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THE MOLECULAR CHALLENGE

Sir Ethylene, to scientists fair prey,
(Who dig and delve and peek and push and pry,
And prove their findings with equations sly)
Smoothed out his ruffled orbitals, to say:
“I stand in symmetry. Mine is a way
Of mystery and magic. Ancient, I
Am also deemed immortal. Should I die,
Pi would be in the sky, and Judgement Day
Would be upon us. For all things must fail,
That hold our universe together, when
Bonds such as bind me fail, and fall asunder.
Hence, stand I firm against the endless hail
Of scientific blows. I yield not.” Men
And their computers stand and stare and wonder.

W.G. LOWE
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Preface to the Third Edition

We have attempted to improve and update this text while retaining the features that
make it unique, namely, an emphasis on physical understanding, and the ability to
estimate, evaluate, and predict results without blind reliance on computers, while still
maintaining rigorous connection to the mathematical basis for quantum chemistry. We
have inserted into most chapters examples that allow important points to be emphasized,
clarified, or extended. This has enabled us to keep intact most of the conceptual
development familiar to past users. In addition, many of the chapters now include
multiple choice questions that students are invited to solve in their heads. This is not
because we think that instructors will be using such questions. Rather it is because we
find that such questions permit us to highlight some of the definitions or conclusions
that students often find most confusing far more quickly and effectively than we can
by using traditional problems. Of course, we have also sought to update material
on computational methods, since these are changing rapidly as the field of quantum
chemistry matures.

This book is written for courses taught at the first-year graduate/senior undergraduate
levels, which accounts for its implicit assumption that many readers will be relatively
unfamiliar with much of the mathematics and physics underlying the subject. Our
experience over the years has supported this assumption; many chemistry majors are
exposed to the requisite mathematics and physics, yet arrive at our courses with poor
understanding or recall of those subjects. That makes this course an opportunity for
such students to experience the satisfaction of finally seeing how mathematics, physics,
and chemistry are intertwined in quantum chemistry. It is for this reason that treatments
of the simple and extended Hückel methods continue to appear, even though these are no
longer the methods of choice for serious computations. These topics nevertheless form
the basis for the way most non-theoretical chemists understand chemical processes,
just as we tend to think about gas behavior as “ideal, with corrections.”
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Preface to the Second Edition

The success of the first edition has warranted a second. The changes I have made reflect
my perception that the book has mostly been used as a teaching text in introductory
courses. Accordingly, I have removed some of the material in appendixes on mathemat-
ical details of solving matrix equations on a computer. Also I have removed computer
listings for programs, since these are now commonly available through commercial
channels. I have added a new chapter on MO theory of periodic systems—a subject
of rapidly growing importance in theoretical chemistry and materials science and one
for which chemists still have difficulty finding appropriate textbook treatments. I have
augmented discussion in various chapters to give improved coverage of time-dependent
phenomena and atomic term symbols and have provided better connection to scatter-
ing as well as to spectroscopy of molecular rotation and vibration. The discussion
on degenerate-level perturbation theory is clearer, reflecting my own improved under-
standing since writing the first edition. There is also a new section on operator methods
for treating angular momentum. Some teachers are strong adherents of this approach,
while others prefer an approach that avoids the formalism of operator techniques. To
permit both teaching methods, I have placed this material in an appendix. Because this
edition is more overtly a text than a monograph, I have not attempted to replace older
literature references with newer ones, except in cases where there was pedagogical
benefit.

A strength of this book has been its emphasis on physical argument and analogy (as
opposed to pure mathematical development). I continue to be a strong proponent of
the view that true understanding comes with being able to “see” a situation so clearly
that one can solve problems in one’s head. There are significantly more end-of-chapter
problems, a number of them of the “by inspection” type. There are also more questions
inviting students to explain their answers. I believe that thinking about such questions,
and then reading explanations from the answer section, significantly enhances learning.

It is the fashion today to focus on state-of-the-art methods for just about everything.
The impact of this on education has, I feel, been disastrous. Simpler examples are often
needed to develop the insight that enables understanding the complexities of the latest
techniques, but too often these are abandoned in the rush to get to the “cutting edge.”
For this reason I continue to include a substantial treatment of simple Hückel theory.
It permits students to recognize the connections between MOs and their energies and
bonding properties, and it allows me to present examples and problems that have max-
imum transparency in later chapters on perturbation theory, group theory, qualitative
MO theory, and periodic systems. I find simple Hückel theory to be educationally
indispensable.
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xx Preface to the Second Edition

Much of the new material in this edition results from new insights I have developed
in connection with research projects with graduate students. The work of all four of
my students since the appearance of the first edition is represented, and I am delighted
to thank Sherif Kafafi, John LaFemina, Maribel Soto, and Deb Camper for all I have
learned from them. Special thanks are due to Professor Terry Carlton, of Oberlin
College, who made many suggestions and corrections that have been adopted in the
new edition.

Doubtless, there are new errors. I would be grateful to learn of them so that future
printings of this edition can be made error-free. Students or teachers with comments,
questions, or corrections are more than welcome to contact me, either by mail at the
Department of Chemistry, 152 Davey Lab, The Pennsylvania State University, Univer-
sity Park, PA 16802, or by e-mail directed to JL3 at PSUVM.PSU.EDU.



Preface to the First Edition

My aim in this book is to present a reasonably rigorous treatment of molecular orbital
theory, embracing subjects that are of practical interest to organic and inorganic as well
as physical chemists. My approach here has been to rely on physical intuition as much
as possible, first solving a number of specific problems in order to develop sufficient
insight and familiarity to make the formal treatment of Chapter 6 more palatable. My
own experience suggests that most chemists find this route the most natural.

I have assumed that the reader has at some time learned calculus and elementary
physics, but I have not assumed that this material is fresh in his or her mind. Other
mathematics is developed as it is needed. The book could be used as a text for under-
graduate or graduate students in a half or full year course. The level of rigor of the book
is somewhat adjustable. For example, Chapters 3 and 4, on the harmonic oscillator and
hydrogen atom, can be truncated if one wishes to know the nature of the solutions, but
not the mathematical details of how they are produced.

I have made use of appendixes for certain of the more complicated derivations or
proofs. This is done in order to avoid having the development of major ideas in the
text interrupted or obscured. Certain of the appendixes will interest only the more
theoretically inclined student. Also, because I anticipate that some readers may wish
to skip certain chapters or parts of chapters, I have occasionally repeated information
so that a given chapter will be less dependent on its predecessors. This may seem
inelegant at times, but most students will more readily forgive repetition of something
they already know than an overly terse presentation.

I have avoided early usage of bra-ket notation. I believe that simultaneous intro-
duction of new concepts and unfamiliar notation is poor pedagogy. Bra-ket notation is
used only after the ideas have had a change to jell.

Problem solving is extremely important in acquiring an understanding of quantum
chemistry. I have included a fair number of problems with hints for a few of them in
Appendix 14 and answers for almost all of them in Appendix 15.1

It is inevitable that one be selective in choosing topics for a book such as this. This
book emphasizes ground state MO theory of molecules more than do most introductory
texts, with rather less emphasis on spectroscopy than is usual. Angular momentum
is treated at a fairly elementary level at various appropriate places in the text, but
it is never given a full-blown formal development using operator commutation rela-
tions. Time-dependent phenomena are not included. Thus, scattering theory is absent,

1In this Second Edition, these Appendices are numbered Appendix 12 and 13.

xxi
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although selection rules and the transition dipole are discussed in the chapter on time-
independent perturbation theory. Valence-bond theory is completely absent. If I have
succeeded in my effort to provide a clear and meaningful treatment of topics relevant to
modern molecular orbital theory, it should not be difficult for an instructor to provide
for excursions into related topics not covered in the text.

Over the years, many colleagues have been kind enough to read sections of the
evolving manuscript and provide corrections and advice. I especially thank L. P. Gold
and O. H. Crawford, who cheerfully bore the brunt of this task.

Finally, I would like to thank my father, Wesley G. Lowe, for allowing me to include
his sonnet, “The Molecular Challenge.”



Chapter 1

Classical Waves
and the Time-Independent
Schrödinger Wave Equation

1-1 Introduction

The application of quantum-mechanical principles to chemical problems has revolu-
tionized the field of chemistry. Today our understanding of chemical bonding, spectral
phenomena, molecular reactivities, and various other fundamental chemical problems
rests heavily on our knowledge of the detailed behavior of electrons in atoms and
molecules. In this book we shall describe in detail some of the basic principles,
methods, and results of quantum chemistry that lead to our understanding of electron
behavior.

In the first few chapters we shall discuss some simple, but important, particle systems.
This will allow us to introduce many basic concepts and definitions in a fairly physical
way. Thus, some background will be prepared for the more formal general development
of Chapter 6. In this first chapter, we review briefly some of the concepts of classical
physics as well as some early indications that classical physics is not sufficient to explain
all phenomena. (Those readers who are already familiar with the physics of classical
waves and with early atomic physics may prefer to jump ahead to Section 1-7.)

1-2 Waves

1-2.A Traveling Waves

A very simple example of a traveling wave is provided by cracking a whip. A pulse of
energy is imparted to the whipcord by a single oscillation of the handle. This results
in a wave which travels down the cord, transferring the energy to the popper at the end
of the whip. In Fig. 1-1, an idealization of the process is sketched. The shape of the
disturbance in the whip is called the wave profile and is usually symbolized ψ(x). The
wave profile for the traveling wave in Fig. 1-1 shows where the energy is located at a
given instant. It also contains the information needed to tell how much energy is being
transmitted, because the height and shape of the wave reflect the vigor with which the
handle was oscillated.

1



2 Chapter 1 Classical Waves and the Time-Independent Schrödinger Wave Equation

Figure 1-1 � Cracking the whip. As time passes, the disturbance moves from left to right along
the extended whip cord. Each segment of the cord oscillates up and down as the disturbance passes
by, ultimately returning to its equilibrium position.

The feature common to all traveling waves in classical physics is that energy is trans-
mitted through a medium. The medium itself undergoes no permanent displacement;
it merely undergoes local oscillations as the disturbance passes through.

One of the most important kinds of wave in physics is the harmonic wave, for which
the wave profile is a sinusoidal function. A harmonic wave, at a particular instant in time,
is sketched in Fig. 1-2. The maximum displacement of the wave from the rest position
is the amplitude of the wave, and the wavelength λ is the distance required to enclose
one complete oscillation. Such a wave would result from a harmonic1 oscillation at
one end of a taut string. Analogous waves would be produced on the surface of a quiet
pool by a vibrating bob, or in air by a vibrating tuning fork.

At the instant depicted in Fig. 1-2, the profile is described by the function

ψ(x) = A sin(2πx/λ) (1-1)

(ψ = 0 when x = 0, and the argument of the sine function goes from 0 to 2π , encom-
passing one complete oscillation as x goes from 0 to λ.) Let us suppose that the situation
in Fig. 1-2 pertains at the time t = 0, and let the velocity of the disturbance through the
medium be c. Then, after time t , the distance traveled is ct , the profile is shifted to the
right by ct and is now given by

�(x, t) = A sin[(2π/λ)(x − ct)] (1-2)

Figure 1-2 � A harmonic wave at a particular instant in time. A is the amplitude and λ is the
wavelength.

1A harmonic oscillation is one whose equation of motion has a sine or cosine dependence on time.
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A capital � is used to distinguish the time-dependent function (1-2) from the time-
independent function (1-1).

The frequency ν of a wave is the number of individual repeating wave units passing
a point per unit time. For our harmonic wave, this is the distance traveled in unit time
c divided by the length of a wave unit λ. Hence,

ν = c/λ (1-3)

Note that the wave described by the formula

� ′(x, t) = A sin[(2π/λ)(x − ct) + ε] (1-4)

is similar to � of Eq. (1-2) except for being displaced. If we compare the two waves
at the same instant in time, we find � ′ to be shifted to the left of � by ελ/2π . If
ε =π, 3π, . . . , then � ′ is shifted by λ/2, 3λ/2, . . . and the two functions are said to be
exactly out of phase. If ε = 2π, 4π, . . . , the shift is by λ, 2λ, . . . , and the two waves
are exactly in phase. ε is the phase factor for � ′ relative to �. Alternatively, we can
compare the two waves at the same point in x, in which case the phase factor causes
the two waves to be displaced from each other in time.

1-2.B Standing Waves

In problems of physical interest, the medium is usually subject to constraints. For
example, a string will have ends, and these may be clamped, as in a violin, so that
they cannot oscillate when the disturbance reaches them. Under such circumstances,
the energy pulse is unable to progress further. It cannot be absorbed by the clamping
mechanism if it is perfectly rigid, and it has no choice but to travel back along the string
in the opposite direction. The reflected wave is now moving into the face of the primary
wave, and the motion of the string is in response to the demands placed on it by the two
simultaneous waves:

�(x, t) = �primary(x, t) + �reflected(x, t) (1-5)

When the primary and reflected waves have the same amplitude and speed, we can
write

�(x, t) = A sin [(2π/λ)(x − ct)] + A sin [(2π/λ)(x + ct)]

= 2A sin(2πx/λ) cos(2πct/λ) (1-6)

This formula describes a standing wave—a wave that does not appear to travel through
the medium, but appears to vibrate “in place.” The first part of the function depends
only on the x variable. Wherever the sine function vanishes, � will vanish, regardless
of the value of t . This means that there are places where the medium does not ever
vibrate. Such places are called nodes. Between the nodes, sin(2πx/λ) is finite. As
time passes, the cosine function oscillates between plus and minus unity. This means
that � oscillates between plus and minus the value of sin(2πx/λ). We say that the x-
dependent part of the function gives the maximum displacement of the standing wave,
and the t-dependent part governs the motion of the medium back and forth between
these extremes of maximum displacement. A standing wave with a central node is
shown in Fig. 1-3.
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Figure 1-3 � A standing wave in a string clamped at x = 0 and x = L. The wavelength λ is equal
to L.

Equation (1-6) is often written as

�(x, t) = ψ(x) cos(ωt) (1-7)

where

ω = 2πc/λ (1-8)

The profile ψ(x) is often called the amplitude function and ω is the frequency factor.
Let us consider how the energy is stored in the vibrating string depicted in Fig. 1-3.

The string segments at the central node and at the clamped endpoints of the string
do not move. Hence, their kinetic energies are zero at all times. Furthermore, since
they are never displaced from their equilibrium positions, their potential energies are
likewise always zero. Therefore, the total energy stored at these segments is always
zero as long as the string continues to vibrate in the mode shown. The maximum kinetic
and potential energies are associated with those segments located at the wave peaks
and valleys (called the antinodes) because these segments have the greatest average
velocity and displacement from the equilibrium position. A more detailed mathematical
treatment would show that the total energy of any string segment is proportional to
ψ(x)2 (Problem 1-7).

1-3 The Classical Wave Equation

It is one thing to draw a picture of a wave and describe its properties, and quite another
to predict what sort of wave will result from disturbing a particular system. To make
such predictions, we must consider the physical laws that the medium must obey. One
condition is that the medium must obey Newton’s laws of motion. For example, any
segment of string of mass m subjected to a force F must undergo an acceleration of F/m

in accord with Newton’s second law. In this regard, wave motion is perfectly consistent
with ordinary particle motion. Another condition, however, peculiar to waves, is that
each segment of the medium is “attached” to the neighboring segments so that, as
it is displaced, it drags along its neighbor, which in turn drags along its neighbor,
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Figure 1-4 � A segment of string under tension T . The forces at each end of the segment are
decomposed into forces perpendicular and parallel to x.

etc. This provides the mechanism whereby the disturbance is propagated along the
medium.2

Let us consider a string under a tensile force T . When the string is displaced from
its equilibrium position, this tension is responsible for exerting a restoring force. For
example, observe the string segment associated with the region x to x + dx in Fig. 1-4.
Note that the tension exerted at either end of this segment can be decomposed into
components parallel and perpendicular to the x axis. The parallel component tends to
stretch the string (which, however, we assume to be unstretchable), the perpendicular
component acts to accelerate the segment toward or away from the rest position. At
the right end of the segment, the perpendicular component F divided by the horizontal
component gives the slope of T . However, for small deviations of the string from
equilibrium (that is, for small angle α) the horizontal component is nearly equal in
length to the vector T . This means that it is a good approximation to write

slope of vector T = F/T at x + dx (1-9)

But the slope is also given by the derivative of �, and so we can write

Fx+dx = T (∂�/∂x)x+dx (1-10)

At the other end of the segment the tensile force acts in the opposite direction, and we
have

Fx = −T (∂�/∂x)x (1-11)

The net perpendicular force on our string segment is the resultant of these two:

F = T
[
(∂�/∂x)x+dx − (∂�/∂x)x

]
(1-12)

The difference in slope at two infinitesimally separated points, divided by dx, is by
definition the second derivative of a function. Therefore,

F = T ∂2�/∂x2 dx (1-13)

2Fluids are of relatively low viscosity, so the tendency of one segment to drag along its neighbor is weak. For
this reason fluids are poor transmitters of transverse waves (waves in which the medium oscillates in a direction
perpendicular to the direction of propagation). In compression waves, one segment displaces the next by pushing
it. Here the requirement is that the medium possess elasticity for compression. Solids and fluids often meet this
requirement well enough to transmit compression waves. The ability of rigid solids to transmit both wave types
while fluids transmit only one type is the basis for using earthquake-induced waves to determine how deep the
solid part of the earth’s mantle extends.
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Equation (1-13) gives the force on our string segment. If the string has mass m per
unit length, then the segment has mass mdx, and Newton’s equation F = ma may be
written

T ∂2�/∂x2 = m∂2�/∂t2 (1-14)

where we recall that acceleration is the second derivative of position with respect to time.
Equation (1-14) is the wave equation for motion in a string of uniform density

under tension T . It should be evident that its derivation involves nothing fundamental
beyond Newton’s second law and the fact that the two ends of the segment are linked
to each other and to a common tensile force. Generalizing this equation to waves in
three-dimensional media gives

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
� (x,y, z, t) = β

∂2� (x,y, z, t)

∂t2 (1-15)

where β is a composite of physical quantities (analogous to m/T ) for the particular
system.

Returning to our string example, we have in Eq. (1-14) a time-dependent differential
equation. Suppose we wish to limit our consideration to standing waves that can be
separated into a space-dependent amplitude function and a harmonic time-dependent
function. Then

�(x, t) = ψ(x) cos(ωt) (1-16)

and the differential equation becomes

cos(ωt)
d2ψ (x)

dx2 = m

T
ψ(x)

d2 cos(ωt)

dt2 = −m

T
ψ(x)ω2 cos(ωt) (1-17)

or, dividing by cos(ωt),

d2ψ(x)/dx2 = −(ω2m/T )ψ(x) (1-18)

This is the classical time-independent wave equation for a string.
We can see by inspection what kind of function ψ(x) must be to satisfy Eq. (1-18).

ψ is a function that, when twice differentiated, is reproduced with a coefficient of
−ω2m/T . One solution is

ψ = A sin
(
ω

√
m/T x

)
(1-19)

This illustrates that Eq. (1-18) has sinusoidally varying solutions such as those discussed
in Section 1-2. Comparing Eq. (1-19) with (1-1) indicates that 2π/λ = ω

√
m/T .

Substituting this relation into Eq. (1-18) gives

d2ψ(x)/dx2 = −(2π/λ)2ψ(x) (1-20)

which is a more useful form for our purposes.
For three-dimensional systems, the classical time-independent wave equation for an

isotropic and uniform medium is

(∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2)ψ(x, y, z) = −(2π/λ)2ψ(x, y, z) (1-21)
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where λ depends on the elasticity of the medium. The combination of partial derivatives
on the left-hand side of Eq. (1-21) is called the Laplacian, and is often given the short-
hand symbol ∇2 (del squared). This would give for Eq. (1-21)

∇2ψ(x, y, z) = −(2π/λ)2ψ(x, y, z) (1-22)

1-4 Standing Waves in a Clamped String

We now demonstrate how Eq. (1-20) can be used to predict the nature of standing waves
in a string. Suppose that the string is clamped at x = 0 and L. This means that the
string cannot oscillate at these points. Mathematically this means that

ψ(0) = ψ(L) = 0 (1-23)

Conditions such as these are called boundary conditions. Our question is, “What
functions ψ satisfy Eq. (1-20) and also Eq. (1-23)?” We begin by trying to find the most
general equation that can satisfy Eq. (1-20). We have already seen that A sin(2πx/λ)

is a solution, but it is easy to show that A cos(2πx/λ) is also a solution. More general
than either of these is the linear combination3

ψ(x) = A sin(2πx/λ) + B cos(2πx/λ) (1-24)

By varying A and B, we can get different functions ψ .
There are two remarks to be made at this point. First, some readers will have

noticed that other functions exist that satisfy Eq. (1-20). These are A exp(2πix/λ)

and A exp(−2πix/λ), where i = √−1. The reason we have not included these in
the general function (1-24) is that these two exponential functions are mathematically
equivalent to the trigonometric functions. The relationship is

exp(±ikx) = cos(kx) ± i sin(kx). (1-25)

This means that any trigonometric function may be expressed in terms of such exponen-
tials and vice versa. Hence, the set of trigonometric functions and the set of exponentials
is redundant, and no additional flexibility would result by including exponentials in
Eq. (1-24) (see Problem 1-1). The two sets of functions are linearly dependent.4

The second remark is that for a given A and B the function described by Eq. (1-24)
is a single sinusoidal wave with wavelength λ. By altering the ratio of A to B, we cause
the wave to shift to the left or right with respect to the origin. If A = 1 and B = 0, the
wave has a node at x = 0. If A = 0 and B = 1, the wave has an antinode at x = 0.

We now proceed by letting the boundary conditions determine the constants A and B.
The condition at x = 0 gives

ψ(0) = A sin(0) + B cos(0) = 0 (1-26)

3Given functions f1, f2, f3 . . . . A linear combination of these functions is c1f1 + c2f2 + c3f3 + · · · , where
c1, c2, c3, . . . are numbers (which need not be real).

4If one member of a set of functions (f1, f2, f3, . . . ) can be expressed as a linear combination of the remaining
functions (i.e., if f1 = c2f2 + c3f3 + · · · ), the set of functions is said to be linearly dependent. Otherwise, they
are linearly independent.
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However, since sin(0) = 0 and cos(0) = 1, this gives

B = 0 (1-27)

Therefore, our first boundary condition forces B to be zero and leaves us with

ψ(x) = A sin(2πx/λ) (1-28)

Our second boundary condition, at x = L, gives

ψ(L) = A sin(2πL/λ) = 0 (1-29)

One solution is provided by setting A equal to zero. This gives ψ =0, which corresponds
to no wave at all in the string. This is possible, but not very interesting. The other
possibility is for 2πL/λ to be equal to 0,±π,±2π, . . . ,±nπ, . . . since the sine function
vanishes then. This gives the relation

2πL/λ = nπ, n = 0,±1,±2, . . . (1-30)

or

λ = 2L/n, n = 0,±1,±2, . . . (1-31)

Substituting this expression for λ into Eq. (1-28) gives

ψ(x) = A sin(nπx/L), n = 0,±1,±2, . . . (1-32)

Some of these solutions are sketched in Fig. 1-5. The solution for n = 0 is again the
uninteresting ψ = 0 case. Furthermore, since sin(−x) equals −sin(x), it is clear that
the set of functions produced by positive integers n is not physically different from the
set produced by negative n, so we may arbitrarily restrict our attention to solutions with
positive n. (The two sets are linearly dependent.) The constant A is still undetermined.
It affects the amplitude of the wave. To determine A would require knowing how much
energy is stored in the wave, that is, how hard the string was plucked.

It is evident that there are an infinite number of acceptable solutions, each one
corresponding to a different number of half-waves fitting between 0 and L. But an even
larger infinity of waves has been excluded by the boundary conditions—namely, all
waves having wavelengths not divisible into 2L an integral number of times. The result

Figure 1-5 � Solutions for the time-independent wave equation in one dimension with boundary
conditions ψ(0) = ψ(L) = 0.
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of applying boundary conditions has been to restrict the allowed wavelengths to certain
discrete values. As we shall see, this behavior is closely related to the quantization of
energies in quantum mechanics.

The example worked out above is an extremely simple one. Nevertheless, it demon-
strates how a differential equation and boundary conditions are used to define the
allowed states for a system. One could have arrived at solutions for this case by simple
physical argument, but this is usually not possible in more complicated cases. The dif-
ferential equation provides a systematic approach for finding solutions when physical
intuition is not enough.

1-5 Light as an Electromagnetic Wave

Suppose a charged particle is caused to oscillate harmonically on the z axis. If there
is another charged particle some distance away and initially at rest in the xy plane,
this second particle will commence oscillating harmonically too. Thus, energy is being
transferred from the first particle to the second, which indicates that there is an oscil-
lating electric field emanating from the first particle. We can plot the magnitude of
this electric field at a given instant as it would be felt by a series of imaginary test
charges stationed along a line emanating from the source and perpendicular to the axis
of vibration (Fig. 1-6).

If there are some magnetic compasses in the neighborhood of the oscillating charge,
these will be found to swing back and forth in response to the disturbance. This means
that an oscillating magnetic field is produced by the charge too. Varying the placement
of the compasses will show that this field oscillates in a plane perpendicular to the
axis of vibration of the charged particle. The combined electric and magnetic fields
traveling along one ray in the xy plane appear in Fig. 1-7.

The changes in electric and magnetic fields propagate outward with a characteristic
velocity c, and are describable as a traveling wave, called an electromagnetic wave.
Its frequency ν is the same as the oscillation frequency of the vibrating charge. Its
wavelength is λ = c/ν. Visible light, infrared radiation, radio waves, microwaves,
ultraviolet radiation, X rays, and γ rays are all forms of electromagnetic radiation,
their only difference being their frequencies ν. We shall continue the discussion in the
context of light, understanding that it applies to all forms of electromagnetic radiation.

Figure 1-6 � A harmonic electric-field wave emanating from a vibrating electric charge. The wave
magnitude is proportional to the force felt by the test charges. The charges are only imaginary; if
they actually existed, they would possess mass and under acceleration would absorb energy from the
wave, causing it to attenuate.
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Figure 1-7 � A harmonic electromagnetic field produced by an oscillating electric charge. The
arrows without attached charges show the direction in which the north pole of a magnet would be
attracted. The magnetic field is oriented perpendicular to the electric field.

If a beam of light is produced so that the orientation of the electric field wave is
always in the same plane, the light is said to be plane (or linearly) polarized. The plane-
polarized light shown in Fig. 1-7 is said to be z polarized. If the plane of orientation
of the electric field wave rotates clockwise or counterclockwise about the axis of travel
(i.e., if the electric field wave “corkscrews” through space), the light is said to be right
or left circularly polarized. If the light is a composite of waves having random field
orientations so that there is no resultant orientation, the light is unpolarized.

Experiments with light in the nineteenth century and earlier were consistent with
the view that light is a wave phenomenon. One of the more obvious experimental
verifications of this is provided by the interference pattern produced when light from a
point source is allowed to pass through a pair of slits and then to fall on a screen. The
resulting interference patterns are understandable only in terms of the constructive and
destructive interference of waves. The differential equations of Maxwell, which pro-
vided the connection between electromagnetic radiation and the basic laws of physics,
also indicated that light is a wave.

But there remained several problems that prevented physicists from closing the book
on this subject. One was the inability of classical physical theory to explain the intensity
and wavelength characteristics of light emitted by a glowing “blackbody.” This problem
was studied by Planck, who was forced to conclude that the vibrating charged particles
producing the light can exist only in certain discrete (separated) energy states. We
shall not discuss this problem. Another problem had to do with the interpretation of a
phenomenon discovered in the late 1800s, called the photoelectric effect.

1-6 The Photoelectric Effect

This phenomenon occurs when the exposure of some material to light causes it to eject
electrons. Many metals do this quite readily. A simple apparatus that could be used to
study this behavior is drawn schematically in Fig. 1-8. Incident light strikes the metal
dish in the evacuated chamber. If electrons are ejected, some of them will strike the
collecting wire, giving rise to a deflection of the galvanometer. In this apparatus, one
can vary the potential difference between the metal dish and the collecting wire, and
also the intensity and frequency of the incident light.

Suppose that the potential difference is set at zero and a current is detected when
light of a certain intensity and frequency strikes the dish. This means that electrons
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Figure 1-8 � A phototube.

are being emitted from the dish with finite kinetic energy, enabling them to travel to
the wire. If a retarding potential is now applied, electrons that are emitted with only a
small kinetic energy will have insufficient energy to overcome the retarding potential
and will not travel to the wire. Hence, the current being detected will decrease. The
retarding potential can be increased gradually until finally even the most energetic
photoelectrons cannot make it to the collecting wire. This enables one to calculate the
maximum kinetic energy for photoelectrons produced by the incident light on the metal
in question.

The observations from experiments of this sort can be summarized as follows:

1. Below a certain cutoff frequency of incident light, no photoelectrons are ejected, no
matter how intense the light.

2. Above the cutoff frequency, the number of photoelectrons is directly proportional
to the intensity of the light.

3. As the frequency of the incident light is increased, the maximum kinetic energy of
the photoelectrons increases.

4. In cases where the radiation intensity is extremely low (but frequency is above the
cutoff value) photoelectrons are emitted from the metal without any time lag.

Some of these results are summarized graphically in Fig. 1-9. Apparently, the kinetic
energy of the photoelectron is given by

kinetic energy = h(ν − ν0) (1-33)

where h is a constant. The cutoff frequency ν0 depends on the metal being studied (and
also its temperature), but the slope h is the same for all substances.
We can also write the kinetic energy as

kinetic energy = energy of light − energy needed to escape surface (1-34)
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Figure 1-9 � Maximum kinetic energy of photoelectrons as a function of incident light frequency,
where ν0 is the minimum frequency for which photoelectrons are ejected from the metal in the absence
of any retarding or accelerating potential.

The last quantity in Eq. (1-34) is often referred to as the work function W of the metal.
Equating Eq. (1-33) with (1-34) gives

energy of light − W = hν − hν0 (1-35)

The material-dependent term W is identified with the material-dependent term hν0,
yielding

energy of light ≡ E = hν (1-36)

where the value of h has been determined to be 6.626176×10−34 J sec. (See Appendix
10 for units and conversion factors.)

Physicists found it difficult to reconcile these observations with the classical electro-
magnetic field theory of light. For example, if light of a certain frequency and intensity
causes emission of electrons having a certain maximum kinetic energy, one would
expect increased light intensity (corresponding classically to a greater electromagnetic
field amplitude and hence greater energy density) to produce photoelectrons of higher
kinetic energy. However, it only produces more photoelectrons and does not affect their
energies. Again, if light is a wave, the energy is distributed over the entire wavefront
and this means that a low light intensity would impart energy at a very low rate to an
area of surface occupied by one atom. One can calculate that it would take years for an
individual atom to collect sufficient energy to eject an electron under such conditions.
No such induction period is observed.

An explanation for these results was suggested in 1905 by Einstein, who proposed
that the incident light be viewed as being comprised of discrete units of energy. Each
such unit, or photon, would have an associated energy of hν,where ν is the frequency
of the oscillating emitter. Increasing the intensity of the light would correspond to
increasing the number of photons, whereas increasing the frequency of the light would
increase the energy of the photons. If we envision each emitted photoelectron as
resulting from a photon striking the surface of the metal, it is quite easy to see that
Einstein’s proposal accords with observation. But it creates a new problem: If we are
to visualize light as a stream of photons, how can we explain the wave properties of
light, such as the double-slit diffraction pattern? What is the physical meaning of the
electromagnetic wave?
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Essentially, the problem is that, in the classical view, the square of the electromag-
netic wave at any point in space is a measure of the energy density at that point. Now
the square of the electromagnetic wave is a continuous and smoothly varying function,
and if energy is continuous and infinitely divisible, there is no problem with this the-
ory. But if the energy cannot be divided into amounts smaller than a photon—if it has
a particulate rather than a continuous nature—then the classical interpretation cannot
apply, for it is not possible to produce a smoothly varying energy distribution from
energy particles any more than it is possible to produce, at the microscopic level, a
smooth density distribution in gas made from atoms of matter. Einstein suggested that
the square of the electromagnetic wave at some point (that is, the sum of the squares
of the electric and magnetic field magnitudes) be taken as the probability density for
finding a photon in the volume element around that point. The greater the square of
the wave in some region, the greater is the probability for finding the photon in that
region. Thus, the classical notion of energy having a definite and smoothly varying
distribution is replaced by the idea of a smoothly varying probability density for finding
an atomistic packet of energy.

Let us explore this probabilistic interpretation within the context of the two-slit
interference experiment. We know that the pattern of light and darkness observed on
the screen agrees with the classical picture of interference of waves. Suppose we carry
out the experiment in the usual way, except we use a light source (of frequency ν) so
weak that only hν units of energy per second pass through the apparatus and strike
the screen. According to the classical picture, this tiny amount of energy should strike
the screen in a delocalized manner, producing an extremely faint image of the entire
diffraction pattern. Over a period of many seconds, this pattern could be accumulated
(on a photographic plate, say) and would become more intense. According to Einstein’s
view, our experiment corresponds to transmission of one photon per second and each
photon strikes the screen at a localized point. Each photon strikes a new spot (not to
imply the same spot cannot be struck more than once) and, over a long period of time,
they build up the observed diffraction pattern. If we wish to state in advance where the
next photon will appear, we are unable to do so. The best we can do is to say that the
next photon is more likely to strike in one area than in another, the relative probabilities
being quantitatively described by the square of the electromagnetic wave.

The interpretation of electromagnetic waves as probability waves often leaves one
with some feelings of unreality. If the wave only tells us relative probabilities for
finding a photon at one point or another, one is entitled to ask whether the wave has
“physical reality,” or if it is merely a mathematical device which allows us to analyze
photon distribution, the photons being the “physical reality.” We will defer discussion
of this question until a later section on electron diffraction.

EXAMPLE 1-1 A retarding potential of 2.38 volts just suffices to stop photoelectrons
emitted from potassium by light of frequency 1.13 × 1015 s−1. What is the work
function, W , of potassium?

SOLUTION � Elight = hν = W + KEelectron,W = hν − KEelectron = (4.136 × 10−15eV s)

(1.13 × 1015 s−1) − 2.38 eV = 4.67 eV − 2.38 eV = 2.29 eV [Note convenience of using h in units
of eV s for this problem. See Appendix 10 for data.] �
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EXAMPLE 1-2 Spectroscopists often express �E for a transition between states in
wavenumbers , e.g., m−1, or cm−1, rather than in energy units like J or eV. (Usually
cm−1 is favored, so we will proceed with that choice.)
a) What is the physical meaning of the term wavenumber?
b) What is the connection between wavenumber and energy?
c) What wavenumber applies to an energy of 1.000 J? of 1.000 eV?

SOLUTION � a) Wavenumber is the number of waves that fit into a unit of distance (usually of
one centimeter). It is sometimes symbolized ν̃. ν̃ = 1/λ, where λ is the wavelength in centimeters.
b) Wavenumber characterizes the light that has photons of the designated energy. E =hν =hc/λ=
hcν̃. (where c is given in cm/s).
c) E = 1.000 J = hcν̃; ν̃ = 1.000 J/hc = 1.000 J /[(6.626 × 10−34 J s)(2.998 × 1010 cm/s)] =
5.034 × 1022 cm−1. Clearly, this is light of an extremely short wavelength since more than 1022

wavelengths fit into 1 cm. For 1.000 eV, the above equation is repeated using h in eV s. This gives
ν̃ = 8065 cm−1. �

1-7 The Wave Nature of Matter

Evidently light has wave and particle aspects, and we can describe it in terms of photons,
which are associated with waves of frequency ν =E/h. Now photons are rather peculiar
particles in that they have zero rest mass. In fact, they can exist only when traveling
at the speed of light. The more normal particles in our experience have nonzero rest
masses and can exist at any velocity up to the speed-of-light limit. Are there also waves
associated with such normal particles?

Imagine a particle having a finite rest mass that somehow can be made lighter and
lighter, approaching zero in a continuous way. It seems reasonable that the existence
of a wave associated with the motion of the particle should become more and more
apparent, rather than the wave coming into existence abruptly when m= 0. De Broglie
proposed that all material particles are associated with waves, which he called “matter
waves,” but that the existence of these waves is likely to be observable only in the
behaviors of extremely light particles.

De Broglie’s relation can be reached as follows. Einstein’s relation for photons is

E = hν (1-37)

But a photon carrying energy E has a relativistic mass given by

E = mc2 (1-38)

Equating these two equations gives

E = mc2 = hν = hc/λ (1-39)

or

mc = h/λ (1-40)
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A normal particle, with nonzero rest mass, travels at a velocity v. If we regard Eq. (1-40)
as merely the high-velocity limit of a more general expression, we arrive at an equation
relating particle momentum p and associated wavelength λ:

mv = p = h/λ (1-41)

or

λ = h/p (1-42)

Here, m refers to the rest mass of the particle plus the relativistic correction, but the
latter is usually negligible in comparison to the former.

This relation, proposed by de Broglie in 1922, was demonstrated to be correct shortly
thereafter when Davisson and Germer showed that a beam of electrons impinging on a
nickel target produced the scattering patterns one expects from interfering waves. These
“electron waves” were observed to have wavelengths related to electron momentum in
just the manner proposed by de Broglie.

Equation (1-42) relates the de Broglie wavelength λ of a matter wave to the momen-
tum p of the particle. A higher momentum corresponds to a shorter wavelength. Since

kinetic energy T = mv2 = (1/2m)(m2v2) = p2/2m (1-43)

it follows that

p = √
2mT (1-44)

Furthermore, Since E = T + V , where E is the total energy and V is the potential
energy, we can rewrite the de Broglie wavelength as

λ = h√
2m(E − V )

(1-45)

Equation (1-45) is useful for understanding the way in which λ will change for a
particle moving with constant total energy in a varying potential. For example, if the
particle enters a region where its potential energy increases (e.g., an electron approaches
a negatively charged plate), E − V decreases and λ increases (i.e., the particle slows
down, so its momentum decreases and its associated wavelength increases). We shall
see examples of this behavior in future chapters.

Observe that if E ≥ V,λ as given by Eq. (1-45) is real. However, if E < V,λ

becomes imaginary. Classically, we never encounter such a situation, but we will find
it is necessary to consider this possibility in quantum mechanics.

EXAMPLE 1-3 A He2+ ion is accelerated from rest through a voltage drop of 1.000
kilovolts. What is its final deBroglie wavelength? Would the wavelike properties
be very apparent?

SOLUTION � Since a charge of two electronic units has passed through a voltage drop
of 1.000 × 103 volts, the final kinetic energy of the ion is 2.000 × 103 eV. To calculate λ, we first
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convert from eV to joules: KE ≡ p2/2m = (2.000 × 103 eV)(1.60219 × 10−19 J/eV) = 3.204
× 10−16 J. mHe = (4.003 g/mol)(10−3 kg/g)(1 mol/6.022 × 1023atoms) = 6.65 × 10−27 kg;
p =√

2mHe · KE =[2(6.65×10−27 kg)(3.204 ×10−16 J)]1/2 =2.1×10−21 kg m/s. λ=h/p =
(6.626 × 10−34 Js)/(2.1 × 10−21 kg m/s) = 3.2 × 10−13 m = 0.32 pm. This wavelength is on the
order of 1% of the radius of a hydrogen atom–too short to produce observable interference results
when interacting with atom-size scatterers. For most purposes, we can treat this ion as simply a
high-speed particle. �

1-8 A Diffraction Experiment with Electrons

In order to gain a better understanding of the meaning of matter waves, we now consider
a set of simple experiments. Suppose that we have a source of a beam of monoener-
getic electrons and a pair of slits, as indicated schematically in Fig. 1-10. Any electron
arriving at the phosphorescent screen produces a flash of light, just as in a television
set. For the moment we ignore the light source near the slits (assume that it is turned
off) and inquire as to the nature of the image on the phosphorescent screen when the
electron beam is directed at the slits. The observation, consistent with the observations
of Davisson and Germer already mentioned, is that there are alternating bands of light
and dark, indicating that the electron beam is being diffracted by the slits. Further-
more, the distance separating the bands is consistent with the de Broglie wavelength
corresponding to the energy of the electrons. The variation in light intensity observed
on the screen is depicted in Fig. 1-11a.

Evidently, the electrons in this experiment are displaying wave behavior. Does this
mean that the electrons are spread out like waves when they are detected at the screen?
We test this by reducing our beam intensity to let only one electron per second through
the apparatus and observe that each electron gives a localized pinpoint of light, the
entire diffraction pattern building up gradually by the accumulation of many points.
Thus, the square of de Broglie’s matter wave has the same kind of statistical significance
that Einstein proposed for electromagnetic waves and photons, and the electrons really
are localized particles, at least when they are detected at the screen.

However, if they are really particles, it is hard to see how they can be diffracted.
Consider what happens when slit b is closed. Then all the electrons striking the screen
must have come through slit a. We observe the result to be a single area of light on
the screen (Fig. 1-11b). Closing slit a and opening b gives a similar (but displaced)

Figure 1-10 � The electron source produces a beam of electrons, some of which pass through slits
a and/or b to be detected as flashes of light on the phosphorescent screen.
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Figure 1-11 � Light intensity at phosphorescent screen under various conditions: (a) a and b open,
light off; (b) a open, b closed, light off; (c) a closed, b open, light off; (d) a and b open, light on, λ

short; (e) a and b open, light on, λ longer.

light area, as shown in Fig. 1-11c. These patterns are just what we would expect for
particles. Now, with both slits open, we expect half the particles to pass through slit a

and half through slit b, the resulting pattern being the sum of the results just described.
Instead we obtain the diffraction pattern (Fig. 1-11a). How can this happen? It seems
that, somehow, an electron passing through the apparatus can sense whether one or
both slits are open, even though as a particle it can explore only one slit or the other.
One might suppose that we are seeing the result of simultaneous traversal of the two
slits by two electrons, the path of each electron being affected by the presence of an
electron in the other slit. This would explain how an electron passing through slit a

would “know” whether slit b was open or closed. But the fact that the pattern builds
up even when electrons pass through at the rate of one per second indicates that this
argument will not do. Could an electron be coming through both slits at once?

To test this question, we need to have detailed information about the positions of the
electrons as they pass through the slits. We can get such data by turning on the light
source and aiming a microscope at the slits. Then photons will bounce off each electron
as it passes the slits and will be observed through the microscope. The observer thus
can tell through which slit each electron has passed, and also record its final position
on the phosphorescent screen. In this experiment, it is necessary to use light having
a wavelength short in comparison to the interslit distance; otherwise the microscope
cannot resolve a flash well enough to tell which slit it is nearest. When this experiment
is performed, we indeed detect each electron as coming through one slit or the other,
and not both, but we also find that the diffraction pattern on the screen has been lost
and that we have the broad, featureless distribution shown in Fig. 1-11d, which is
basically the sum of the single-slit experiments. What has happened is that the photons
from our light source, in bouncing off the electrons as they emerge from the slits, have
affected the momenta of the electrons and changed their paths from what they were
in the absence of light. We can try to counteract this by using photons with lower
momentum; but this means using photons of lower E, hence longer λ. As a result,
the images of the electrons in the microscope get broader, and it becomes more and
more ambiguous as to which slit a given electron has passed through or that it really
passed through only one slit. As we become more and more uncertain about the path
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of each electron as it moves past the slits, the accumulating diffraction pattern becomes
more and more pronounced (Fig. 1-11e). (Since this is a “thought experiment,” we can
ignore the inconvenient fact that our “light” source must produce X rays or γ rays in
order to have a wavelength short in comparison to the appropriate interslit distance.)

This conceptual experiment illustrates a basic feature of microscopic systems—we
cannot measure properties of the system without affecting the future development of the
system in a nontrivial way. The system with the light turned off is significantly different
from the system with the light turned on (with short λ), and so the electrons arrive at the
screen with different distributions. No matter how cleverly one devises the experiment,
there is some minimum necessary disturbance involved in any measurement. In this
example with the light off, the problem is that we know the momentum of each electron
quite accurately (since the beam is monoenergetic and collimated), but we do not know
anything about the way the electrons traverse the slits. With the light on, we obtain
information about electron position just beyond the slits but we change the momentum
of each electron in an unknown way. The measurement of particle position leads to
loss of knowledge about particle momentum. This is an example of the uncertainty
principle of Heisenberg, who stated that the product of the simultaneous uncertainties in
“conjugate variables,” a and b, can never be smaller than the value of Planck’s constant
h divided by 4π :

�a · �b ≥ h/4π (1-46)

Here, �a is a measure of the uncertainty in the variable a, etc. (The easiest way to
recognize conjugate variables is to note that their dimensions must multiply to joule
seconds. Linear momentum and linear position satisfies this requirement. Two other
important pairs of conjugate variables are energy–time and angular momentum–angular
position.) In this example with the light off, our uncertainty in momentum is small
and our uncertainty in position is unacceptably large, since we cannot say which slit
each electron traverses. With the light on, we reduce our uncertainty in position to
an acceptable size, but subsequent to the position of each electron being observed, we
have much greater uncertainty in momentum.

Thus, we see that the appearance of an electron (or a photon) as a particle or a wave
depends on our experiment. Because any observation on so small a particle involves a
significant perturbation of its state, it is proper to think of the electron plus apparatus
as a single system. The question, “Is the electron a particle or a wave?” becomes
meaningful only when the apparatus is defined on which we plan a measurement.
In some experiments, the apparatus and electrons interact in a way suggestive of the
electron being a wave, in others, a particle. The question, “What is the electron when
were not looking?,” cannot be answered experimentally, since an experiment is a “look”
at the electron. In recent years experiments of this sort have been carried out using
single atoms.5

EXAMPLE 1-4 The lifetime of an excited state of a molecule is 2 × 10−9 s. What
is the uncertainty in its energy in J? In cm−1? How would this manifest itself
experimentally?

5See F. Flam [1].
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SOLUTION � The Heisenberg uncertainty principle gives, for minimum uncertainty �E · �t =
h/4π. �E = (6.626×10−34 J s)/[(4π)(2×10−9 s)]=2.6×10−26 J (2.6×10−26J) (5.03×1022

cm−1J−1) = 0.001 cm−1 (See Appendix 10 for data.) Larger uncertainty in E shows up as greater
line-width in emission spectra. �

1-9 Schrödinger’s Time-Independent Wave Equation

Earlier we saw that we needed a wave equation in order to solve for the standing waves
pertaining to a particular classical system and its set of boundary conditions. The same
need exists for a wave equation to solve for matter waves. Schrödinger obtained such
an equation by taking the classical time-independent wave equation and substituting
de Broglie’s relation for λ. Thus, if

∇2ψ = −(2π/λ)2ψ (1-47)

and

λ = h√
2m(E − V )

(1-48)

then
[−(h2/8π2m)∇2 + V (x, y, z)

]
ψ(x, y, z) = Eψ(x,y, z) (1-49)

Equation (1-49) is Schrödinger’s time-independent wave equation for a single particle
of mass m moving in the three-dimensional potential field V .

In classical mechanics we have separate equations for wave motion and particle
motion, whereas in quantum mechanics, in which the distinction between particles and
waves is not clear-cut, we have a single equation—the Schrödinger equation. We have
seen that the link between the Schrödinger equation and the classical wave equation is
the de Broglie relation. Let us now compare Schrödinger’s equation with the classical
equation for particle motion.

Classically, for a particle moving in three dimensions, the total energy is the sum of
kinetic and potential energies:

(1/2m)(p2
x + p2

y + p2
z ) + V = E (1-50)

where px is the momentum in the x coordinate, etc. We have just seen that the analogous
Schrödinger equation is [writing out Eq. (1-49)]

[ −h2

8π2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
+ V (x, y, z)

]
ψ(x, y, z) = Eψ(x,y, z) (1-51)

It is easily seen that Eq. (1-50) is linked to the quantity in brackets of Eq. (1-51) by a
relation associating classical momentum with a partial differential operator:

px ←→ (h/2πi)(∂/∂x) (1-52)

and similarly for py and pz . The relations (1-52) will be seen later to be an important
postulate in a formal development of quantum mechanics.
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The left-hand side of Eq. (1-50) is called the hamiltonian for the system. For this
reason the operator in square brackets on the LHS of Eq. (1-51) is called the hamiltonian
operator6 H . For a given system, we shall see that the construction of H is not difficult.
The difficulty comes in solving Schrödinger’s equation, often written as

Hψ = Eψ (1-53)

The classical and quantum-mechanical wave equations that we have discussed are
members of a special class of equations called eigenvalue equations. Such equations
have the format

Op f = cf (1-54)

where Op is an operator, f is a function, and c is a constant. Thus, eigenvalue equations
have the property that operating on a function regenerates the same function times a
constant. The function f that satisfies Eq. (1-54) is called an eigenfunction of the
operator. The constant c is called the eigenvalue associated with the eigenfunction
f . Often, an operator will have a large number of eigenfunctions and eigenvalues of
interest associated with it, and so an index is necessary to keep them sorted, viz.

Op fi = cifi (1-55)

We have already seen an example of this sort of equation, Eq. (1-19) being an eigen-
function for Eq. (1-18), with eigenvalue −ω2m/T .

The solutions ψ for Schrödinger’s equation (1-53), are referred to as eigenfunctions,
wavefunctions, or state functions.

EXAMPLE 1-5 a) Show that sin(3.63x) is not an eigenfunction of the operator
d/dx.
b) Show that exp(−3.63ix) is an eigenfunction of the operator d/dx. What is its
eigenvalue?
c) Show that 1

π
sin(3.63x) is an eigenfunction of the operator

((−h2/8π2m)d2/dx2). What is its eigenvalue?

SOLUTION � a) d
dx

sin(3.63x) = 3.63 cos(3.63x) �= constant times sin(3.63x).

b) d
dx

exp(−3.63ix) = −3.63i exp(−3.63ix) = constant times exp(−3.63ix). Eigenvalue =
−3.63i.

c) ((−h2/8π2m)d2/dx2) 1
π sin(3.63x) = (−h2/8π2m)(1/π)(3.63) d

dx
cos(3.63x)

= [(3.63)2h2/8π2m] · (1/π) sin(3.63x)

= constant times (1/π) sin(3.63x).

Eigenvalue = (3.63)2h2/8π2m. �

6An operator is a symbol telling us to carry out a certain mathematical operation. Thus, d/dx is a differential
operator telling us to differentiate anything following it with respect to x. The function 1/x may be viewed as a
multiplicative operator. Any function on which it operates gets multiplied by 1/x.
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1-10 Conditions on ψ

We have already indicated that the square of the electromagnetic wave is interpreted as
the probability density function for finding photons at various places in space. We now
attribute an analogous meaning to ψ2 for matter waves. Thus, in a one-dimensional
problem (for example, a particle constrained to move on a line), the probability that the
particle will be found in the interval dx around the point x1 is taken to be ψ2(x1) dx.
If ψ is a complex function, then the absolute square, |ψ |2 ≡ ψ*ψ is used instead of
ψ2.7 This makes it mathematically impossible for the average mass distribution to be
negative in any region.

If an eigenfunction ψ has been found for Eq. (1-53), it is easy to see that cψ will
also be an eigenfunction, for any constant c. This is due to the fact that a multiplicative
constant commutes8 with the operator H , that is,

H(cψ) = cHψ = cEψ = E(cψ) (1-56)

The equality of the first and last terms is a statement of the fact that cψ is an eigen-
function of H . The question of which constant to use for the wavefunction is resolved
by appeal to the probability interpretation of |ψ |2. For a particle moving on the x axis,
the probability that the particle is between x = −∞ and x = +∞ is unity, that is, a
certainty. This probability is also equal to the sum of the probabilities for finding the
particle in each and every infinitesimal interval along x, so this sum (an integral) must
equal unity:

c*c

∫ +∞

−∞
ψ*(x)ψ (x) dx = 1 (1-57)

If the selection of the constant multiplier c is made so that Eq. (1-57) is satisfied,
the wavefunction ψ ′ = cψ is said to be normalized. For a three-dimensional function,
cψ(x, y, z), the normalization requirement is

c*c

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
ψ*(x, y, z)ψ(x, y, z) dx dy dz ≡ |c|2

∫

all space
|ψ |2 dv = 1

(1-58)

As a result of our physical interpretation of |ψ |2 plus the fact that ψ must be an
eigenfunction of the hamiltonian operator H , we can reach some general conclusions
about what sort of mathematical properties ψ can or cannot have.

First, we require that ψ be a single-valued function because we want |ψ |2 to give an
unambiguous probability for finding a particle in a given region (see Fig. 1-12). Also,
we reject functions that are infinite in any region of space because such an infinity
will always be infinitely greater than any finite region, and |ψ |2 will be useless as a
measure of comparative probabilities.9 In order for Hψ to be defined everywhere, it
is necessary that the second derivative of ψ be defined everywhere. This requires that
the first derivative of ψ be piecewise continuous and that ψ itself be continuous as in
Fig.1d. (We shall see an example of this shortly.)

7If f = u + iv, then f *, the complex conjugate of f , is given by u − iv, where u and v are real functions.
8a and b are said to commute if ab = ba.
9There are cases, particularly in relativistic treatments, where ψ is infinite at single points of zero measure, so

that |ψ |2 dx remains finite. Normally we do not encounter such situations in quantum chemistry.
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Figure 1-12 � (a) ψ is triple valued at x0. (b) ψ is discontinuous at x0. (c) ψ grows without limit
as x approaches +∞ (i.e., ψ “blows up,” or “explodes”). (d) ψ is continuous and has a “cusp” at x0.
Hence, first derivative of ψ is discontinuous at x0 and is only piecewise continuous. This does not
prevent ψ from being acceptable.

Functions that are single-valued, continuous, nowhere infinite, and have piecewise
continuous first derivatives will be referred to as acceptable functions. The meanings
of these terms are illustrated by some sample functions in Fig. 1-12.

In most cases, there is one more general restriction we place on ψ , namely, that
it be a normalizable function. This means that the integral of |ψ |2 over all space
must not be equal to zero or infinity. A function satisfying this condition is said to
be square-integrable.

1-11 Some Insight into the Schrödinger Equation

There is a fairly simple way to view the physical meaning of the Schrödinger equation
(1-49). The equation essentially states that E in Hψ = Eψ depends on two things, V

and the second derivatives of ψ . Since V is the potential energy, the second derivatives
of ψ must be related to the kinetic energy. Now the second derivative of ψ with respect
to a given direction is a measure of the rate of change of slope (i.e., the curvature, or
“wiggliness”) of ψ in that direction. Hence, we see that a more wiggly wavefunction
leads, through the Schrödinger equation, to a higher kinetic energy. This is in accord
with the spirit of de Broglie’s relation, since a shorter wavelength function is a more
wiggly function. But the Schrödinger equation is more generally applicable because we
can take second derivatives of any acceptable function, whereas wavelength is defined
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Figure 1-13 � (a) Since V = 0, E = T . For higher T , ψ is more wiggly, which means that λ is
shorter. (Since ψ is periodic for a free particle, λ is defined.) (b) As V increases from left to right, ψ

becomes less wiggly. (c)–(d) ψ is most wiggly where V is lowest and T is greatest.

only for periodic functions. Since E is a constant, the solutions of the Schrödinger
equation must be more wiggly in regions where V is low and less wiggly where V is
high. Examples for some one-dimensional cases are shown in Fig. 1-13.

In the next chapter we use some fairly simple examples to illustrate the ideas that
we have already introduced and to bring out some additional points.

1-12 Summary

In closing this chapter, we collect and summarize the major points to be used in
future discussions.

1. Associated with any particle is a wavefunction having wavelength related to particle
momentum by λ = h/p = h/

√
2m(E − V ).

2. The wavefunction has the following physical meaning; its absolute square is pro-
portional to the probability density for finding the particle. If the wavefunction is
normalized, its square is equal to the probability density.

3. The wavefunctions ψ for time-independent states are eigenfunctions of Schrödinger’s
equation, which can be constructed from the classical wave equation by requir-
ing λ = h/

√
2m(E − V ), or from the classical particle equation by replacing pk

with (h/2πi)∂/∂k, k = x, y, z.
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4. For ψ to be acceptable, it must be single-valued, continuous, nowhere infinite, with
a piecewise continuous first derivative. For most situations, we also require ψ to
be square-integrable.

5. The wavefunction for a particle in a varying potential oscillates most rapidly where
V is low, giving a high T in this region. The low V plus high T equals E. In another
region, where V is high, the wavefunction oscillates more slowly, giving a low T ,
which, with the high V , equals the same E as in the first region.

1-12.A Problems10

1-1. Express A cos(kx) + B sin(kx) + C exp(ikx) + D exp(−ikx) purely in terms of
cos(kx) and sin(kx).

1-2. Repeat the standing-wave-in-a-string problem worked out in Section 1-4, but
clamp the string at x = +L/2 and −L/2 instead of at 0 and L.

1-3. Find the condition that must be satisfied by α and β in order that ψ (x) =
A sin(αx) + B cos(βx) satisfy Eq. (1-20).

1-4. The apparatus sketched in Fig. 1-8 is used with a dish plated with zinc and also
with a dish plated with cesium. The wavelengths of the incident light and the
corresponding retarding potentials needed to just prevent the photoelectrons from
reaching the collecting wire are given in Table P1-4. Plot incident light frequency
versus retarding potential for these two metals. Evaluate their work functions
(in eV) and the proportionality constant h (in eV s).

TABLE P1-4 �

Retarding potential (V)

λ(Å) Cs Zn

6000 0.167 —
3000 2.235 0.435
2000 4.302 2.502
1500 6.369 1.567
1200 8.436 6.636

1-5. Calculate the de Broglie wavelength in nanometers for each of the following:

a) An electron that has been accelerated from rest through a potential change of
500V.

b) A bullet weighing 5 gm and traveling at 400 m s−1.

1-6. Arguing from Eq. (1-7), what is the time needed for a standing wave to go through
one complete cycle?

10Hints for a few problems may be found in Appendix 12 and answers for almost all of them appear in
Appendix 13.
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1-7. The equation for a standing wave in a string has the form

�(x, t) = ψ(x) cos(ωt)

a) Calculate the time-averaged potential energy (PE) for this motion. [Hint: Use
PE = − ∫

F d�; F = ma; a = ∂2�/∂t2.]
b) Calculate the time-averaged kinetic energy (KE) for this motion. [Hint: Use

KE = 1/2mv2 and v = ∂�/∂t.]
c) Show that this harmonically vibrating string stores its energy on the average

half as kinetic and half as potential energy, and that E(x)avαψ2(x).

1-8. Indicate which of the following functions are “acceptable.” If one is not, give
a reason.

a) ψ = x

b) ψ = x2

c) ψ = sin x

d) ψ = exp(−x)

e) ψ = exp(−x2)

1-9. An acceptable function is never infinite. Does this mean that an acceptable
function must be square integrable? If you think these are not the same, try to
find an example of a function (other than zero) that is never infinite but is not
square integrable.

1-10. Explain why the fact that sin(x) = −sin(−x) means that we can restrict
Eq. (1-32) to nonnegative n without loss of physical content.

1-11. Which of the following are eigenfunctions for d/dx?

a) x2

b) exp(−3.4x2)

c) 37
d) exp(x)

e) sin(ax)

f) cos(4x) + i sin(4x)

1-12. Calculate the minimum de Broglie wavelength for a photoelectron that is pro-
duced when light of wavelength 140.0 nm strikes zinc metal. (Workfunction of
zinc = 3.63 eV.)

Multiple Choice Questions

(Intended to be answered without use of pencil and paper.)

1. A particle satisfying the time-independent Schrödinger equation must have

a) an eigenfunction that is normalized.
b) a potential energy that is independent of location.
c) a de Broglie wavelength that is independent of location.
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d) a total energy that is independent of location.
e) None of the above is a true statement.

2. When one operates with d2/dx2 on the function 6 sin(4x), one finds that

a) the function is an eigenfunction with eigenvalue −96.
b) the function is an eigenfunction with eigenvalue 16.
c) the function is an eigenfunction with eigenvalue −16.
d) the function is not an eigenfunction.
e) None of the above is a true statement.

3. Which one of the following concepts did Einstein propose in order to explain the
photoelectric effect?

a) A particle of rest mass m and velocity v has an associated wavelength λ given by
λ = h/mv.

b) Doubling the intensity of light doubles the energy of each photon.
c) Increasing the wavelength of light increases the energy of each photon.
d) The photoelectron is a particle.
e) None of the above is a concept proposed by Einstein to explain the photoelectric

effect.

4. Light of frequency ν strikes a metal and causes photoelectrons to be emitted having
maximum kinetic energy of 0.90 hν. From this we can say that

a) light of frequency ν/2 will not produce any photoelectrons.
b) light of frequency 2ν will produce photoelectrons having maximum kinetic

energy of 1.80 hν.
c) doubling the intensity of light of frequency ν will produce photoelectrons having

maximum kinetic energy of 1.80 hν.
d) the work function of the metal is 0.90 hν.
e) None of the above statements is correct.

5. The reason for normalizing a wavefunction ψ is

a) to guarantee that ψ is square-integrable.
b) to make ψ*ψ equal to the probability distribution function for the particle.
c) to make ψ an eigenfunction for the Hamiltonian operator.
d) to make ψ satisfy the boundary conditions for the problem.
e) to make ψ display the proper symmetry characteristics.

Reference

[1] F. Flam, Making Waves with Interfering Atoms. Physics Today, 921–922 (1991).



Chapter 2

Quantum Mechanics of Some
Simple Systems

2-1 The Particle in a One-Dimensional “Box”

Imagine that a particle of mass m is free to move along the x axis between x = 0 and
x = L, with no change in potential (set V = 0 for 0 < x < L). At x = 0 and L and at all
points beyond these limits the particle encounters an infinitely repulsive barrier (V =∞
for x ≤ 0, x ≥ L). The situation is illustrated in Fig. 2-1. Because of the shape of this
potential, this problem is often referred to as a particle in a square well or a particle in
a box problem. It is well to bear in mind, however, that the situation is really like that
of a particle confined to movement along a finite length of wire.

When the potential is discontinuous, as it is here, it is convenient to write a wave
equation for each region. For the two regions beyond the ends of the box

−h2

8π2m

d2ψ

dx2 + ∞ψ = Eψ, x ≤ 0, x ≥ L
(2-1)

Within the box, ψ must satisfy the equation

−h2

8π2m

d2ψ

dx2 = Eψ, 0 < x < L
(2-2)

It should be realized that E must take on the same values for both of these equations;
the eigenvalue E pertains to the entire range of the particle and is not influenced by
divisions we make for mathematical convenience.

Let us examine Eq. (2-1) first. Suppose that, at some point within the infinite barrier,
say x =L+dx, ψ is finite. Then the second term on the left-hand side of Eq. (2-1) will
be infinite. If the first term on the left-hand side is finite or zero, it follows immediately
that E is infinite at the point L + dx (and hence everywhere in the system). Is it
possible that a solution exists such that E is finite? One possibility is that ψ = 0 at all
points where V = ∞. The other possibility is that the first term on the left-hand side
of Eq. (2-1) can be made to cancel the infinite second term. This might happen if the
second derivative of the wavefunction is infinite at all points where V =∞ and ψ �= 0.
For the second derivative to be infinite, the first derivative must be discontinuous, and
so ψ itself must be nonsmooth (i.e., it must have a sharp corner; see Fig. 2-2). Thus,
we see that it may be possible to obtain a finite value for both E and ψ at x = L + dx,
provided that ψ is nonsmooth there. But what about the next point, x = L + 2 dx, and
all the other points outside the box? If we try to use the same device, we end up with
the requirement that ψ be nonsmooth at every point where V = ∞. A function that is

27
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Figure 2-1 � The potential felt by a particle as a function of its x coordinate.

continuous but which has a point-wise discontinuous first derivative is a contradiction
in terms (i.e., a continuous f cannot be 100% corners. To have recognizable corners,
we must have some (continuous) edges. We say that the first derivative of ψ must be
piecewise continuous.) Hence, if V = ∞ at a single point, we might find a solution ψ

which is finite at that point, with finite energy. If V =∞ over a finite range of connected
points, however, either E for the system is infinite, and ψ is finite over this region or
E is not infinite (but is indeterminate) and ψ is zero over this region.

We are not concerned with particles of infinite energy, and so we will say that the
solution to Eq. (2-1) is ψ = 0.1

Turning now to Eq. (2-2) we ask what solutions ψ exist in the box having associated
eigenvalues E that are finite and positive. Any function that, when twice differentiated,
yields a negative constant times the selfsame function is a possible candidate for ψ .
Such functions are sin(kx), cos(kx), and exp(±ikx). But these functions are not all
independent since, as we noted in Chapter 1,

exp(±ikx) = cos(kx) ± i sin(kx) (2-3)

We thus are free to express ψ in terms of exp(±ikx) or else in terms of sin(kx) and
cos(kx). We choose the latter because of their greater familiarity, although the final
answer must be independent of this choice.

The most general form for the solution is

ψ (x) = A sin(kx) + B cos(kx) (2-4)

where A, B, and k remain to be determined. As we have already shown, ψ is zero at
x ≤ 0, x ≥ L and so we have as boundary conditions

ψ(0) = 0 (2-5)

ψ(L) = 0 (2-6)

Mathematically, this is precisely the same problem we have already solved in Chap-
ter 1 for the standing waves in a clamped string. The solutions are

ψ(x) = A sin(nπx/L), n = 1, 2, . . . , 0 < x < L

ψ(x) = 0, x ≤ 0, x ≥ L (2-7)
1Thus, the particle never gets into these regions. It is meaningless to talk of the energy of the particle in such

regions, and our earlier statement that E must be identical in Eqs. (2-1) and (2-2) must be modified; E is constant
in all regions where ψ is finite.
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Figure 2-2 � As the function f (x) approaches being nonsmooth, δ approaches zero (the width of
one point) and n approaches infinity.

One difference between Eq. (2-7) and the string solutions is that we have rejected the
n = 0 solution in Eq. (2-7). For the string, this solution was for no vibration at all—
a physically realizable circumstance. For the particle-in-a-box problem, this solution
is rejected because it is not square-integrable. (It gives ψ = 0, which means no particle
on the x axis, contradicting our starting premise. One could also reject this solution
for the classical case since it means no energy in the string, which might contradict a
starting premise depending on how the problem is worded.)

Let us check to be sure these functions satisfy Schrödinger’s equation:

Hψ(x) = −h2

8π2m

d2[A sin(nπx/L)]
dx2

= −h2

8π2m

[
−A

n2π2

L2 sin
(nπx

L

)]

= n2h2

8mL2

[
A sin

(nπx

L

)]
= Eψ (x) (2-8)

This shows that the functions (2-7) are indeed eigenfunctions of H . We note in passing
that these functions are acceptable in the sense of Chapter 1.
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The only remaining parameter is the constant A. We set this to make the probability
of finding the particle in the well equal to unity:

∫ L

0
ψ2(x)dx = A2

∫ L

0
sin2(nπx/L)dx = 1 (2-9)

This leads to (Problem 2-2)

A = √
2/L (2-10)

which completes the solving of Schrödinger’s time-independent equation for the prob-
lem. Our results are the normalized eigenfunctions

ψn(x) = √
(2/L) sin(nπx/L), n = 1, 2, 3, . . . (2-11)

and the corresponding eigenvalues, from Eq. (2-8),

En = n2h2/8mL2, n = 1, 2, 3, . . . (2-12)

Each different value of n corresponds to a different stationary state of this system.

2-2 Detailed Examination of Particle-in-a-Box Solutions

Having solved the Schrödinger equation for the particle in the infinitely deep square-
well potential, we now examine the results in more detail.

2-2.A Energies

The most obvious feature of the energies is that, as we move through the allowed states
(n = 1, 2, 3, . . . ), E skips from one discrete, well-separated value to another (1, 4, 9
in units of h2/8mL2). Thus, the particle can have only certain discrete energies—the
energy is quantized. This situation is normally indicated by sketching the allowed
energy levels as horizontal lines superimposed on the potential energy sketch, as in
Fig. 2-3a. The fact that each energy level is a horizontal line emphasizes the fact that E is
a constant and is the same regardless of the x coordinate of the particle. For this reason,
E is called a constant of motion. The dependence of E on n2 is displayed in the increased
spacing between levels with increasing n in Fig. 2-3a. The number n is called a quantum
number.

We note also that E is proportional to L−2. This means that the more tightly a particle
is confined, the greater is the spacing between the allowed energy levels. Alternatively,
as the box is made wider, the separation between energies decreases and, in the limit
of an infinitely wide box, disappears entirely. Thus, we associate quantized energies
with spatial confinement.

For some systems, the degree of confinement of a particle depends on its total energy.
For example, a pendulum swings over a longer trajectory if it has higher energy. The
potential energy for a pendulum is given by V = 1

2 kx2 and is given in Fig. 2-3b. If
one solves the Schrödinger equation for this system (see Chapter 3), one finds that the
energies are proportional to n rather than n2. We can rationalize this by thinking of
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Figure 2-3 � Allowed energies for a particle in various one-dimensional potentials. (a) “box” with
infinite walls. (b) quadratic potential, V = 1

2 kx2. (c) V = −1/ |x|. Tendency for higher levels in (b)
and (c) not to diverge as in (a) is due to larger “effective box size” for higher energies in (b) and (c).

the particle as occupying successively bigger boxes as we go to higher energies. This
counteracts the n2 increase in energy levels found for constant box width. For the
potential V = −1/ |x| (which is the one-dimensional analog of a hydrogen atom) E

varies as 1/n2 (Fig. 2-3c), and this is also consistent with the effective increase in L

with increasing E.
The energy is proportional to 1/m. This means that the separation between allowed

energy levels decreases as m increases. Ultimately, for a macroscopic object, m is so
large that the levels are too closely spaced to be distinguished from the continuum of
levels expected in classical mechanics. This is an example of the correspondence prin-
ciple, which, in its most general form, states that the predictions of quantum mechanics
must pass smoothly into those of classical mechanics whenever we progress in a con-
tinuous way from the microscopic to the macroscopic realm.

Notice that the lowest possible energy for this system occurs for n = 1 and is E =
h2/8mL2. This remarkable result means that a constrained particle (i.e., L not infinite)
can never have an energy of zero. Evidently, the particle continues to move about in
the region 0 to L, even at a temperature of absolute zero. For this reason, h2/8mL2

is called the zero-point energy for this system. In general, a finite zero-point energy
occurs in any system having a restriction for motion in any coordinate. (Note that finite
here means not equal to zero.)

It is possible to show that, for L �=∞, our particle in a box would have to violate the
Heisenberg uncertainty principle to achieve an energy of zero. For, suppose the energy
is precisely zero. Then the momentum must be precisely zero too. (In this system,
all energy of the particle is kinetic since V = 0 in the box.) If the momentum px is
precisely zero, however, our uncertainty in the value of the momentum �px is also
zero. If �px is zero, the uncertainty principle [Eq. (2-46)] requires that the uncertainty
in position �x be infinite. But we know that the particle is between x = 0 and x = L.
Hence, our uncertainty is on the order of L, not infinity, and the uncertainty principle
is not satisfied. However, when L=∞ (the particle is unconstrained), it is possible for
the uncertainty principle to be satisfied simultaneously with having E =0, and this is in
satisfying accord with the fact that E =h2/8mL2 goes to zero as L approaches infinity.

Finally, we note that each separate value of n leads to a different energy. Thus,
no two states have the same energy, and the states are said to be nondegenerate with
respect to energy.
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EXAMPLE 2-1 Consider an electron in a one-dimensional box of length 258 pm.
a) What is the zero-point energy (ZPE) for this system? For a mole of such systems?
b) What electronic speed classically corresponds to this ZPE? Compare to the speed
of light.

SOLUTION � a) ZPE = Elowest = En=1

= 12h2/8mL2 = (1)2(6.626 × 10−34 J s)2

8(9.11 × 10−31 kg)(258 × 10−12 m)2

= 9.05 × 10−19 J;
Per mole, this equals

(9.05 × 10−19 J)(6.022 × 1023 mol−1)(1 kJ/103 J) = 54.5 kJ mol−1

b) E is all kinetic energy since V = 0 in the box, so E = mv2/2. Hence,

v =
[

2E

m

]1/2
=

[
2(9.05 × 10−19 J)

9.11 × 10−31 kg

]1/2

= 1.41 × 106 m s−1

Compared to the speed of light, this is 1.41×106 m s−1

2.998×108 m s−1 = 0.0047, or about 0.5% of the speed of
light. �

2-2.B Wavefunctions

We turn now to the eigenfunctions (2-11) for this problem. These are typically displayed
by superimposing them on the energy levels as shown in Fig. 2-4 for the three lowest-
energy wavefunctions. (It should be recognized that the energy units of the vertical
axis do not pertain to the amplitudes of the wavefunctions.)

It is apparent from Fig. 2-4 that the allowed wavefunctions for this system could
have been produced merely by placing an integral number of half sine waves in the

Figure 2-4 � The eigenfunctions corresponding to n=1, 2, 3, plotted on the corresponding energy
levels. The energy units of the ordinate do not refer to the wavefunctions ψ . Each wavefunction has
a zero value wherever it intersects its own energy level, and a maximum value of

√
2/L.
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range 0–L. The resulting wavelengths would then yield the energy of each state through
application of de Broglie’s relation (1-42). Thus, by inspection of Fig. 2-4, the allowed
wavelengths are

λ = 2L/n, n = 1, 2, 3, . . . (2-13)

Therefore

p = h/λ = nh/2L (2-14)

and

E = p2/2m = n2h2/8mL2 (2-15)

in agreement with Eq. (2-12). As pointed out in Section 1-11, the wavefunctions having
higher kinetic energy oscillate more rapidly. (Here V = 0, and E is all kinetic energy.)

Let us now consider the physical meaning of the eigenfunctions ψ . According to our
earlier discussion, ψ2 summarizes the results of many determinations of the position
of the particle. Suppose that we had a particle-in-a-box system that we had somehow
prepared in such a way that we knew it to be in the state with n = 1. We can imagine
some sort of experiment, such as flashing a powerful γ -ray flashbulb and taking an
instantaneous photograph, which tells us where the particle was at the instant of the
flash. Now, suppose we wish to determine the position of the particle again. We want
this second determination to be for the n = 1 state also, but we cannot use our original
system for this because we have “spoiled” it by our first measurement process. Hitting
the particle with one or more γ -ray photons has knocked it into some other state, and
we do not even know which one. Therefore, we must either reprepare our system, or
else use a separate system whose preparation is identical to that of the first system. In
general we shall assume that we have an inexhaustible supply of identically prepared
systems. Therefore, we take a second photograph (on our second system) using the
same photographic plate. Then we photograph a third system, a fourth, etc., until we
have amassed a large number of images of the particle on the film. The distribution
of these images is given by ψ2

1 . (Since ψ is always a real function for this system,
we do not need to bother with ψ*ψ .) Other states, like ψ2, ψ3, will lead to different
distributions of images. The results for the several states are depicted in Fig. 2-5. It
is obvious that the probability for finding the particle near the center of the box is
predicted to be much larger for the n = 1 than the n = 2 state.

The probability for finding the particle at the midpoint of the “wire” in the n=2 state
approaches zero in the limit of our measurement becoming precise enough to observe
a single point. This troubles many students at first encounter because they worry about
how the particle can get from one side of the box to the other in the n= 2 state. In fact,
this question can be raised for any state whose wavefunction has any nodes. However,
our discussion in the preceding paragraph shows that this question, like the question,
“Is an electron a particle or a wave when we are not looking?” has no meaningful
answer because no experiment can be conceived that would answer it. To test whether
or not the particle does travel from one side of the box to the other, we would have to
prepare the system in the n = 2 state and measure the position of the particle enough
times so that we either (a) always find it on the same side (requires many measurements
for confidence), or (b) find it on different sides (requires at least two measurements).




