Each vector is unique, but its components depend upon the basis.

Example 1.8 (3-space) Ordinary flat three-dimensional space is the set of all
linear combinations

r = xx̂+ yŷ+ zẑ (1.53)

in which x, y, and z are real numbers. It is a 3-d space over the reals.

Example 1.9 (Matrices) Arrays of a given dimension and size can be added
and multiplied by numbers, and so they form a vector space. For instance, all
complex three-dimensional arrays aijk in which 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, and
1 ≤ k ≤ 5 form a vector space over the complex numbers.

Example 1.10 (Partial derivatives) Derivatives are vectors, so are partial deriva-
tives. For instance, the linear combinations of x and y partial derivatives taken
at x = y = 0

a
∂

∂x
+ b

∂

∂y
(1.54)

form a vector space.

Example 1.11 (Functions) The space of all linear combinations of a set of
functions fi(x) defined on an interval [a, b]

f (x) =
∑

i

zi fi(x) (1.55)

is a vector space over the natural, real, or complex numbers {zi}.

Example 1.12 (States) In quantum mechanics, a state is represented by a vec-
tor, often written as ψ or in Dirac’s notation as |ψ〉. If c1 and c2 are complex
numbers, and |ψ1〉 and |ψ2〉 are any two states, then the linear combination

|ψ〉 = c1|ψ1〉 + c2|ψ2〉 (1.56)

also is a possible state of the system.
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1.5 Linear operators

A linear operator A maps each vector U in its domain into a vector U ′ = A(U) ≡
AU in its range in a way that is linear. So if U and V are two vectors in its
domain and b and c are numbers, then

A(bU + cV ) = bA(U)+ cA(V ) = bAU + cAV . (1.57)

If the domain and the range are the same vector space S, then A maps each
basis vector Bi of S into a linear combination of the basis vectors Bk

ABi = a1iB1 + a2iB2 + · · · + aNiBN =
N∑

k=1

aki Bk. (1.58)

The square matrix aki represents the linear operator A in the Bk basis. The effect
of A on any vector U = u1B1 + u2B2 + · · · + uNBN in S then is

AU = A

(
N∑

i=1

uiBi

)
=

N∑
i=1

uiABi =
N∑

i=1

ui

N∑
k=1

aki Bk

=
N∑

k=1

(
N∑

i=1

akiui

)
Bk. (1.59)

So the kth component u′k of the vector U ′ = AU is

u′k = ak1u1 + ak2u2 + · · · + akNuN =
N∑

i=1

aki ui. (1.60)

Thus the column vector u′ of the components u′k of the vector U ′ = AU is
the product u′ = a u of the matrix with elements aki that represents the linear
operator A in the Bk basis and the column vector with components ui that rep-
resents the vector U in that basis. So in each basis, vectors and linear operators
are represented by column vectors and matrices.

Each linear operator is unique, but its matrix depends upon the basis. If we
change from the Bk basis to another basis B′k

Bk =
N∑
�=1

u�k B′� (1.61)

in which the N ×N matrix u�k has an inverse matrix u−1
ki so that

N∑
k=1

u−1
ki Bk =

N∑
k=1

u−1
ki

N∑
�=1

u�kB′� =
N∑
�=1

(
N∑

k=1

u�ku−1
ki

)
B′� =

N∑
�=1

δ�iB′� = B′i,

(1.62)
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then the new basis vectors B′i are given by

B′i =
N∑

k=1

u−1
ki Bk. (1.63)

Thus (exercise 1.9) the linear operator A maps the basis vector B′i to

AB′i =
N∑

k=1

u−1
ki ABk =

N∑
j,k=1

u−1
ki ajkBj =

N∑
j,k,�=1

u�jajku−1
ki B′�. (1.64)

So the matrix a′ that represents A in the B′ basis is related to the matrix a that
represents it in the B basis by a similarity transformation

a′�i =
N∑

jk=1

u�jajku−1
ki or a′ = u a u−1 (1.65)

in matrix notation.

Example 1.13 (Change of basis) Let the action of the linear operator A on the
basis vectors {B1, B2} be AB1 = B2 and AB2 = 0. If the column vectors

b1 =
(

1
0

)
and b2 =

(
0
1

)
(1.66)

represent the basis vectors B1 and B2, then the matrix

a =
(

0 0
1 0

)
(1.67)

represents the linear operator A. But if we use the basis vectors

B′1 =
1√
2
(B1 + B2) and B′2 =

1√
2
(B1 − B2) (1.68)

then the vectors

b′1 =
1√
2

(
1
1

)
and b′2 =

1√
2

(
1
−1

)
(1.69)

would represent B1 and B2, and the matrix

a′ = 1
2

(
1 1
−1 −1

)
(1.70)

would represent the linear operator A (exercise 1.10).

A linear operator A also may map a vector space S with basis Bk into a
different vector space T with its own basis Ck. In this case, A maps the basis
vector Bi into a linear combination of the basis vectors Ck
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ABi =
M∑

k=1

aki Ck (1.71)

and an arbitrary vector U = u1B1 + · · · + uNBN in S into the vector

AU =
M∑

k=1

(
N∑

i=1

aki ui

)
Ck (1.72)

in T .

1.6 Inner products

Most of the vector spaces used by physicists have an inner product. A positive-
definite inner product associates a number ( f , g) with every ordered pair of
vectors f and g in the vector space V and satisfies the rules

( f , g) = (g, f )∗ (1.73)

( f , z g+ w h) = z (f , g)+ w (f , h) (1.74)

(f , f ) ≥ 0 and (f , f ) = 0 ⇐⇒ f = 0 (1.75)

in which f , g, and h are vectors, and z and w are numbers. The first rule says that
the inner product is hermitian; the second rule says that it is linear in the second
vector z g+w h of the pair; and the third rule says that it is positive definite. The
first two rules imply that (exercise 1.11) the inner product is antilinear in the
first vector of the pair

(z g+ w h, f ) = z∗(g, f )+ w∗(h, f ). (1.76)

A Schwarz inner product satisfies the first two rules (1.73, 1.74) for an inner
product and the fourth (1.76) but only the first part of the third (1.75)

( f , f ) ≥ 0. (1.77)

This condition of nonnegativity implies (exercise 1.15) that a vector f of zero
length must be orthogonal to all vectors g in the vector space V

( f , f ) = 0 �⇒ (g, f ) = 0 for all g ∈ V . (1.78)

So a Schwarz inner product is almost positive definite.
Inner products of 4-vectors can be negative. To accommodate them we define

an indefinite inner product without regard to positivity as one that satisfies the
first two rules (1.73 & 1.74) and therefore also the fourth rule (1.76) and that
instead of being positive definite is nondegenerate

( f , g) = 0 for all f ∈ V �⇒ g = 0. (1.79)
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This rule says that only the zero vector is orthogonal to all the vectors of
the space. The positive-definite condition (1.75) is stronger than and implies
nondegeneracy (1.79) (exercise 1.14).

Apart from the indefinite inner products of 4-vectors in special and general
relativity, most of the inner products physicists use are Schwarz inner products
or positive-definite inner products. For such inner products, we can define the
norm | f | = ‖ f ‖ of a vector f as the square-root of the nonnegative inner
product ( f , f )

‖ f ‖= √(f , f ). (1.80)

The distance between two vectors f and g is the norm of their difference

‖ f − g ‖ . (1.81)

Example 1.14 (Euclidean space) The space of real vectors U , V with N com-
ponents Ui, Vi forms an N-dimensional vector space over the real numbers with
an inner product

(U , V ) =
N∑

i=1

Ui Vi (1.82)

that is nonnegative when the two vectors are the same

(U , U) =
N∑

i=1

Ui Ui =
N∑

i=1

U2
i ≥ 0 (1.83)

and vanishes only if all the components Ui are zero, that is, if the vector U = 0.
Thus the inner product (1.82) is positive definite. When (U , V ) is zero, the vectors
U and V are orthogonal.

Example 1.15 (Complex euclidean space) The space of complex vectors with
N components Ui, Vi forms an N-dimensional vector space over the complex
numbers with inner product

(U , V ) =
N∑

i=1

U∗
i Vi = (V , U)∗. (1.84)

The inner product (U , U) is nonnegative and vanishes

(U , U) =
N∑

i=1

U∗
i Ui =

N∑
i=1

|Ui|2 ≥ 0 (1.85)

only if U = 0. So the inner product (1.84) is positive definite. If (U , V ) is zero,
then U and V are orthogonal.
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Example 1.16 (Complex matrices) For the vector space of N×L complex matri-
ces A, B, . . ., the trace of the adjoint (1.28) of A multiplied by B is an inner
product

(A, B) = TrA†B =
N∑

i=1

L∑
j=1

(A†)jiBij =
N∑

i=1

L∑
j=1

A∗ijBij (1.86)

that is nonnegative when the matrices are the same

(A, A) = TrA†A =
N∑

i=1

L∑
j=1

A∗ijAij =
N∑

i=1

L∑
j=1

|Aij|2 ≥ 0 (1.87)

and zero only when A = 0. So this inner product is positive definite.

A vector space with a positive-definite inner product (1.73–1.77) is called an
inner-product space, a metric space, or a pre-Hilbert space.

A sequence of vectors fn is a Cauchy sequence if for every ε > 0 there is
an integer N(ε) such that ‖fn − fm‖ < ε whenever both n and m exceed N(ε).
A sequence of vectors fn converges to a vector f if for every ε > 0 there is
an integer N(ε) such that ‖f − fn‖ < ε whenever n exceeds N(ε). An inner-
product space with a norm defined as in (1.80) is complete if each of its Cauchy
sequences converges to a vector in that space. A Hilbert space is a complete
inner-product space. Every finite-dimensional inner-product space is complete
and so is a Hilbert space. But the term Hilbert space more often is used to
describe infinite-dimensional complete inner-product spaces, such as the space
of all square-integrable functions (David Hilbert, 1862–1943).

Example 1.17 (The Hilbert space of square-integrable functions) For the vector
space of functions (1.55), a natural inner product is

( f , g) =
∫ b

a
dx f ∗(x)g(x). (1.88)

The squared norm ‖ f ‖ of a function f (x) is

‖ f ‖2=
∫ b

a
dx | f (x)|2. (1.89)

A function is square integrable if its norm is finite. The space of all square-
integrable functions is an inner-product space; it also is complete and so is a
Hilbert space.

Example 1.18 (Minkowski inner product) The Minkowski or Lorentz inner
product (p, x) of two 4-vectors p = (E/c, p1, p2, p3) and x = (ct, x1, x2, x3) is
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p · x− Et . It is indefinite, nondegenerate, and invariant under Lorentz transfor-
mations, and often is written as p · x or as px. If p is the 4-momentum of a freely
moving physical particle of mass m, then

p · p = p · p− E2/c2 = − c2m2 ≤ 0. (1.90)

The Minkowski inner product satisfies the rules (1.73, 1.75, and 1.79), but it is
not positive definite, and it does not satisfy the Schwarz inequality (Hermann
Minkowski, 1864–1909; Hendrik Lorentz, 1853–1928).

1.7 The Cauchy–Schwarz inequality

For any two vectors f and g, the Schwarz inequality

( f , f ) (g, g) ≥ |( f , g)|2 (1.91)

holds for any Schwarz inner product (and so for any positive-definite inner
product). The condition (1.77) of nonnegativity ensures that for any complex
number λ the inner product of the vector f − λg with itself is nonnegative

(f − λg, f − λg) = ( f , f )− λ∗(g, f )− λ( f , g)+ |λ|2(g, g) ≥ 0. (1.92)

Now if (g, g) = 0, then for (f − λg, f − λg) to remain nonnegative for all com-
plex values of λ it is necessary that ( f , g) = 0 also vanish (exercise 1.15). Thus
if (g, g) = 0, then the Schwarz inequality (1.91) is trivially true because both
sides of it vanish. So we assume that (g, g) > 0 and set λ = (g, f )/(g, g). The
inequality (1.92) then gives us

( f − λg, f − λg) =
(

f − (g, f )
(g, g)

g, f − (g, f )
(g, g)

g
)
= ( f , f )− ( f , g)(g, f )

(g, g)
≥ 0

which is the Schwarz inequality (1.91) (Hermann Schwarz, 1843–1921)

( f , f )(g, g) ≥ |( f , g)|2. (1.93)

Taking the square-root of each side, we get

‖ f ‖‖ g ‖ ≥ |( f , g)|. (1.94)

Example 1.19 (Some Schwarz inequalities) For the dot-product of two real
3-vectors r and R, the Cauchy–Schwarz inequality is

(r · r) (R · R) ≥ (r · R)2 = (r · r) (R · R) cos2 θ (1.95)

where θ is the angle between r and R.
The Schwarz inequality for two real n-vectors x is

(x · x) (y · y) ≥ (x · y)2 = (x · x) (y · y) cos2 θ (1.96)
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and it implies (Exercise 1.16) that

‖x‖ + ‖y‖ ≥ ‖x+ y‖. (1.97)

For two complex n-vectors u and v, the Schwarz inequality is(
u∗ · u) (v∗ · v) ≥ ∣∣u∗ · v∣∣2 = (u∗ · u) (v∗ · v) cos2 θ (1.98)

and it implies (exercise 1.17) that

‖u‖ + ‖v‖ ≥ ‖u+ v‖. (1.99)

The inner product (1.88) of two complex functions f and g provides a
somewhat different instance∫ b

a
dx |f (x)|2

∫ b

a
dx |g(x)|2 ≥

∣∣∣∣∣
∫ b

a
dx f ∗(x)g(x)

∣∣∣∣∣
2

(1.100)

of the Schwarz inequality.

1.8 Linear independence and completeness

A set of N vectors V1, V2, . . . , VN is linearly dependent if there exist numbers
ci, not all zero, such that the linear combination

c1V1 + · · · + cNVN = 0 (1.101)

vanishes. A set of vectors is linearly independent if it is not linearly dependent.
A set {Vi} of linearly independent vectors is maximal in a vector space S if

the addition of any other vector U in S to the set {Vi} makes the enlarged set
{U , Vi} linearly dependent.

A set of N linearly independent vectors V1, V2, . . . , VN that is maximal in a
vector space S can represent any vector U in the space S as a linear combination
of its vectors, U = u1V1 + · · · + uNVN . For if we enlarge the maximal set {Vi}
by including in it any vector U not already in it, then the bigger set {U , Vi} will
be linearly dependent. Thus there will be numbers c, c1, . . . , cN , not all zero,
that make the sum

c U + c1V1 + · · · + cNVN = 0 (1.102)

vanish. Now if c were 0, then the set {Vi} would be linearly dependent. Thus
c �= 0, and so we may divide by c and express the arbitrary vector U as a linear
combination of the vectors Vi

U = −1
c
(c1V1 + · · · + cNVN) = u1V1 + · · · + uNVN (1.103)

with uk = −ck/c. So a set of linearly independent vectors {Vi} that is maxi-
mal in a space S can represent every vector U in S as a linear combination
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U = u1V1+ . . .+ uNVN of its vectors. The set {Vi} spans the space S; it is a
complete set of vectors in the space S.

A set of vectors {Vi} that spans a vector space S provides a basis for that space
because the set lets us represent an arbitrary vector U in S as a linear combi-
nation of the basis vectors {Vi}. If the vectors of a basis are linearly dependent,
then at least one of them is superfluous, and so it is convenient to have the
vectors of a basis be linearly independent.

1.9 Dimension of a vector space

If V1, . . . , VN and W1, . . . , WM are two maximal sets of N and M linearly
independent vectors in a vector space S, then N = M.

Suppose M < N. Since the Us are complete, they span S, and so we may
express each of the N vectors Vi in terms of the M vectors Wj

Vi =
M∑

j=1

AijWj. (1.104)

Let Aj be the vector with components Aij. There are M < N such vec-
tors, and each has N > M components. So it is always possible to find a
nonzero N-dimensional vector C with components ci that is orthogonal to all
M vectors Aj

N∑
i=1

ciAij = 0. (1.105)

Thus the linear combination
N∑

i=1

ciVi =
N∑

i=1

M∑
j=1

ci Aij Wj = 0 (1.106)

vanishes, which implies that the N vectors Vi are linearly dependent. Since these
vectors are by assumption linearly independent, it follows that N ≤ M.

Similarly, one may show that M ≤ N. Thus M = N.
The number of vectors in a maximal set of linearly independent vectors in a

vector space S is the dimension of the vector space. Any N linearly independent
vectors in an N-dimensional space form a basis for it.

1.10 Orthonormal vectors

Suppose the vectors V1, V2, . . . , VN are linearly independent. Then we can
make out of them a set of N vectors Ui that are orthonormal

(Ui, Uj) = δij. (1.107)
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There are many ways to do this, because there are many such sets of orthonor-
mal vectors. We will use the Gram–Schmidt method. We set

U1 = V1√
(V1, V1)

, (1.108)

so the first vector U1 is normalized. Next we set u2 = V2 + c12U1 and require
that u2 be orthogonal to U1

0 = (U1, u2) = (U1, c12U1 + V2) = c12 + (U1, V2). (1.109)

Thus c12 = −(U1, V2), and so

u2 = V2 − (U1, V2) U1. (1.110)

The normalized vector U2 then is

U2 = u2√
(u2, u2)

. (1.111)

We next set u3 = V3 + c13U1 + c23U2 and ask that u3 be orthogonal to U1

0 = (U1, u3) = (U1, c13U1 + c23U2 + V3) = c13 + (U1, V3) (1.112)

and also to U2

0 = (U2, u3) = (U2, c13U1 + c23U2 + V3) = c23 + (U2, V3). (1.113)

So c13 = −(U1, V3) and c23 = −(U2, V3), and we have

u3 = V3 − (U1, V3) U1 − (U2, V3) U2. (1.114)

The normalized vector U3 then is

U3 = u3√
(u3, u3)

. (1.115)

We may continue in this way until we reach the last of the N linearly
independent vectors. We require the kth unnormalized vector uk

uk = Vk +
k−1∑
i=1

cik Ui (1.116)

to be orthogonal to the k − 1 vectors Ui and find that cik = −(Ui, Vk) so that

uk = Vk −
k−1∑
i=1

(Ui, Vk) Ui. (1.117)

The normalized vector then is

Uk = uk√
(uk, uk)

. (1.118)

A basis is more convenient if its vectors are orthonormal.
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1.11 Outer products

From any two vectors f and g, we may make an operator A that takes any vector
h into the vector f with coefficient (g, h)

A h = f (g, h). (1.119)

Since for any vectors e, h and numbers z, w

A (z h+ w e) = f (g, z h+ w e) = zf (g, h)+ wf (g, e) = z A h+ w A e (1.120)

it follows that A is linear.
If in some basis f , g, and h are vectors with components fi, gi, and hi, then

the linear transformation is

(Ah)i =
N∑

j=1

Aij hj = fi

N∑
j=1

g∗j hj (1.121)

and in that basis A is the matrix with entries

Aij = fi g∗j . (1.122)

It is the outer product of the vectors f and g.

Example 1.20 (Outer product) If in some basis the vectors f and g are

f =
(

2
3

)
and g =

⎛⎝ i
1
3i

⎞⎠ (1.123)

then their outer product is the matrix

A =
(

2
3

) (−i 1 −3i
) = (−2i 2 −6i

−3i 3 −9i

)
. (1.124)

Dirac developed a notation that handles outer products very easily.

Example 1.21 (Outer products) If the vectors f = |f 〉 and g = |g〉 are

|f 〉 =
⎛⎝ a

b
c

⎞⎠ and |g〉 =
(

z
w

)
(1.125)

then their outer products are

|f 〉〈g| =
⎛⎝az∗ aw∗

bz∗ bw∗
cz∗ cw∗

⎞⎠ and |g〉〈f | =
(

za∗ zb∗ zc∗
wa∗ wb∗ wc∗

)
(1.126)
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as well as

|f 〉〈f | =
⎛⎝aa∗ ab∗ ac∗

ba∗ bb∗ bc∗
ca∗ cb∗ cc∗

⎞⎠ and |g〉〈g| =
(

zz∗ zw∗
wz∗ ww∗

)
. (1.127)

Students should feel free to write down their own examples.

1.12 Dirac notation

Outer products are important in quantum mechanics, and so Dirac invented
a notation for linear algebra that makes them easy to write. In his notation, a
vector f is a ket f = |f 〉. The new thing in his notation is the bra 〈g|. The inner
product of two vectors (g, f ) is the bracket (g, f ) = 〈g|f 〉. A matrix element
(g, Af ) is then (g, Af ) = 〈g|A|f 〉 in which the bra and ket bracket the operator.
In Dirac notation, the outer product A h = f (g, h) reads A |h〉 = |f 〉〈g|h〉, so
that the outer product A itself is A = |f 〉〈g|. Before Dirac, bras were implicit in
the definition of the inner product, but they did not appear explicitly; there was
no way to write the bra 〈g| or the operator |f 〉〈g|.

If the kets |n〉 form an orthonormal basis in an N-dimensional vector space,
then we can expand an arbitrary ket in the space as

|f 〉 =
N∑

n=1

cn|n〉. (1.128)

Since the basis vectors are orthonormal 〈�|n〉 = δ�n, we can identify the
coefficients cn by forming the inner product

〈�|f 〉 =
N∑

n=1

cn 〈�|n〉 =
N∑

n=1

cn δ�,n = c�. (1.129)

The original expansion (1.128) then must be

|f 〉 =
N∑

n=1

cn|n〉 =
N∑

n=1

〈n|f 〉 |n〉 =
N∑

n=1

|n〉 〈n|f 〉 =
(

N∑
n=1

|n〉 〈n|
)
|f 〉. (1.130)

Since this equation must hold for every vector |f 〉 in the space, it follows that
the sum of outer products within the parentheses is the identity operator for the
space

I =
N∑

n=1

|n〉 〈n|. (1.131)
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Every set of kets |αn〉 that forms an orthonormal basis 〈αn|α�〉 = δn� for the
space gives us an equivalent representation of the identity operator

I =
N∑

n=1

|αn〉 〈αn| =
N∑

n=1

|n〉 〈n|. (1.132)

Before Dirac, one could not write such equations. They provide for every vector
|f 〉 in the space the expansions

|f 〉 =
N∑

n=1

|αn〉 〈αn|f 〉 =
N∑

n=1

|n〉 〈n|f 〉. (1.133)

Example 1.22 (Inner-product rules) In Dirac’s notation, the rules (1.73–1.76)
of a positive-definite inner product are

〈f |g〉 = 〈g|f 〉∗ (1.134)

〈f |z1g1 + z2g2〉 = z1〈f |g1〉 + z2〈f |g2〉 (1.135)

〈z1f1 + z2f2|g〉 = z∗1〈f1|g〉 + z∗2〈f2|g〉 (1.136)

〈f |f 〉 ≥ 0 and 〈f |f 〉 = 0 ⇐⇒ f = 0. (1.137)

Usually states in Dirac notation are labeled |ψ〉 or by their quantum numbers
|n, l, m〉, and one rarely sees plus signs or complex numbers or operators inside
bras or kets. But one should.

Example 1.23 (Gram–Schmidt) In Dirac notation, the formula (1.117) for the
kth orthogonal linear combination of the vectors |V�〉 is

|uk〉 = |Vk〉 −
k−1∑
i=1

|Ui〉〈Ui|Vk〉 =
(

I −
k−1∑
i=1

|Ui〉〈Ui|
)
|Vk〉 (1.138)

and the formula (1.118) for the kth orthonormal linear combination of the
vectors |V�〉 is

|Uk〉 = |uk〉√〈uk|uk〉 . (1.139)

The vectors |Uk〉 are not unique; they vary with the order of the |Vk〉.

Vectors and linear operators are abstract. The numbers we compute with are
inner products like 〈g|f 〉 and 〈g|A|f 〉. In terms of N orthonormal basis vectors
|n〉 with fn = 〈n|f 〉 and g∗n = 〈g|n〉, we can use the expansion (1.131) to write
these inner products as
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