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Preface to Volume I

This textbook is based on lectures given in quantum field theory (QFT) over the
years to graduate students in theoretical and experimental physics. The writing of
the book spread over three continents: North America (Canada), Europe (Ireland),
and Asia (Thailand). QFT was born about 90 years ago, when quantum mechanics
met relativity, and is still going strong. The book covers, pedagogically, the wide
spectrum of developments in QFT emphasizing, however, those parts which are
reasonably well understood and for which satisfactory theoretical descriptions have
been given.

The legendary Richard Feynman in his 1958 Cornell, 1959–1960 Cal Tech
lectures on QFT of fundamental processes, the first statement he makes, the very
first one, is that the lectures cover all of physics.1 One quickly understands what
Feynman meant by covering all of physics. The role of fundamental physics is to
describe the basic interactions of Nature and QFT, par excellence, is supposed to
do just that. Feynman’s statement is obviously more relevant today than it was
then, since the recent common goal is to provide a unified description of all the
fundamental interactions in nature.

The book requires as background a good knowledge of quantum mechanics,
including rudiments of the Dirac equation, as well as elements of the Klein-Gordon
equation, and the reader would benefit much by reading relevant sections of my
earlier book : Quantum Theory: A Wide Spectrum (2006), Springer in this respect.

This book differs from QFT books that have appeared in recent years2 in several
respects and, in particular, it offers something new in its approach to the subject, and
the reader has plenty of opportunity to be exposed to many topics not covered, or

1R. P. Feynman, The Theory of Fundamental Processes, The Benjamin/Cummings Publishing Co.,
Menlo Park, California. 6th Printing (1982), page 1.
2Some of the fine books that I am familiar with are: L. H. Ryder, Quantum Field Theory;
S. Weinberg, The Quantum Theory of Fields I (1995) & II (1996), Cambridge: Cambridge
University Press; M. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, New
York: Westview Press (1995); B. DeWitt, The Global Approach to Quantum Field Theory, Oxford:
Oxford University Press (2014).
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vi Preface to Volume I

just touched upon, in standard references. Some notable differences are seen, partly,
from unique features in the following material included in ours:

• The very elegant functional differential approach of Schwinger, referred to
as the quantum dynamical (action) principle, and its underlying theory are
used systematically in generating the so-called vacuum-to-vacuum transition
amplitude of both abelian and non-abelian gauge theories, in addition to the well-
known functional integral approach of Feynman, referred to as the path-integral
approach, which are simply related by functional Fourier transforms and delta
functionals.

• Transition amplitudes are readily extracted by a direct expansion of the vacuum-
to-vacuum transition amplitude in terms of a unitarity sum, which is most closely
related to actual experimental setups with particles emitted and detected prior and
after a given process and thus represent the underlying physics in the clearest
possible way.

• Particular emphasis is put on the concept of a quantum field and its particle
content, both physically and technically, as providing an appropriate description
of physical processes at sufficiently high energies, for which relativity becomes
the indispensable language to do physics and explains the exchange that takes
place between energy and matter, allowing the creation of an unlimited number
of particles such that the number of particles need not be conserved, and for
which a variable number of particles may be created or destroyed. Moreover,
quantum mechanics implies that a wavefunction renormalization arises in QFT
field independent of any perturbation theory – a point not sufficiently emphasized
in the literature.

• The rationale of the stationary action principle and emergence of field equations,
via field variations of transformation functions and generators of field variations.
The introduction of such generators lead, self consistently, to the field equations.
Such questions are addressed as: “Why is the variation of the action, within the
boundaries of transformation functions, set equal to zero which eventually leads
to the Euler-Lagrange equations?”, “How does the Lagrangian density appear in
the formalism?” “What is the significance in commuting/anti-commuting field
components within the interaction Lagrangian density in a theory involving field
operators?” These are some of the questions many students seem to worry about.

• A panorama of all the fields encountered in present high-energy physics, together
with the details of the underlying derivations are given.

• Schwinger’s point splitting method of currents is developed systematically in
studying abelian and non-abelian gauge theories anomalies. Moreover, an explicit
experimental test of the presence of an anomaly is shown by an example.

• Derivation of the Spin & Statistics connection and CPT symmetry, emphasizing
for the latter that the invariance of the action under CPT transformation is not
sufficient for CPT symmetry, but one has also to consider the roles of incoming
and outgoing particles.
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• The fine-structure effective coupling ˛ ' 1=128 at high energy corresponding
to the mass of the neutral Z 0 vector boson based on all the charged leptons and
all those contributing quarks of the three generations.

• Emphasis is put on renormalization theory, including its underlying general
subtractions scheme, often neglected in treatments of QFT.

• Elementary derivation of Faddeev-Popov factors directly from the functional
differential formalism, with constraints, and their modifications, and how they
may even arise in some abelian gauge theories.

• A fairly detailed presentation is given of “deep inelastic” experiments as a
fundamental application of quantum chromodynamics.

• Schwinger line integrals, origin of Wilson loops, lattices, and quark confinement.

• Neutrino oscillations,3 neutrino masses, neutrino mass differences, and the
“seesaw mechanism.”

• QCD jets and parton splitting, including gluon splitting to gluons.

• Equal importance is put on both abelian and non-abelian gauge theories,
witnessing the wealth of information also stored in the abelian case.4

• A most important, fairly detailed, and semi-technical introductory chapter is
given which traces the development of QFT since its birth in 1926 without
tears, in abelian and non-abelian gauge theories, including aspects of quantum
gravity, as well as examining the impact of supersymmetry, string theory, and the
development of the theory of renormalization, as a pedagogical strategy for the
reader to be able to master the basic ideas of the subject at the outset before they
are encountered in glorious technical details later.

• Solutions to all the problems are given right at the end of the book.

With the mathematical rigor that renormalization has met over the years and
the reasonable agreement between gauge theories and experiments, the underlying
theories are in pretty good shape. This volume is organized as follows. The first
introductory chapter traces the subject of QFT since its birth, elaborating on
many of its important developments which are conveniently described in a fairly
simple language and will be quite useful for understanding the underlying technical
details of the theory covered in later chapters including those in Volume II. A
preliminary chapter follows which includes the study of symmetry transformations
in the quantum world, as well as of intricacies of functional differentiation and
functional integration which are of great importance in field theory. Chapter 3
deals with quantum field theory methods of spin 1/2 culminating in the study of
anomalies in the quantum world. The latter refers to the fact that a conservation law

3It is rather interesting to point out that the theory of neutrino oscillations was written up in this
book much earlier than the 2015 Nobel Prize in Physics was announced on neutrino oscillations.
4With the development of non-abelian gauge theories, unfortunately, it seems that some students
are not even exposed to such derivations as of the “Lamb shift” and of the “anomalous magnetic
moment of the electron” in QED.
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in classical physics does not necessarily hold in the quantum world. Chapter 4, a
critical one, deals with the concept of a quantum field, the Poincaré algebra, and
particle states. Particular attention is given to the stationary action principle as
well as in developing the solutions of QFT via the quantum dynamical principle.
This chapter includes the two celebrated theorems dealing with CPT symmetry
and of the Spin & Statistics connection. A detailed section is involved with the
basic quantum fields one encounters in present day high-energy/elementary-particle
physics and should provide a useful reference source for the reader. Chapter 5 treats
abelian gauge theories (QED, scalar boson electrodynamics) in quite details and
includes, in particular, the derivations of two of the celebrated results of QED
which are the anomalous magnetic moment of the electron and the Lamb shift.
Chapter 6 is involved with non-abelian gauge theories (electroweak, QCD, Grand
unification).5 Such important topics are included as “asymptotic freedom,” “deep
inelastic” scattering, QCD jets, parton splittings, neutrino oscillations, the “seesaw
mechanism” and neutrino masses, Schwinger-line integrals, Wilson loops, lattices,
and quark confinement. Unification of coupling parameters of the electroweak
theory and of QCD are also studied, as well as of spontaneous symmetry breaking
in both abelian and non-abelian gauge theories, and of renormalizability aspects of
both gauge theories, emphasizing the so-called BRS transformations for the latter.
We make it a point, pedagogically, to derive things in detail, and some of such
details are relegated to appendices at the end of the respective chapters with the
main results given in the sections in question. Five general appendices, at the end
of this volume, cover some additional important topics and/or technical details.
In particular, I have included an appendix covering some aspects of the general
theory of renormalization and its underlying subtractions scheme itself which is
often neglected in books on QFT. Fortunately, my earlier book, with proofs not just
words, devoted completely to renormalization theory – Renormalization (1983),
Academic Press – may be consulted for more details. The problems given at the
end of the chapters form an integral part of the book, and many developments in
the text depend on the problems and may include, in turn, additional material. They
should be attempted by every serious student. Solutions to all the problems are given
right at the end of the book for the convenience of the reader. The introductory
chapter together with the introductions to each chapter provide the motivation and
the pedagogical means to handle the technicalities that follow them in the texts.

I hope this book will be useful for a wide range of readers. In particular, I
hope that physics graduate students, not only in quantum field theory and high-
energy physics, but also in other areas of specializations will also benefit from it
as, according to my experience, they seem to have been left out of this fundamental
area of physics, as well as instructors and researchers in theoretical physics. The
content of this volume may be covered in one-year (two semesters) quantum field
theory courses.

5QED and QCD stand, respectively, for quantum electrodynamics and quantum chromodynamics.
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In Volume II, the reader is introduced to quantum gravity, supersymmetry, and
string theory,6 which although may, to some extent, be independently read by a
reader with a good background in field theory, the present volume sets up the
language, the notation, provides additional background for introducing these topics,
and will certainly make it much easier for the reader to follow. In this two-volume
set, aiming for completeness in covering the basics of the subject, I have included
topics from the so-called conventional field theory (the classics) to ones from the
modern or the new physics which I believe that every serious graduate student
studying quantum field theory should be exposed to.

Without further ado, and with all due respect to the legendary song writer Cole
Porter, let us find out “what is this thing called QFT?”

Edouard B. Manoukian

6Entitled: Quantum Field Theory II: Introductions to Quantum Gravity, Supersymmetry, and String
Theory” (2016), Springer.
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Notation and Data

ı Latin indices i; j; k; : : : are generally taken to run over 1,2,3, while the Greek
indices �; �; : : : over 0; 1; 2; 3 in 4D. Variations do occur when there are many
different types of indices to be used, and the meanings should be evident from
the presentations.

ı The Minkowski metric ��� is defined by Œ���� D diagŒ�1; 1; 1; 1� D Œ���� in
4D.

ı Unless otherwise stated, the fundamental constants „; c are set equal to one.
ı The gamma matrices satisfy the anti-commutation relations f� �; � �g D �2 ��� .
ı The Dirac, the Majorana, and the chiral representations of the �� matrices are

defined in Appendix I at the end of the book.
ı The charge conjugation matrix is defined by C D i� 2� 0.
ı  D  	� 0, u D u	� 0, v D v	� 0. A Hermitian conjugate of a matrix M is

denoted by M	, while its complex conjugate is denoted by M�.
ı The step function is denoted by ™.x/ which is equal to 1 for x > 0, and 0 for

x < 0.
ı The symbol " is used in dimensional regularization (see Appendix III). 
 is

used in defining the boundary condition in the denominator of a propagator
.Q2 C m2 � i 
/ and should not be confused with " used in dimensional
regularization. We may also use either one when dealing with an infinitesimal
quantity, in general, with 
 more frequently, and this should be self-evident from
the underlying context.

ı For units and experimental data, see the compilation of the “Particle Data
Group”: Beringer et al. [1] and Olive et al. [2]. The following (some obviously
approximate) numerical values should, however, be noted:

1 MeV D 106 eV
1 GeV D 103 MeV
103 GeV D 1 TeV
1 erg D 10�7 J
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xx Notation and Data

1 J D 6:242 � 109 GeV
c D 2:99792458� 1010 cm/s (exact)
„ D 1:055 � 10�34 J s
„ c D 197:33 MeV fm
1 fm D 10�13 cm

(Masses) Mp D 938:3MeV=c2, Mn D 939:6MeV=c2,
MW D 80:4 GeV=c2, MZ D 91:2GeV=c2,
me D 0:511MeV=c2, m� D 105:66 MeV=c2, m� D 1777MeV=c2.
Mass of �e<2 eV=c2, Mass of �� <0:19MeV=c2, Mass of �� < 18:2MeV=c2,
Mass of the neutral Higgs H0 � 125:5GeV=c2.
For approximate mass values of some of the quarks taken, see Table 5.1 in
Sect. 5.19.2. For more precise range of values, see Olive et al. [2].
(Newton’s gravitational constant) GN D 6:709 � 10�39 „ c5/ GeV2.
(Fermi weak interaction constant) GF D 1:666 � 10�5 „3 c3/ GeV2.
Planck mass

p„ c=GN � 1:221 � 1019 GeV=c2,
Planck length

p„GN=c3 � 1:616 � 10�33 cm.
Fine structure constant ˛ D 1=137:04 at Q2 D 0, and � 1=128 at Q2 � M2

Z .
For the weak-mixing angle �W , sin2 �W � 0:232, at Q2 � M2

Z .
˛= sin2 �W � 0:034, at Q2 � M2

Z .
Strong coupling constant ˛s � 0:119, at Q2 � M2

Z .
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Chapter 1
Introduction

Donkey Electron, Bare Electron, Electroweak Frog, God Particle, “Colored” Quarks
and Gluons, Asymptotic Freedom, Beyond Resonances into the Deep Inelastic
Region, Partons, QCD Jets, Confined Quarks, Bekenstein – Hawking Entropy
of a Black Hole, Sparticles, Strings, Branes, Various Dimensions and even Quanta
of Geometry, AdS/CFT Correspondence and Holographic Principle, CPT, and
Spin & Statistics

The major theme of quantum field theory is the development of a unified theory
that may be used to describe nature from microscopic to cosmological distances.
Quantum field theory was born 90 years ago, when quantum theory met relativity,
and has captured the hearts of the brightest theoretical physicists in the world. It is
still going strong. It has gone through various stages, met various obstacles on the
way, and has been struggling to provide us with a coherent description of nature
in spite of the “patchwork” of seemingly different approaches that have appeared
during the last 40 years or so, but still all, with the common goal of unification.

As mentioned in our Preface, Feynman, in his 1958 Cornell, 1959–1960 Cal
Tech, lectures on the quantum field theory of fundamental processes, the first
statement he makes, the very first one, is that the lectures will cover all of physics
[76, p. 1]. One quickly understands what Feynman meant by covering all of physics.
After all, the role of fundamental physics is to describe the basic interactions we
have in nature and quantum field theory is supposed to do just that. Feynman’s
statement is obviously more relevant today than it was then, since the recent
common goal is to provide a unified description of all the fundamental forces in
nature. With this in mind, let us trace the development of this very rich subject from
the past to the present, and see what the theory has been telling us all these years.

When the energy and momentum of a quantum particle are large enough, one is
confronted with the requirement of developing a formalism, as imposed by nature,
which extends quantum theory to the relativistic regime. A relativistic theory, as
a result of the exchange that takes place between energy and matter, allows the
creation of an unlimited number of particles and the number of particles in a given
physical process need not be conserved. An appropriate description of such physical
processes for which a variable number of particles may be created or destroyed, in
the quantum world, is provided by the very rich concept of a quantum field. For
example, photon emissions and absorptions, in a given process, are explained by the
introduction of the electromagnetic quantum field. The theory which emerges from
extending quantum physics to the relativistic regime is called “Relativistic Quantum
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2 1 Introduction

Field Theory” or just “Quantum Field Theory”. Quantum Electrodynamics is an
example of a quantum field theory and is the most precise theory devised by man
when confronted with experiments. The essence of special relativity is that all
inertial frames are completely equivalent in explaining a physical theory as one
inertial frame cannot be distinguished from another. This invariance property of
physical theories in all inertial frames, as required by special relativity, as well as by
the many symmetries one may impose on such theories, are readily implemented in
the theory of quantum fields. The implementation of symmetries and describing
their roles in the explanation of observed phenomena has played a key role in
elementary particle physics.

Of course it took years before the appropriate language of quantum field theory,
described concisely above, by marrying quantum theory and relativity, was spelled
out and applied consistently to physical processes in the quantum world in the
relativistic regime. An appropriate place to start in history is when Dirac [47–49]
developed his relativistic equation of spin 1/ 2, from which one learns quite a bit
about the subsequent development of the subject as a multi-particle theory. We will
then step back a year or two, and then move again forward in time to connect
the dots between the various stages of the underlying exciting developments. His
relativistic equation, which incorporated the spin of the electron, predicted the
existence of negative energy states with negative mass, with energies going down
to �1, implying the instability of the corresponding systems. For example, an
electron in the ground-state energy of an atom would spontaneously decay to such
lower and lower negative energy states emitting radiation of arbitrary large energies
leading eventually to the collapse of the atom with the release of an infinite amount
of energy. Historically, a relativistic equation for spin 0, was developed earlier by
Klein and Gordon in 1926,1 referred to as the Klein-Gordon equation, which also
shared this problem, but unlike Dirac’s theory it led to negative probabilities as well.
Dirac being aware of the negative probabilities encountered in the theory of the latter
authors, was able to remedy this problem in his equation. To resolve the dilemma
of negative energies, Dirac, in 1930,2 assumed that a priori all the negative energy
states are filled with electrons in accord to the Pauli exclusion principle, giving rise
to the so-called Dirac sea or the Dirac vacuum, so that no transitions to such states
are possible, thus ensuring the stability of the atom.

The consequences of the assumption made by Dirac above were many. A negative
energy electron in the Dirac sea, may absorb radiation of sufficient energy so as
to overcome an energy gap arising from the level �mc2 to Cmc2, where m is
the mass of an electron, thus making such a negative energy electron jump to a
positive energy state, leaving behind a surplus of positive energy and a surplus of

1Klein [128] and Gordon [101].
2Dirac [50, 51].
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positive charge Cjej relative to the Dirac sea. This has led Dirac eventually,3 in
1931 [52], to interpret the “hole” left behind by the transition of the negative energy
electron to a positive energy state, as a particle that has the same mass as the electron
but of opposite charge. It is interesting to note that George Gamow referred4 to
Dirac’s predicted particle as a “donkey electron”, because it would move in the
opposite direction of an appropriate applied force. The physics community found
it difficult to accept Dirac’s prediction until Anderson5 discovered this particle (the
positron eC), who apparently was not aware of Dirac’s prediction at the time of
the discovery.6 With the positron now identified, the above argument just given has
provided an explanation of the so-called pair production � ! eCe� by a photon
( in the vicinity of a nucleus).7 Conversely, if a “hole” is created in the vacuum, then
an electron may make a transition to such a state releasing radiation giving rise to the
phenomenon of pair annihilation. A Pair created, as described above, in the vicinity
of a positively charged nucleus, would lead to a partial screening of the charge of
the nucleus as the electron within the pair would be attracted by the nucleus and
the positively charged one would be repelled. Accordingly, an electron, in the atom,
at sufficiently large distances from the nucleus would then see a smaller charge on
the nucleus than an electron nearby (such as one in an s-state). This leads to the
concept of vacuum polarization, and also to the concept of charge renormalization
as a result of the partial charge screening mentioned above.

The Dirac equation is Lorentz covariant, that is, it has the same form in every
inertial frame with its variables being simply relabeled reflecting the variables used
in the new inertial frame. It predicted, approximately, the gyromagnetic ratio g D
2 of the electron, the fine-structure of the atom, and eventually anti-matter was
discovered such as antiprotons.8 It was thus tremendously successful. Apparently,9

Dirac himself remarked in one of his talks that his equation was more intelligent
than its author.10

Thus the synthesis of relativity and quantum physics, led to the discovery of the
antiparticle. The Dirac equation which was initially considered to describe a single
particle necessarily led to a multi-particle theory, and a single particle description
in the relativistic regime turned out to be not complete. A formalism which would
naturally describe creation and annihilation of particles and take into account this

3Dirac [50, 51] assumed that the particle is the proton as the positron was not discovered yet at that
time. Apart from the large mass difference between the proton and the electron, there were other
inconsistencies with such an assumption.
4Weisskopf [242].
5Anderson [5, 6].
6Weisskopf [242].
7The presence of the nucleus is to conserve energy and momentum.
8Chamberlain et al. [30].
9Weisskopf [242].
10For a systematic treatment of the intricacies of Dirac’s theory and of the quantum description of
relativistic particles, in general, see Manoukian [151], Chapter 16.
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multi-particle aspect became necessary. The so-called “hole” theory although it gave
insight into the nature of fundamental processes involving quantum particles in the
relativistic regime, and concepts such as vacuum polarization, turned out to be also
not complete. For example, in the “hole” theory, the number of electrons minus the
number of positrons, created is conserved by the simultaneous creation of a “hole”
for every electron ejected from the Dirac Sea. In nature, there are processes, where
just an electron or just a positron is created while conserving charge of course.
Examples of such processes are ˇ� decay: n ! p C e� C Q�e, muon decay:
�� ! e� C Q�e C ��, and ˇC decay: p ! n C eC C �e, for a bound proton
in a nucleus for the latter process. Finally, Dirac’s argument of a sea of negatively
charged bosons did not work with the Klein-Gordon equation because of the very
nature of the Bose statistics of the particles. A new description to meet all of the
above challenges including the creation and annihilation of particles, mentioned
above, was necessary.

After the conceptual framework of quantum mechanics was developed, Born,
Heisenberg, and Jordan in 1926 [26], applied quantum mechanical methods to
the electromagnetic field, now, giving rise to a system with an infinite degrees of
freedom, and described as a set of independent harmonic oscillators of various
frequencies. Then Dirac in 1927 [46], prior to the development of his relativistic spin
1/2 equation, also extended quantum mechanical methods to the electromagnetic
field now with the latter field treated as an operator, and provided a theoretical
description of how photons emerge in the quantization of the electromagnetic field.
This paper is considered to mark the birthdate of “Quantum Electrodynamics”, a
name coined by Dirac himself, and provided a prototype for the introduction of
field operators for other particles with spin, such as for spin 1/2, where in the latter
case commutators in the theory are replaced by anti-commutators [125, 126] for the
fermion field.

The first comprehensive treatment of a general quantum field theory, involving
Lagrangians, as in modern treatments, was given by Heisenberg and Pauli in 1929,
1930 [116, 117], where canonical quantization procedures were applied directly
to the fields themselves. A classic review of the state of affairs of quantum
electrodynamics in 1932 [68] was given by Fermi. The problem of negative
energy solutions was resolved and its equivalence to the Dirac “hole” theory was
demonstrated by Fock in 1933 [83], and Furry and Oppenheimer in 1934 [90], where
the (Dirac) field operator and its adjoint were expanded in terms of appropriate
creation and annihilation operators for the electron and positron, thus providing
a unified description for the particle and its antiparticle. The method had a direct
generalization to bosons. The old “hole” theory became unnecessary and obsolete.11

The problem of negative energy solutions was also resolved for spin 0 bosons by

11As a young post-doctoral fellow, I remember attending Schwinger’s lecture tracing the Develop-
ment of Quantum Electrodynamics in “The Physicist’s Conception of Nature” [202], making the
statement, regarding the “hole” theory, that it is now best regarded as an historical curiosity, and
forgotten.
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similar methods by Pauli and Weisskopf in 1934 [170]. The fields thus introduced
from these endeavors have become operators for creation and annihilation of
particles and antiparticles, rather than probability amplitudes.12

The explanation that interactions are generated by the exchange of quanta was
clear in the classic work of Bethe and Fermi in 1932 [18]. For example, charged
particles, as sources of the electromagnetic field, influence other charged particles
via these electromagnetic fields. Fields as operators of creation and destruction of
particles, and the association of particles with forces is a natural consequence of field
theory. The same idea was used by Yukawa in 1935 [249], to infer that a massive
scalar particle is exchanged in describing the strong interaction (as understood in
those days), with the particle necessarily being massive to account for the short
range nature of the strong force unlike the electromagnetic one which is involved
with the massless photon describing an interaction of infinite range. The mass �
of the particle may be estimated from the expression � � „=Rc, obtained formally
from the uncertainty principle, where R denotes the size of the proton, i.e., R D
1 fm D 10�13 cm. In natural units, i.e., for „ D 1, c D 1, 1 fm � 1=.200MeV/.
This gives � � 200MeV. Such a particle (the pion) was subsequently discovered
by the C. F. Powell group in 1947 [136].

As early as 1930s, infinities appeared in explicit computations in quantum
electrodynamics by Oppenheimer [168], working within an atom, by Waller
[233, 234], and by Weisskopf [239]. The nature of these divergences, arising
in these computations, came from integrations that one had to carry out over
energies of photons exchanged in describing the interaction of the combined
system of electrons and the electromagnetic field to arbitrary high-energies. By
formally restricting the energies of photons exchanged, as just described, to be
less than, say, �, Weisskopf, in his calculations, has shown [239, 240], within the
full quantum electrodynamics, that the divergences encountered in the self-energy
acquired by the electron from its interaction with the electromagnetic field is of
the logarithmic13 type � ln.�=mc2/, improving the preliminary calculations done
earlier, particularly, by Waller, mentioned above. That such divergences, referred
to as “ultraviolet divergence”,14 are encountered in quantum field theory should

12It is important to note, however, that the matrix elements of these field operators between particle
states and the vacuum naturally lead to amplitudes of particles creation by the fields and to the
concept of wavefunction renormalization (see Sect. 4.1) independently of any perturbation theories.
13The corresponding expression occurs with higher powers of the logarithm for higher orders in
the fine-structure constant e2=4�„c.
14That is, divergences arising from the high-energy behavior of a theory. Another type of
divergence, of different nature occurring in the low energy region, referred to as the “infrared
catastrophe”, was encountered in the evaluation of the probability that a photon be emitted in a
collision of a charged particle. In computations of the scattering of charged particles, due to the
zero mass nature of photons, their simultaneous emissions in arbitrary, actually infinite, in number
must necessary be taken into account for a complete treatment. By doing so finite expressions for
the probabilities in question were obtained [22].
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Fig. 1.1 Processes leading to an electron self-energy correction, and vacuum polarization, respec-
tively

be of no surprise as one is assuming that our theories are valid up to infinite
energies!15

The 2S1=2, 2P1=2 states of the Hydrogen atom are degenerate in Dirac’s theory.
In 1947 [134], Lamb and Retherford, however, were able to measure the energy
difference between these states, referred to as the “Lamb Shift”, using then
newly developed microwave methods with great accuracy. Bethe [17] then made
a successful attempt to compute this energy difference by setting an upper limit for
the energy of photon exchanged in describing the electromagnetic interaction of the
order of the rest energy of the electron mc2, above which relativistic effects take
place, relying on the assumption that the electron in the atom is non-relativistic,
and, in the process, took into consideration of the mass shift16 of the electron.
He obtained a shift of the order of 1000 megacycles which was in pretty good
agreement with the Lamb-Retherford experiment.

Very accurate computations were then made, within the full relativistic quantum
electrodynamics, and positron theory. Notably, Schwinger17 in 1948 [192], com-
puted the magnetic moment of the electron modifying the gyromagnetic ratio, g D 2
in the Dirac theory, to 2 .1C ˛=2�/, to lowest order in the fine-structure constant.
The computation of the Lamb-Shift was also carried out in a precise manner by Kroll
and Lamb [133], and, for example, by French and Weisskopf [85], and Fukuda et al.
[88, 89].

State of affairs changed quite a bit. It became clear that an electron is accompa-
nied by an electromagnetic field which in turn tends to alter the nature of the electron
that one was initially aiming to describe. The electron e�, being a charged particle,
produces an electromagnetic field .�/. This field, in turn, interacts back with the
electron as shown below in Fig. 1.1a. Similarly, the electromagnetic field (� ) may
lead to the creation of an electron-positron pair eC e�, which in turn annihilate
each other re-producing an electromagnetic field, a process referred to as vacuum-
polarization, shown in part (b). Because of these processes, the parameters initially

15See also the discussion in Sect. 5.19.
16See also the important contribution to this by Kramers [130]. This reference also includes
contributions of his earlier work.
17See also Appendix B of Schwinger [193].
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e−e−
p pE = p 2 +m2,E= p2 +m2,

Fig. 1.2 As a result of the self-energy correction in Fig. 1.1a, where an electron emits and re-
absorbs a photon, the mass parameter m0, one initially starts with, does not represent the physical
mass of the electron determined in the lab. Here this is emphasized by the energy dependence on
the physical mass m of an electron in a scattering process. The dashed lines represent additional
particles participating in the process

appearing in the theory, such as mass, say, m0, vis-à-vis Fig. 1.1a, and the electron
charge, say, e0, vis-à-vis Fig. 1.1b, that were associated with the electron one starts
with, are not the parameters actually measured in the lab. For example, the energy
of a scattered electron of momentum p, in a collision process, turned up to be not

equal to
q

p2 Cm2
0 but rather to

p
p2 C m2, self-consistently,18 with m identified

with the actual, i.e., tabulated, mass of the electron, and m ¤ m0, with a scattering
process shown in Fig. 1.2, where the dashed lines represent other particles (such as
�; e�; eC), where the total charge as well as the total energy and momentum are
conserved in the scattering process.

Similarly, the potential energy between two widely separated electrons, by a
distance r, turned up to be not e20=4�r but rather e2=4�r, with e2 ¤ e20, where
e is identified with the charge, i.e., the tabulated charge, of the electron. As we
will see later, the physical parameters are related to the initial ones by scaling
factors, referred to as mass and charge renormalization constants, respectively. An
electron parametrized by the couple .m0; e0/, is referred to as a bare electron
as it corresponds to measurements of its properties by going down to “zero”
distances all the way into the “core” of the electron – a process that is unattainable
experimentally. On the other hand, the physical parameters .m; e/, correspond to
measurements made on the electron from sufficiently large distances.

One thus, in turn, may generate parameters, corresponding to a wide spectrum of
scales running from the very small to the very large. Here one already notices that in
quantum field theory, one encounters so-called effective parameters which are func-
tions of different scales (or energies). Functions of these effective parameters turn
out to satisfy invariance properties under scale transformations, thus introducing a
concept referred to as the renormalization group. Clearly, due to the screening effect
via vacuum polarization of eCe� pairs creation, as discussed earlier, the magnitude
of the physical charge is smaller than the magnitude of the bare charge.

18An arbitrary number of photons of vanishingly small energies are understood to be attached
to the external electron lines, as discussed in Footnote 14 when dealing with infrared divergence
problems.
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A process was, in turn, then carried out, referred to as “renormalization”,
to eliminate the initial parameters in the theory in favor of physically observed
ones. This procedure related the theory at very small distances to the theory at
sufficiently large distances at which particles emerge on their way to detectors as
it happens in actual experiments. All the difficulties associated with the ultraviolet
divergences in quantum electrodynamics were isolated in renormalization constants,
such as the ones discussed above, and one was then able to eliminate them in
carrying out physical applications giving rise to completely finite results. This
basic idea of the renormalization procedure was clearly spelled out in the work
of Schwinger, Feynman, and Tomonaga.19 The renormalization group,20 mentioned
above, describes the connection of renormalization to scale transformations, and
relates, in general, the underlying physics at different energy scales.

In classic papers, Dyson [59, 60] has shown not only the equivalence of the
Schwinger, Feynman, and Tomonaga approaches,21 and the finiteness of the so-
called renormalized quantum electrodynamics, but also developed a formalism for
computations that may be readily applied to other interacting quantum field theories.
Theories that are consistently finite when all the different parameters appearing
initially in the theory are eliminated in favor of the physically observed ones, which
are finite in number, are said to be renormalizable. Dyson’s work, had set up:

renormalizability as a condition for generating field theory interactions.

In units of „ D 1, c D 1, ŒMass� D ŒLength��1. Roughly speaking, in a
renormalizable theory, no coupling constants can have the dimensions of negative
powers of mass. (Because of dimensional reasons, we note, in particular, that one
cannot have too many derivatives of the fields, describing interactions, as every
derivative necessitates involving a coupling of dimensionality reduced by one in
units of mass.)

The photon as the agent for transmitting the interaction between charged parti-
cles, is described by a vector – the vector potential. In quantum electrodynamics,
as a theory of the interaction of photons and electrons, for example, the photon is
coupled locally to the electromagnetic current. The latter is also a vector, and the
interaction is described by their scalar product (in Minkowski space) ensuring the
relativistic invariance of the underlying theory. To lowest order in the charge e of
the electron e, this coupling may be represented by the diagram Fig. 1.3a. On the
other hand, for a spin 0 charged boson ', say, one encounters two such diagrams,
each shown to lowest order in the charge e in Fig. 1.3b, where we note that in the
second diagram in the latter part, two photons emerge locally from the same point.

19This is well described in their Nobel lectures: Schwinger [201], Feynman [75], Tomonaga [225],
as well as in the collection of papers in Schwinger [198, 201].
20Stueckelberg and Peterman [209], Gell-Mann and Low [93], Bogoliubov and Shirkov [25],
Ovsyannikov [169], Callan [28, 29], Symanzik [213–215], Weinberg [237], and ’t Hooft [218].
21The best sources for these approaches are their Nobel Lectures: Schwinger [201], Feynman [75],
Tomonaga [225], as well as Schwinger [198].
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Fig. 1.3 Local couplings for photon emission by an electron, and by a spin 0 charged particle
described by the field ', respectively

Quantum Electrodynamics, was not only the theory of interest. There was also
the weak interaction. The preliminary theory of weak interaction dates back to Fermi
[69, 70]. Based on weak processes such as ˇ� decay: n ! p C e� C Q�e,
he postulated that the weak interactions may be described by local four-point
interactions involving a universal coupling parameter GF. The four particles of the
process just mentioned, interact locally at a point with a zero range interaction.
The Fermi theory was in good agreement in predicting the energy distribution of
the electron. For dimensional reasons, however, the dimensions of the coupling
constant GF involved in the theory has the dimensions of ŒMass��2, giving rise to a
non-renormalizable theory.22 In analogy to quantum electrodynamics, the situation
with this type of interaction may be somehow improved by introducing, in the
process, a vector Boson23 W� which mediates an interaction24 between the two
pairs (so-called currents), .n; p/ and .e�; Q�e/, with both necessarily described by
entities carrying (Lorentz) vector indices, to ensure the invariance of the underlying
description. Moreover, in units of „ D 1, c D 1, a dimensionless coupling g is
introduced. The Fermi interaction and its modification are shown, respectively in
parts Fig. 1.4a, b.

In order that the process in diagram given in part Fig. 1.4b, be consistent with
the “short-range” nature of the Fermi interaction, described by the diagram on the
left, the vector particle W� must not only be massive but its mass, MW must be
quite large. This is because the propagator of a massive vector particle of mass
MW , which mediates an interaction between two spacetime points x and x 0, as we
will discuss below, behaves like ���ı.4/.x � x 0/=M 2

W for a large mass, signifying

22It is interesting to point out as one goes to higher and higher orders in the Fermi coupling
constant GF, the divergences increase (Sect. 6.14) without any bound and the theory becomes
uncontrollable.
23 A quantum relativistic treatment of a problem, implies that a theory involving the W� particle,
must also include its antiparticle WC, having the same mass as of W�.
24Such a suggestion was made, e.g., by Klein [129].
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Fig. 1.4 (a) The old Fermi theory with a coupling GF is replaced by one in (b) where the
interaction is mediated by a vector boson with a dimensionless coupling g

necessarily a vanishingly small range of the interaction.25 Upon comparison of both
diagrams, one may then infer that

GF � g2

M 2
W

: (1.1)

Evidently, the Fourier transform of the propagator in the energy-momentum descrip-
tion, at energies much less than MW is, due to the ı.4/.x�x 0/ function given above,
simply ���=M 2

W , and (1.1) may be obtained from a low-energy limit.
With some minimal effort, the reader will understand better the above two limits

and some of the difficulties encountered with a massive vector boson, in general, if,
at this stage, we write down explicitly its propagator between two spacetime points
x, x 0 in describing an interaction carried by the exchange of such a particle which
is denoted by26:

4��
C .x � x 0/ D

Z
.dk/

.2�/4
ei k�.x��x 0�/4��

C .k/; .dk/ D dk0dk1dk1dk3; (1.2)

4��
C .k/ D

1

.k2 CM 2
W � i 0/

�
��� C k�k�

M 2
W

�
; (1.3)

25Here ��� is the Minkowski metric.
26This expression will be derived in Sect. 4.7. For a so-called virtual particle k2 D k2 � .k0/2 ¤
�M 2

W . The �i 0 in the denominator in (1.3) just specifies the boundary condition on how the k0

integration is to be carried out. These things will be discussed in detail later on and are not needed
here.
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where k0 is its energy, and k D .k1; k2; k3/ its momentum. Formally for M 2
W !

1, 4��
C .k/! ���=M 2

W , leading from (1.2) to

4��
C .x � x 0/ ! ���

M 2
W

Z
.dk/

.2�/4
eik�.x��x 0� / D ���

M 2
W

ı4.x � x 0/; (1.4)

signalling, in a limiting sense, a short range interaction for a heavy-mass particle.
On the other hand, for jk� j � MW for each component, one has

4��
C .k/ �

���

M 2
W

; (1.5)

in the energy-momentum description.
Although the introduction of the intermediate boson W improves somehow the

divergence problem, it is still problematic. The reason is not difficult to understand.
In the energy-momentum description, the propagator of a massive vector particle,
as given in (1.3), has the following behavior at high energies and momenta

4��
C .k/ !

1

k2
k�k�

M 2
W

; (1.6)

providing no damping in such a limit. Moreover, as one goes to higher orders in
perturbation theory the number of integration variables, over energy and momenta
arising in the theory, increase, and the divergences in turn increase without bound
and the theory becomes uncontrollable.27 On the other hand, an inherited property
of quantum electrodynamics is gauge symmetry due to the masslessness of the
photon. In the present context of ultraviolet divergences, the photon propagator has
a very welcome vanishing property at high energies. This gauge symmetry as well
as the related massless aspect of the photon, which are key ingredients in the self
consistency of quantum electrodynamics, turned out to provide a guiding principle
in developing the so-called electroweak theory.

In 1956 [138], an important observation was made by Lee and Yang that parity
P is violated in the weak interactions. Here we recall that, given a process, its parity
transformed (mirror) version, is obtained by reversing the directions of the space
variables.28 This has led Gershtein and Zel’dovich [95], Feynman and Gell-Mann
[77], Sudarshan and Marshak [210], and Sakurai [178], to express the currents

27The damping provided by the propagators of a massless vector particle, a spin 1/2 particle, and
a spin 0 particle, for example, in the ultraviolet region vanish like 1/energy2, 1/energy, 1/energy2,
respectively.
28 It was later observed that the product of charge conjugation, where a particle is replaced by its
antiparticle, and parity transformation “CP”, is also not conserved in a decay mode of K mesons
at a small level [38, 39, 82]. As the product “CPT”, of charge conjugation, parity transformation,
and time reversal “T”, is believed to be conserved, the violation of time reversal also follows. For
a test of such a violation see CPLEAR/Collaboration [36].
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constructed out of the pairs of fields: .n; p/, .e�; Q�e/; : : : in the Fermi theory to
reflect, in particular, this property dictated by nature. The various currents were
eventually expressed and conveniently parametrized in such a way that the theory
was described by the universal coupling parameter GF. The construction of such
fundamental currents together with idea of intermediate vector bosons exchanges to
describe the weak interaction led eventually to its modern version.

Quantum Electrodynamics may be considered to arise from local gauge invari-
ance in which the electron field is subjected to a local phase transformation ei#.x/.
The underlying group of transformations is denoted by U.1/ involving simply
the identity as the single generator of transformations with which the photon is
associated as the single gauge field. In 1954 [247], Yang and Mills, and Shaw
in 1955 [203], generalized the just mentioned abelian gauge group of phase
transformations, encountered in quantum electrodynamics, to a non-abelian29 gauge
theory, described by the group SU.2/,30 and turned out to be a key ingredient in the
development of the modern theory of weak interactions. This necessarily required
the introduction, in addition to the charged bosons W˙, a neutral one. What
distinguishes a non-abelian gauge theory from an abelian one, is that in the former
theory, direct interactions occur between gauge fields, carrying specific quantum
numbers, unlike in the latter, as the gauge field – the photon – being uncharged.

As early as 1956, Schwinger believed that the weak and electromagnetic
interactions should be combined into a gauge theory [97, 159, 199]. Here we
may pose to note that both in electrodynamics and in the modified Fermi theory,
interactions are mediated by vector particles. They are both described by universal
dimensionless coupling constants e, and by g (see (1.1)) in the intermediate vector
boson description, respectively. In a unified description of electromagnetism and the
weak interaction, one expects these couplings to be comparable, i.e.,

g2 � e2 D 4� ˛; where ˛ � 1

137
; GF � 1:166�10�5=.GeV/2: (1.7)

in units „ D 1; c D 1. From (1.1), we may then estimate the mass of the W bosons
to be

MW �
s
4�˛

GF
� 90 GeV=c2; (1.8)

29Non-abelian refers to the fact that the generators do not commute. In contrast a U.1/ gauge
theory, such as quantum electrodynamics, is an abelian one.
30SU.2/ consists of 2 � 2 unitary matrices of determinant one. (The letter S in the group stands
for the special property of determinant one.) It involves three generators, with which are associated
three gauge fields. This will be studied in detail in Sect. 6.1.
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re-inserting the constant c for convenience, in good agreement with the observed
mass. We may also estimate the range of the weak interaction to be

RW � „c
MWc2

� 2:2 � 10�16cm: (1.9)

Glashow, a former graduate student of Schwinger, eventually realized [96]31 the
important fact that the larger group SU.2/ � U.1/, is needed to include also
electrodynamics within the context of a Yang-Mills-Shaw theory. A major problem
remained: the local gauge symmetry required that the gauge fields associated with
the group must, a priori, be massless in the initial formulation of the theory.

The problem of the masslessness of the vector bosons was solved by Weinberg
[236, 238] and Salam [182, 183],32 by making use of a process,33 referred to as
spontaneous symmetry breaking, where a scalar field interacting with the vector
bosons, whose expectation value in the vacuum state is non zero, leads to the
generation of masses to them.34 This is referred to as the Higgs35 mechanism, in
which the group SU.2/ � U.1/ is spontaneously broken to the group U.1/ with
the latter associated with the photon, and, in the process, the other bosons, called
W˙;Z 0, acquiring masses, thanks to the Higgs boson, and renormalizability may
be achieved. The latter particle has been also called the “God Particle”.36 The mere
existence of a neutral vector boson Z 0 implies the existence of a weak interaction
component in the theory without a charge transfer, the so-called neutral currents. A
typical process involving the neutral Z 0 boson exchange is in Q��Ce� ! Q��Ce�
shown in Fig. 1.5 not involving the muon itself. Neutral currents37 have been
observed,38 and all the vector bosons have been observed39 as well. It turned out
that the theory with spontaneous symmetry did not spoil the renormalizability of

31See also Salam and Ward [189].
32See also Salam and Ward [187–189] and Salam [181].
33Some key papers showing how spontaneous symmetry breaking using spin 0 field may generate
masses for vector bosons are: Englert and Brout [63], Englert et al. [64], Guralnik et al. [110], and
Kibble [127].
34Apparently the Legendary Victor Weisskopf was not impressed by this way of generating masses.
In his CERN publication [241], on page 7, 11th line from below, he says that this is an awkward
way to explain masses and that he believes that Nature should be more inventive, but experiments
may prove him wrong.
35Higgs [119–121]. This work followed earlier work of Schwinger [200], where he shows, by
the exactly solvable quantum electrodynamics in two dimensions, that gauge invariance does not
prevent the gauge field to acquire mass dynamically, as well as of the subsequent work of Anderson
[7] in condensed matter physics.
36This name was given by Lederman and Teresi [137].
37Neutral current couplings also appear in Bludman’s [23] pioneering work on an SU.2/ gauge
theory of weak interactions but did not include electromagnetic interactions.
38Hasert et al. [112, 113] and Benvenuti et al. [15].
39See, e.g., C. Rubbia’s Nobel Lecture [176].
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Fig. 1.5 A process involving
the exchange of the neutral
vector boson Z 0

e−e−

Z 0

ν̃μν̃μ

the resulting theory with massive vector bosons. Proofs of renormalizability were
given by ’t Hooft [216, 217].40 It seems that Sydney Coleman used to say that
’t Hooft’s proof has turned the Weinberg-Salam frog into an enchanted prince.41

The “Electroweak Theory” turned up to be quite a successful theory.42

Another interaction which was also developed in the “image” of quantum
electrodynamics was quantum chromodynamics, as a theory of strong interactions
based, however, on the non-abelian gauge symmetry group SU.3/. Here one notes
that a typical way to probe the internal structure of the proton is through electron-
proton scattering. The composite nature of the proton, as having an underlying
structure, becomes evident when one compares the differential cross sections for
elastic electron-proton scattering with the proton described as having a finite
extension to the one described as a point-like particle. With a one photon exchange
description, the form factors in the differential cross section are seen to vanish
rapidly for large momentum transfer (squared) Q2 of the photon imparted to the
proton. As Q2 is increased further one reaches the so-called resonance region,43

beyond which, one moves into a deep inelastic region, where experimentally the
reaction changes “character”, and the corresponding structure functions of the
differential cross section have approximate scaling properties (Sect. 6.9), instead of
the vanishing properties encountered with elastic form factors, the process of which
is depicted in Fig. 1.6. Such properties indicate the presence of approximately free
point-like structures within the proton referred as partons, which consist of quarks,
gluons together with those emitted44 from their scattering reactions. This led to the
development of the so-called parton model,45 as a first approximation, in which
these point-like particles within the proton are free and the virtual photon interacts

40See also ’t Hooft and Veltman [221], Lee and Zinn-Justin [139–142], and Becchi et al. [13].
41See Salam [183], p. 529.
42The basic idea of the renormalizability of the theory rests on the fact that renormalizability may
be established for the theory with completely massless vector bosons, as in QED, one may then
invoke gauge symmetry to infer that the theory is also renormalizable for massive vector bosons
via spontaneous symmetry breaking.
43A typical resonance is C, of mass 1.232 GeV, consisting of a proton p and a �0 meson.
44See, e.g., Fig. 6.7c.
45Feynman [73, 74] and Bjorken and Pachos [21].
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}
nucleon

lepton

lepton

Anything

Fig. 1.6 In the process, “Anything” denotes anything that may be created in the process consistent
with the underlying conservation laws. The wavy line denotes a neutral particle (� , Z 0,. . . ) of large
momentum transfer

(a) (b)

Fig. 1.7 (a) If interactions between quarks may be represented, as an analogy, by people holding
hands, then pulling one person would drag everybody else along. In the parton model, the situation
is represented as in part (b) rather than in part (a)

with each of its charged constituents independently,46 instead of interacting with the
proton as a whole.

The non-abelian gauge symmetry group SU.3/, is needed to accommodate
quarks and gluons, involving eight generators with which the gluons are associated.
Here, in particular, a quantum number referred to as “color” (three of them)47 is
assigned to the quarks. One of the many reasons for this is that the spin 3/2 particle
CC, which is described in terms of three identical quarks (the so-called u quarks)
as a low lying state with no orbital angular momentum between the quarks, behaves
as a symmetric state under the exchange of two of its quarks and would violate the
Spin & Statistics connection without this additional quantum number. The color
degrees of freedom are not observed in the hadronic states themselves and the latter
behave as scalars, that is they are color singlets, under SU.3/ transformations.
As the group SU.3/ involves “color” transformations within each quark flavor, it
may be denoted by SU.3/color or just by SU.3/C. The gluons also carry “color”
and direct gluon-gluon interactions then necessarily occur, unlike the situation with

46For an analogy to this, see part (b) of Fig. 1.7b.
47Greenberg [104], Han and Nambu [111], Nambu [163], Greenberg and Zwanziger [105], Gell-
Mann [92], and Fritzsch and Gell-Mann [87].
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photons in quantum electrodynamics since photons do not carry a charge. These
gluon-gluon interactions turn out to have an anti-screening effect on a source field
which dominate over the screening effect of quark/antiquark interactions leading to
the interesting fact that the effective coupling of quark interactions becomes smaller
at high-energies, and eventually vanish48 – a phenomenon referred to as asymptotic
freedom. This has far reaching consequences as it allows one to develop perturbation
theory at high energies, in the effective coupling, and carry out various applications
which were not possible before the development of the theory, and is consistent
with deep-inelastic experiments of leptons with nucleons, with the latter described
by point-like objects which, at high energies, scatter almost like free particles,49 as
mentioned above, the process of which is shown Fig. 1.6.

A particular experiment which indirectly supports the idea of quarks having
spin 1/2 stems from e�eC annihilation to a quark-antiquark, in the center of mass
system. One would naïvely expect that the quark and the antiquark will emerge from
the process moving in opposite directions50 on their ways to detectors and will be
observed. This is not, however, what happens and instead two narrow jets of hadrons
emerge, moving back-yo-back, with the net jet-axis angular distribution consistent
with a spin 1/ 2 character of the quark/antiquark parents sources.

The electroweak theory and quantum chromodynamics together constitute the so-
called standard model51 with underlying gauge symmetry group SU.3/ � SU.2/ �
U.1/.

The effective coupling in quantum chromodynamics is expected to become larger
at large distances increasing with no bound providing a strong confining force
of quarks and gluons restricting them within hadrons – a phenomenon that is
sometimes referred to as infrared slavery.52

From our discussion of quantum electrodynamics, we recall that the effective
coupling of a U.1/ gauge theory, as an abelian gauge theory, increases with
energies. On the other hand, the asymptotic free nature of non-abelian gauge
theories, imply that the effective couplings associated with the groups SU.3/,
SU.2/, decrease with energy. Due to the smallness of the U.1/ coupling in
comparison to the other two at the present low energies, this gives one the hope that
at sufficient high energies these three couplings merge together and the underlying
theory would be described by one single force. A theory which attempts to unify
the electroweak and the strong interactions is called a grand unified theory. Such
theories have been developed53 and the couplings seem to run to merge roughly

48This was discovered by Gross and Wilczek [106] and Politzer [172]. See also Vanyashin and
Terentyev [229] for preliminary work on vector bosons.
49Chromodynamics means Colordynamics, and the name Quantum Chromodynamics is attributed
to Gell-Mann, see, e.g., Marciano and Pagels [158].
50See, e.g., Fig. 6.7d, and Sect. 6.10.3
51The name “Standard Model” is usually attributed to Weinberg.
52Unfortunately, no complete proof of this is available.
53See, e.g., Georgi et al. [94] for pioneering work. See also Beringer et al. [16] and Olive et al.
[167].
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somewhere around 1015–1016 GeV. This, in turn, gives the hope of the development
of a more fundamental theory in which gravitation, which should be effective at
energy scale of the order of Planck energy scale

p„c=GN ' 1019 GeV,54 or
even at a lower energy scale, where GN denotes Newton’s gravitational constant,
is unified with the electroweak and strong forces. If the standard model is the
low energy of such a fundamental theory, then the basic question arises as to
what amounts for the enormous difference between the energy scale of such
a fundamental theory (�1016–1019 GeV) and the defining energy scale of the
standard model (�300 GeV)? This has been termed as the hierarchy problem which
will be discussed again later. We will see in Vol. II, in particular, that the above
mentioned couplings seem to be unified at a higher energy scale of the order
1016 GeV, when supersymmetry is taken into account, getting it closer to the energy
scale at which gravitation may play an important role.

One may generalize the symmetry group of the standard model, and consider
transformations which include transformations between quarks and leptons, leading
to a larger group such as, for example, to the SU.5/ group, or a larger group, which
include SU.3/ � SU.2/ � U.1/. The advantage of having one larger group is
that one would have only one coupling parameter and the standard model would
be recovered by spontaneous symmetry breaking at lower energies. This opens the
way to the realization of processes in which baryon number is not conserved, with a
baryon, for example, decaying into leptons and bosons. The experimental55 bound
on lifetime of proton decay seems to be >1033 years and is much larger than the
age of the universe which is about 13.8 billion years.56 Such a rare event even if it
occurs once will give some support of such grand unified theories.

We have covered quite a large territory and before continuing this presentation,
we pose for a moment, at this appropriate stage, to discuss three aspects of
importance that are generally expected in order to carry out reliable computations
in perturbative quantum field theory. These are:

1. The development of a powerful and simple formalism for doing this.
2. To show how the renormalization process is to be carried, and establish that the

resulting expressions are finite to any order of perturbation theory.
3. The physical interpretation will be completed if through the process of renor-

malization, the initial experimentally unattainable parameters in the theory are
eliminated in favor of physically observed ones, which are finite in number, and
are generally determined experimentally as discussed earlier in a self consistent
manner.

54The Planck energy (mass) will be introduced in detail later.
55See, e.g., Olive et al. [167].
56A decay of the proton may have a disastrous effect in the stability of matter over anti-matter itself
in the universe. See, however, the discussion given later on the dominance of matter in the visible
universe.
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Perturbatively renormalizable theories are distinguished from the non-renormaliz-
able ones by involving only a finite number of parameters in the theory that are
determined experimentally.

We discuss each of these in turn.

1. A powerful formalism is the Path Integral one, pioneered by Feynman,57 defining
a generating functional for so-called Green functions from which physical
amplitudes may be extracted, and has the general structure

R
d�Œ¦� eiAction. Here

d�Œ¦� defines a measure of integration over classical fields as the counterparts
of the quantum fields of the theory.58 “Action” denotes the classical action. In
the simplest case, the measure d�Œ¦� takes the form ˘x d�.x/ as a product of
all spacetime points. In gauge theories, due to constraints, the determination of
the measure of integrations requires special techniques59 and takes on a much
more complicated expression and was successfully carried out by Faddeev and
Popov in 1967.60 The path integral expression as it stands, involves continual
integrations to be carried out.

An equally powerful and quite an elegant formalism is due to Schwinger,61

referred to as the Action Principle or the Quantum Dynamical Principle. For
quantum field theory computations, the latter gives the variation of the so-called
vacuum-to-vacuum transition amplitude (a generating functional): •h 0C j0�i as
any of the parameters of the theory are made to vary. The latter is then expressed
as a differential operator acting on a simple generating functional expressed
in closed form. This formalism involves only functional differentiations to be
carried out, no functional integrations are necessary, and hence is relatively
easier to apply than the path integral. We will learn later, for example, that the
path integral may be simply obtained from the quantum dynamical principle
by a functional Fourier transform thus involving functional integrals. Again the
application of the quantum dynamical principle to the quantization of gauge
theories with underlying constraints require special techniques and it was carried
out in Manoukian [150].

All the fundamental interactions in nature are presently described theoretically
by gauge theories, involving constraints, and the two approaches of their
quantization discussed above will be both treated in this book for pedagogical
reasons and are developed 62

57See Feynman and Hibbs [78] for the standard pedagogical treatment. See also Feynman [75].
58We use a general notation �.x/ for the fields as functions of spacetime variable and suppress all
indices that they may carry to simplify the notation. These fields may include so-called Grassmann
fields.
59Feynman [72], DeWitt [43, 44], and Faddeev and Popov [66].
60Op. cit.
61Schwinger [194–197, 201].
62There is also the canonical formalism, see, e.g., Mohapatra [161, 162] and Utiyama and
Sakamoto [228].
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via the
Path Integral [66],

or via the
Action Principle (Quantum Dynamical Principle) [150].

2. Historically, Abdus Salam, was the first “architect” of a general theory of renor-
malization. In 1951, he carried out a systematic study63 of renormalization [180],
introduced and sketched a subtraction scheme in a general form. Surprisingly,
this classic paper was not carefully reexamined until much later. This was
eventually done in 1976 [147] by Manoukian, and inspired by Salam’s work,
a subtraction scheme was developed and brought to a mathematically consistent
form, and the finiteness of the subtracted, i.e., renormalized, theory was proved
by the author64 to any order of perturbation theory.65 by using, in the process, a
power counting theorem established by Weinberg [235] for integrals of a special
class of functions, thus completing the Dyson-Salam program. The subtraction
was carried out directly in momentum space and no cut-offs were introduced.

Shortly after the appearance of Salam’s work, two other “architects” of a
general theory of renormalization theory, Bogoliubov and Parasiuk, in a classic
paper in 1957 [24], also developed a subtraction scheme. In 1966 [118], Hepp
gave a complete proof of the finiteness of the Bogoliubov-Parasiuk to any order
of perturbation theory, by using in the intermediate stages ultraviolet cut-offs,
and in 1969 [251], Zimmermann formulated their scheme in momentum space,
without cut-offs, and provided a complete proof of finiteness as well, thus
completing the Bogoliubov-Parasiuk program. This scheme is popularly known
as the BPHZ scheme.

The equivalence of the Bogoliubov-Parasiuk scheme, in the Zimmermann
form, and our scheme was then proved by Manoukian,66 after some systematic
cancelations in the subtractions. This equivalence theorem67 unifies the two
monumental approaches of renormalization.68

63Salam [180], see also Salam [179].
64Manoukian [149].
65For a pedagogical treatment of all these studies, see my book “Renormalization” [149]. This also
includes references to several of my earlier papers on the subject as well as many results related to
renormalization theory.
66See Manoukian [149] op. cit.
67This result has been also referred to as “Manoukian’s Equivalence Principle”, Zeidler [250],
p. 972. See also Streater [207].
68I was pleased to see that our equivalence theorem has been also considered, by completely
different methods, by Figueroa and Gracia-Bondia [80]. For other earlier, and recent, but different,
approaches to renormalization theory, see, e.g., Epstein and Glaser [65], Kreimer [131, 132],
Connes and Kreimer [34, 35], and Figueroa and Gracia-Bondia [79, 81]. See also Landsman [135]
and Aschenbrenner [11].
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DS :
(program)

Dyson Salam Author
(completion)

BP : Bogoliubov - Parasiuk Hepp - Zimmermann
(program)

Weinberg

(completion)

Author
(equivalence)

Fig. 1.8 Developments of the general theory of renormalization from the DS and BP programs.
The intricacies of this layout also appear in Zeidler [250], pp. 972–975. Regarding the author’s
work shown in the above layout and of his completion of the renormalization program stemming
out of Salam’s, Streater [207] writes: “It is the end of a long chapter in the history of physics”

The development of the general theory of renormalization from the DS and
BP programs may be then summarized as given in Fig. 1.869.

3. The physical interpretation of the theory is completed by showing that the
subtractions of renormalization are implemented by counterterms in the theory
which have the same structures as the original terms in the theory (i.e., in
the Lagrangian density),70 thus establishing the self-consistency involved in the
elimination of the initial parameters in the theory in favor of physically observed
ones. As mentioned above, for a theory to be renormalizable, i.e., involving
only a finite number of parameters determined, in general, experimentally, the
counterterms of the theory must be finite in number as well.

All particles due to their energy content experience the gravitational attraction.
Einstein’s theory of gravitation, also referred to as general relativity (GR), is
described by a second rank tensor with the energy-momentum tensor of matter
as its source from which the energy density of matter may be defined. It may
not be described just by a scalar or just by a vector field as they are inconsistent
with experiment. It is easy to see that due to the fact that masses have the same
signs (positive) a theory based on a vector field alone will lead to a repulsive
rather an attractive gravitational force.71 GR theory predictions are well supported
experimentally in our solar system.

The key observation, referred to as the principle of equivalence, of Einstein is that
at any given point in space and any given time, one may consider a frame in which
gravity is wiped out at the point in question. For example, in simple Newtonian
gravitational physics, a test particle placed at a given point inside a freely falling
elevator on its way to the Earth, remains at rest, inside the elevator, for a very
short time, depending on the accuracy being sought, and, depending on its position
relative to the center of the Earth, eventually moves, in general, from its original
position in a given instant. Einstein’s principle of equivalence applies only locally

69The layout in Fig. 1.8 is based on Manoukian [149], and it also appears in Zeidler [250], p. 974.
See also Streater [207] and Figueroa and Gracia-Bondia [80].
70For a detailed study of this see, Manoukian ([148]; Appendix, p. 183 in [149]).
71 Attempts have been made to include such fields as well for generalizations of Einstein’s theory,
but we will not go into it here.
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at a given point and at a given time. At the point in question, in the particular
frame in consideration, gravity is wiped out and special relativity survives. The
reconciliation between special relativity and Newton’s theory of gravitation, then
readily leads to GR, where gravity is accounted for by the curvature of spacetime
and its departure from the flat spacetime of special relativity one has started out
with upon application of the principle of equivalence. By doing this, one is able to
enmesh non-gravitational laws with gravity via this principle.

Quantum gravity (QG) is needed in early cosmology, black hole physics, and,
in general, to deal with singularities that arise in a classical treatment. QG must
also address the problem of the background geometry. A common interest in
fundamental physics is to provide a unified description of nature which is applicable
from microscopic to cosmological distances. A fundamental constant of unit of
length that is expected to be relevant to this end is the Planck length as well as the
Planck mass. Out of the fundamental constants of quantum physics „, of relativity
c, and the Newtonian gravitational one GN, we may define a unit of length and
mass, the Planck length and Planck mass, respectively, relevant in quantum gravity,
through the following

`P D
r„GN

c3
' 1:616 � 10�33 cm; mP D

s
„c
GN
' 1:221 � 1019 GeV=c2:

(1.10)

In units „ D 1, c D 1, dimensions of physical quantities may be then expressed
in powers of mass (ŒEnergy�D ŒMass�; ŒLength� D ŒMass��1 D ŒTime�; : : :), and, as
gravitation has a universal coupling to all forms of energy, one may hope that it
may be implemented within a unified theory of the four fundamental interactions,
with the Planck mass providing a universal mass scale. Unfortunately, it is difficult
experimentally to investigate the quantum properties of spacetime as one would be
working at very small distances.

GR predicts the existence of Black holes. Here it is worth recalling of the
detection (“Observational waves from a binary black hole merger”, Phys. Rev. Lett.
116, 061102 (1–16) (2016)) by B. P. Abbott et al. of gravitational waves from the
merger of two black holes 1.3 billion light-years from the Earth. Recall that a black
hole (BH) is a region of space into which matter has collapsed and out of which
light may not escape. It partitions space into an inner region which is bounded by
a surface, referred to as the event horizon which acts as a one way surface for light
going in but not coming out. The sun’s radius is much larger than the critical radius
of a BH which is about 2.5 km to be a black hole for the sun. We will see that
for a spherically symmetric BH of mass M, the radius of the horizon is given by
RBH D 2GNM=c2.72

72This may be roughly inferred from Newton’s theory of gravitation from which the escape speed
of a particle in the gravitational field of a spherically symmetric massive body of mass M, at a
distance r, is obtained from the inequality v2=2 � GNM=r < 0, and by formally replacing v by
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One may argue that the Planck length may set a lower limit spatial cut-off. The
following formal and rough estimates are interesting. Suppose that by means of a
high energetic particle of energy E, hE2i � hp2ic2, with hp2i very large, one is
interested in measuring a field within an interval of size ı around a given point in
space. Such form of energy acts as an effective gravitational mass M � phE2i=c4

which, in turn distorts space around it. The radius of the event horizon of such a
gravitation mass M is given by rBH D 2GNM=c2. Clearly we must have ı > rBH,
otherwise the region of size ı that we wanted to locate the point in question will be
hidden beyond a BH horizon, and localization fails. Also:
hp2i � ˝�

p � hpi�2˛ � „2=4ı2. Hence M � „=2cı,

ı >
2GNM

c2
� „GN

c3ı
;

which gives ı > rBH D
p„GN=c3 D `P.

Interesting investigations by Hawking73 have shown that a BH is not really a
black body, it is a thermodynamic object, it radiates and has a temperature associated
with it.74 In Chapter 7 in Vol. II , we will see, considering a spherically symmetric
BH, that its temperature is given by75

TBH D „c3
8 � GNM kB

: (1.11)

where kB is the Boltzmann constant. Note that a very massive black hole is cold.
Recall that entropy S represents a measure of the amount of disorder with

information encoded in it, and invoking the thermodynamic interpretation of a BH,
we may write

@S

@.Mc2/
D 1

T
; (1.12)

which upon integration with boundary condition that for M ! 0, S ! 0, gives the
celebrated result

SBH D c3kB

4„GN
A D kB

A

4 `2P
; A D 4�

�
2GNM

c2

�2
(1.13)

the ultimate speed c to obtain for the critical radius Rcritical D 2GNM=c2 such that for r < Rcritical

a particle cannot escape.
73Hawking [114, 115].
74Particle emission from a BH is formally explained through virtual pairs of particles created near
the horizon with one particle falling into the BH while the other becoming free outside the horizon.
75A pedestrian approach in determining the temperature is the following. By comparing the
expression of energy expressed in terms of the wavelength of radiation �: E D h c=�, with
the expression E D kBT, gives T D hc=kB�. On dimensional grounds � � 2GNM=c2, which
gives T � �„c3=GNM kB. This is the expression given for the temperature up to a proportionality
constant.
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referred to as the Bekenstein-Hawking Entropy formula76 of a BH. This relation
relates quantum gravity to information theory. This result is expected to hold in any
consistent formulation of quantum gravity, and shows that a BH has entropy unlike
what would naïvely expect from a BH with the horizon as a one way classical surface
through which information is lost to an external observer. The proportionality of the
entropy to the area rather than to the volume of a BH horizon should be noted. It
also encompasses Hawking’s theorem of increase of the area with time with increase
of entropy. We will discuss the Bekenstein-Hawking Entropy formula below in
conjunction with loop quantum gravity and string theory.

Now we turn back to the geometrical description of gravitation given earlier, and
introduce a gravitational field to account for the departure of the curved spacetime
metric from that of the Minkowski one to make contact with the approaches of
conventional field theories, dealing now with a field permeating an interaction
between all dynamical fields. The quantum particle associated with the gravitational
field, the so-called graviton, emerges by considering the small fluctuation of the
metric, associated with curved spacetime of GR about the Minkowski metric, as
the limit of the full metric, where the gravitational field becomes weaker and the
particle becomes identified. This allows us to determine the graviton propagator
in the same way one obtains, for example, the photon propagator in QED, and
eventually carry out a perturbation theory as a first attempt to develop a quantum
theory of gravitation.

In units of „ D 1; c D 1, Newtons gravitational constant GN , in 4 dimensional
spacetime, has the dimenionality ŒGN � D ŒMass ��2, which is a dead give away of
the non-renormalizabilty of a quantum theory of gravitation based on GR. The non-
renormalizability of the theory is easier to understand by noting that the divergences,
in general, tend to increase as we go to higher orders in the gravitational coupling
constant without a bound, implying the need of an infinite of parameters need to
be fixed experimentally77 and hence is not of any practical value. Some theories
which are generalizations of GR, involving higher order derivatives, turn out to be
renormalizable78 but violate, in a perturbative setting, the very sacred principle of
positivity condition of quantum theory. Unfortunately, such a theory involves ghosts
in a perturbative treatment, due to the rapid damping of the propagator at high
energies faster than 1=energy2, and gives rise, in turn, to negative probabilities.79

One is led to believe that Einstein’s general relativity is a low energy effective
theory as the low energy limit of a more complicated theory, and as such it provides
a reliable description of gravitation at low energies. Moreover, one may argue that
the non-renormalizability of a quantum theory based on GR is due to the fact that
one is trying to use it at energies which are far beyond its range of validity. As a

76Bekenstein [14].
77Manoukian [149] and Anselmi [9].
78Stelle [204].
79Unitarity (positivity) of such theories in a non-perturbative setting has been elaborated upon by
Tomboulis [224].
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matter of fact the derivatives occurring in the action, in a momentum description via
Fourier transforms, may be considered to be small at sufficiently low energies. In
view of applications in the low energy regime, one then tries to separate low energy
effects from high energy ones even if the theory has unfavorable ultraviolet behavior
such as in quantum gravity.80 Applications of such an approach have been carried
out in the literature as just cited, and, for example, the modification of Newton’s
gravitational potential at long distances has been determined to have the structure

U.r/ D �GNm1m2

r

h
1C ˛GN.m1 C m2/

c2 r
C ˇGN„

c3 r2

i
; (1.14)

for the interaction of two spin 0 particles of masses m1 and m2. Here ˛; ˇ; are
dimensionless constants,81 and the third term represents a quantum correction being
proportional to „.

Conventional quantum field theory is usually formulated in a fixed, i.e., in, a
priori, given background geometry such as the Minkowski one. This is unlike the
formalism of “Loop Quantum Gravity” (LQG) also called “Quantum Field Theory
of Geometry”. The situation that we will encounter in this approach is of a quantum
field theory in three dimensional space, which is a non-perturbative background
independent formulation of quantum gravity. The latter means that no specific
assumption is made about the underlying geometric structure and, interestingly
enough, the latter rather emerges from the theory. Here by setting up an eigenvalue
equation of, say, an area operator, in a quantum setting, one will encounter a
granular structure of three-dimensional space yielding a discrete spectrum for area
measurements with the smallest possible having a non-zero value given to be of the
order of the Planck length squared: „GN=c3 � 10�66 cm2.82 The emergence of
space in terms of “quanta of geometry”, providing a granular structure of space, is
a major and beautiful prediction of the theory. The 3 dimensional space is generated
by a so-called time slicing procedure of spacetime carried out by Arnowitt, Deser
and Misner.83 The basic field variables in the theory is a gravitational “electric” field,
which determines the geometry of such a 3 dimensional space and naturally emerges
from the definition of the area of a surface in such a space, and its canonical conju-
gate variable is referred to as the connection. By imposing equal time commutation
relation of these two canonically conjugate field variables, the quantum version of
the theory arises, and the fundamental problem of the quantization of geometry
follows. The basic idea goes to Penrose [171] whose interest was to construct the
concept of space from combining angular momenta. It is also interesting that the
proportionality of entropy and the surface area of the BH horizon in the Bekenstein-
Hawking Entropy formula has been derived in loop quantum gravity.84

80Donoghue [55–57] and Bjerrum-Bohr et al. [19], Bjerrum-Bohr et al. [20].
81Recent recorded values are ˛ D 3, and ˇ D 41=10� Bjerrum-Bohr et al. [19].
82Rovelli and Smolin [174], Ashtekar and Lewandoski [12], and Rovelli and Vidotto [175].
83Arnowitt et al. [10].
84See, e.g., Meissner [160] and Ansari [8].
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Supersymmetry is now over 40 years old. Supersymmetry provides a symmetry
between fermions and bosons. Borrowing a statement made by Dirac, speaking
of theories, in general, it is a theory with mathematical beauty.85 The name
“Supersymmetry” for this symmetry is attributed to Salam and Strathdee as it
seemed to have first appeared in the title of one of their papers [184]. An abbreviated
name for it is SUSY, as some refer to this symmetry. The latter is not only
beautiful but is also full of thought-provoking surprises. To every degree of freedom
associated with a particle in the standard model, in a supersymmetric version,
there corresponds a degree of freedom associated with a partner, referred to as a
sparticle, with the same mass and with opposite statistics to the particle.86 Unlike
other discoveries, supersymmetry was not, a priori, invented under pressure set by
experiments and was a highly intellectual achievement. Theoretically, however, it
quickly turned out to be quite important in further developments of quantum field
theory. For one thing, in a supersymmetric extention of the standard model, the
electroweak and strong effective couplings do merge at energies about 1016 GeV,
signalling the possibility that these interactions are different manifestations of a
single force in support of a grand unified theory of the fundamental interactions.
Also gravitational effects are expected to be important at the quantum level at the
Planck energy of the order 1019 GeV, or possibly at even lower energies, giving the
hope of having a unified theory of the four fundamental interactions at high energies.
Supersymmetry leads to the unification of coupling constants. SUSY also tends to
“soften” divergences of a theory in the sense that divergent contributions originating
from fermions tend to cancel those divergent contributions originating from bosons
due to their different statistics.

One of the important roles that supersymmetry may play in a supersymmetric
extension of the standard problem is in the so-called hierarchy problem. The basic
idea of a facet of this is the following. A fundamental energy scale arises in the
standard model from the vacuum expectation value of the Higgs boson which sets
the scale for the masses in the theory, such as for the masses of the vector bosons.
It turns out that the masses imparted to the initially massless vector bosons, for
example, via the Higgs mechanism, using the parameters in the Lagrangian density
are in very good agreement with experimental results. On the other hand, if one
introduces a large energy scale cut off � � 1015 GeV, of the order of a grand unified
energy scale, or the Planck energy scale 1019 GeV, at which gravitation may play a
significant role, to compute the shift of the squared-mass of the Higgs boson, as a
scalar particle, due to the dynamics (referred to as radiative corrections), it turns out
to be quadratic87 in �, which is quite large for such a large cut-off. This requires
that the bare mass squared of the Higgs boson to be correspondingly large to cancel

85Here we recall the well known statement of Dirac, that a theory with mathematical beauty is
more likely to be correct than an ugly one that fits some experimental data [53].
86This is such that the total number of fermion degrees of freedom is equal to the total bosonic
ones.
87See, e.g., Veltman [230].
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such a quadratic dependence on � and obtain a physical mass of the Higgs boson
of the order of magnitude of the minute energy88 .� 10 2 GeV/, in comparison,
characterizing the standard model, and this seems quite unnatural for the cancelation
of such huge quantities.89 This unnatural cancelation of enormously large numbers
has been termed a facet of the hierarchy problem. Supersymmetric theories have,
in general, the tendency to cancel out such quadratic divergences, up to possibly of
divergences of logarithmic type which are tolerable, thus protecting a scalar particle
from acquiring such a large bare mass. So supersymmetry may have an important
role to play here.

SUSY relates fermions to bosons, and vice versa, and hence a generator is
required which is of fermionic type, that is, it carries a spinor index as in the
Dirac field90 to carry out a transformation fermion $ boson. Since the spins of
fermions and bosons are different, this necessarily means that such a generator does
not commute with the angular (spin) momentum operator as supersymmetry unites
particles of the same mass and different spins into multiplets. Bosons and fermions
have, in general, different masses, which means that SUSY is to be spontaneously
broken if such a symmetry is to have anything to do with nature. If supersymmetry
breaking sets at such an energy scale as 1 TeV or so, then some of the lowest mass
superpartners may be hopefully discovered.91

Of particular interest was also the development of the superspace concept as
an extension of the Minkowski one, where one includes an additional degree of
freedom usually denoted by92 � D .�a/ to the space coordinates .t; x/, which
turns out to be quite convenient in defining and setting up SUSY invariant integrals
such as the action of a dynamical system.93 To describe dynamics this, in turn,
necessitates to introduce superfields of different types94 as functions of these
variables.

The extension of the algebra of the Poincaré group to a superalgebra was first
carried out by Gol’fand and Likhtman in [100] to construct supersymmetric field
theory models, and with the implementation of spontaneous symmetry breaking

88Aad et al. [1] and Chatrchyan et al. [31].
89As mentioned earlier, the question, in turn, arises as to what amounts for the enormous difference
between the energy scale of grand unification and the energy scale that characterizes the standard
model.
90This point is of importance because an earlier attempt by Coleman and Mandula [33] to enlarge
the Poincaré group did not work. They considered only so-called “Bose” generators (that is tensors,
and not spinors) in their analysis.
91Perhaps an optimist would argue that since antiparticles corresponding to given particles were
discovered, the discovery of superpartners associated with given particles would not be out of
the question either. The underlying symmetries involved in these two cases are, however, quite of
different nature.
92This is called a Grassmann variable.
93See Salam and Strathdee [185, 186].
94Details on superfields will be given in Vol. II. The explicit expression of the pure vector superfield
has been recently obtained in Manoukian [155].
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by Volkov and Akulov in [232]. In [243], Wess and Zumino also,95 independently,
developed supersymmetric models in 4 dimensions, and this work has led to an
avalanche of papers on the subject and to a rapid development of the theory. In
particular, supersymmetric extensions of the standard model were developed,96

supergravity, as a supersymmetric extension of gravitational theory, was also
developed.97 Unfortunately, things do not seem to be much better for supergravity,
as far as its renormalizability is concerned.98

Now we come to String Theory. String Theory is a theory which attempts to
provide a unified description of all the fundamental interactions in Nature and,
in particular, give rise to a consistent theory of quantum gravity. A string is a
fundamental one dimensional extended object, and if it has to do with quantum
gravity, it is, say, of the order of the Plank length `P D

p
GN „=c3 � 10�33 cm,

involving the three fundamental constants: Newton’s gravitational constant GN, the
quantum unit of action „, and the speed of light c. Since no experiments can probe
distances of the order of the Planck length, such a string in present day experiments
is considered to be point-like. When a string, whether closed or open, moves in
spacetime, it sweeps out a two dimensional surface referred to as a worldsheet.
String Theory is a quantum field theory which operates on such a two dimensional
worldsheet. This, as we will see, has remarkable consequences in spacetime itself,
albeit in higher dimensions. Particles are identified as vibrational modes of strings,
and a single vibrating string may describe several particles depending on its
vibrational modes. Strings describing bosonic particles are referred to as a bosonic
strings, while those involving fermionic ones as well are referred to as superstrings.
The remarkable thing is that the particles needed to describe the dynamics of
elementary particles arise naturally in the mass spectra of oscillating strings, and
are not, a priori, assumed to exist or put in by hand in the underlying theories.
The dimensionality of the spacetime in which the strings live are predicted by the
underlying theory as well and are necessarily of higher dimensions than four for
consistency with Lorentz invariance of spacetime at the quantum level, consisting
of a dimensionality of 26 for the bosonic strings and a spacetime dimensionality of
10 for the superstrings. The extra dimensions are expected to curl up into a space
that is too small to be detectable with present available energies. For example the
surface of a hollow extended cylinder with circular base is two dimensional, with
one dimension along the cylinder, and another one encountered as one moves on
its circumference. If the radius of the base of the cylinder is relatively small, the
cylinder will appear as one dimensional when viewed from a large distance (low
energies). Accordingly, the extra dimensions in string theory are expected to be

95These basic papers, together with other key ones, are conveniently collected in Ferrara [71].
96See Fayet [67], Dimopoulos and Georgi [45].
97See Freedman, van Nieuwenhuizen and Ferrara [84], Deser and Zumino [42].
98See, e.g., Deser et al. [41], Deser [40], Stelle [205, 206], and Howe and Stelle [124].
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small and methods, referred to as compactifications,99 have been developed to deal
with them thus ensuring that the “observable” dimensionality of spacetime is four.

Superstring theories involve fermions and are thus relevant to the real world,
but there are, however, several superstring theories. Also unlike the loop quantum
gravity, which provides a background independent formulation of spacetime with
the latter emerging from the theory itself, as discussed earlier, the strings in
string theories are assumed to move in a pre-determined spacetime, and thus
spacetime plays a passive role in them.100 A theory, referred to as M-Theory,101

based on non-perturbative methods, is envisaged to unify the existing superstrings
theories into one single theory, instead of several ones, and be related to them by
various limiting and/or transformation rules, referred to as dualities,102 and is of 11
dimensional spacetime. M-Theory is believed to be approximated by 11 dimensional
supergravity,103 and the spacetime structure is envisaged to emerge from the theory
as well. Bosonic strings involve tachyonic states. This is unlike the situation in
superstring theories in which supersymmetry plays a key role in their definitions,
and a process referred to as a GSO projection method, ensuring the equality of the
degrees of freedom of bosonic and fermionic states, as required by supersymmetry,
in turn implies that no tachyonic states appear in the theory.104

String theory was accidentally discovered through work carried out by Veneziano
in 1968 when he attempted to write down consistent explicit expressions of meson-
meson scattering amplitudes in strong interactions physics.105 This was, of course
before the discovery of QCD. With the many excited states of mesons and baryons
(resonances), it was observed experimentally that there exists a linear relationship
between spin J and the mass M squared of a resonance given by a linear relationship

with a universal slope W dJ

dM 2
D ˛ 0; ˛ 0 Š 1GeV�2; (1.15)

defining so-called Regge trajectories. Veneziano postulated and wrote down a
scattering amplitude of meson – meson scattering: p1.m1/ C p2.m2/ ! p3.m3/ C
p4.m4/, which, in particular, showed that the amplitude involves the exchange of an
infinite number of particles (corresponding to arbitrary integer spins). This is unlike
the situation in conventional field theory as QED or the standard model, where they
involve the exchange of a finite number of particles to any given order. String theory
shares this property of the Veneziano amplitude. As a matter of fact the Veneziano

99An idea used by Kaluza and Klein in their attempt to unify gravity and electromagnetism in a 5
dimensional generalization of general relativity.
100See also Horowitz [122].
101Townsend [227], Witten [244], and Duff [58].
102Duff [58] and Schwarz [191].
103Cremmer et al. [37].
104The GSO method of projection was proposed in Gliozzi et al. [98, 99].
105Veneziano [231], see also Lovelace and Squires [145] and Di Vecchia [54].
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amplitude may be derived from string theory. Nambu [164], Nielsen [166] and
Susskind [211] have shown that the famous expression of the amplitude postulated
by Veneziano may be interpreted as a quantum theory of scattering of relativistic
strings. Although, a priori, this was assumed to describe a strong interaction process,
Yoneya [248], and Scherk and Schwarz [190] made use of the fact that string theory
(involving closed strings) contains a spin 2 massless state, which was identified
with the elusive graviton, in addition to a whole spectrum of other excitation modes,
to propose that string theory provides a framework for the unification of general
relativity and quantum mechanics. As early as 1971, Neveu and Schwarz [165],
and Raymond [173] included fermions in their analyses, which eventually led to
the notion of superstrings, and during a short period of time, several types106 of
superstrings were introduced in the literature.

Due to the assumed non-zero extensions of strings, it is hoped that they provide,
naturally, an ultraviolet cut-off � � .`P/

�1 and render all processes involving
strings ultraviolet finite. This is unlike conventional quantum field theory inter-
actions where all the quantum fields are multiplied locally at the same spacetime
points, like multiplying distributions at the same point, and are, in this sense, quite
troublesome.

In string theory, two strings with given vibrational modes, identifying two
given particles, may combine forming one string with an arbitrary number of
different vibrational modes associated with a myriad number of particles, defining
generalized 3-vertices. The combined string may again split into two strings with
associated vibrational modes, identified appropriately with two more particles,
describing a scattering process of 2 particles ! 2 particles. Thus interactions
involve string worldsheets of various topologies arise.

Other extended objects are also encountered in string theory called branes which,
in general, are of higher spatial dimensions than one, with the string defined as a one
dimensional brane. For example, an open string, satisfying a particular boundary
condition, referred to as a Dirichlet boundary condition, specifies a hypersurface,
referred to as a D brane, on which the end points of the open string reside. On the
other hand, the graviton corresponds to a vibrational mode of closed strings, and
since the latter, having no ends, may not be restricted to a brane and moves away
from it. This might explain the weakness of the gravitational field, if our universe
is a 3 dimensional brane embedded in a higher dimensional spacetime. Massless
particles encountered in string theory are really the physically relevant ones because
of the large unit of mass .`P/

�1 � 1019 GeV in attributing masses to the spectrum
of massive particles.107 As we will see a massless particle may acquire mass if,

106Green and Schwarz [102, 103] and Gross et al. [107, 108].
107A systematic analysis of all the massless field excitations encountered in both bosonic and
superstrings are investigated in Manoukian [152–154], in their respective higher dimensional
spacetimes, and include the determinations of the degrees of freedom associated with them. Note
that in four dimensional spacetime the number of degrees of freedom (spin states) of non-scalar
fields is always two. This is not true in higher dimensional spacetime. For example, the degrees of
freedom associated with a massless vector particle is 8 in 10 dimensions, while for the graviton is
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for example, the end points of the open string are attached to two different branes,
instead of a single brane.

We will learn the remarkable facts that Einstein’s general relativity as well as
Yang-Mills field theory may be obtained from string theory.

Interesting high energy scattering amplitudes have been computed in string
theory over the years,108 which provide a hint that space may not be probed
beyond the Planck length – a result shared with “loop quantum gravity”. It is worth
mentioning that the Bekenstein-Hawking Entropy relation has been also derived in
string theory.109

In recent years much work has been done, which is worth mentioning here
but rather briefly, indicating that general relationships may exist between field
theories and string theories, and consequently considerable attention was given
trying to make such a statement more and more precise, with the ultimate hope
of providing, in turn, a consistent and acceptable quantum theory of gravitation
relevant to our world but much work still remains to be done. In particular,
much study has been made to study the equivalence relation between certain four
dimensional gauge theories and superstring theories, referred to as the AdS/CFT
correspondence, where AdS space stands for anti-de-Sitter space, and CFT stands
for conformal field theory.110 Such correspondences have been also referred to
as Gauge/Gravity duality, as well as Maldacena duality, a duality which was
first proposed by Maldacena.111 Without going into technical details, the aim
of this work is to show, for example, the existence of an equivalence relation
between a certain supersymmetric SU.N/ Yang-Mills field theory in 4 dimensional
Minkowski spacetime, and a superstring theory in a 5 dimensional AdS space,
having one additional dimension to the Minkowski one, and with the 5 dimensions
of the AdS space supplemented by 5 extra dimensions defined by a five-sphere,
making up the 10 dimensions of superstrings mentioned earlier. The interest in this
work is that it deals with a connection between string theory (involving gravity) and

35, as shown later in Chapter 3 of Vol. II. In 4 dimensions, their degrees of freedom are, of course,
two.
108See, e.g., Amati et al. [3, 4] and ’t Hooft [219].
109See, e.g., Strominger and Fava [208] and Horowitz et al. [123].
110AdS space and CFT symmetry may be introduced as follows. AdS space, in D dimensions,
may be defined in terms of coordinates z D .z 0; z 1; : : : ; z D�1; z D/ satisfying a quadratic equationPD�1

kD1 .z
k/2�.z 0/2�.z D/2 D �R2, for a given constant R 2, embedded in a .DC1/ dimensional

space with interval squared ds 2 D PD�1
jD1 dzj 2 � dz 0 2 � dzD 2. On the other hand a D�Sphere

is defined in terms of coordinates y1; : : : ; y DC1 satisfying a quadratic equation
PD C1

jD1 .y
j/2 D �2

for a given constant �. The conformal group, as applied in 4 dimensional Minkowski spacetime, is
defined by a scale transformation x�! � x�, and a so-called special (conformal) transformation

x 0�

x 0 2
D x �

x 2
C a �;

for a constant 4-vector a �, in addition to the Poincaré ones.
111Maldacena [146]. See also Witten [245], Gubser et al. [109], and Aharoni et al. [2].
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supersymmetric gauge theories. This brings us into contact with the holographic
principle, in analogy to holography in capturing 3 dimensional images of objects
on a 2 dimensional (holographic) plate,112 showing that an equivalence relation
exists between the 3 and the 2 dimensional set-ups. The 4 dimensional quantum
field theory is like a hologram capturing information about the higher dimensional
quantum gravity theory. In this case the SU(N) theory provides a holographic
description of gravitational field. This is in analogy to black hole entropy with
its encoded information being proportional to the area rather than to the volume
of the region enclosed by the horizon. Perhaps holography is a basic property of
string theory and one expects that much has to be done before developing a realistic
quantum gravity, and in turn provide a background independent formulation for
string theory. The holographic principle was first proposed by ’t Hooft.113

We close this chapter by commenting on two symmetries which seem to be
observed in Nature, that is of the CPT symmetry and of the Spin & Statistics
connection and of their relevance to our own existence. We will see how these
symmetries arise from quantum field theory in Sect. 4.10 and Sect. 4.5, respectively.

CPT taken in any order, seems to be an observed symmetry in Nature, where C
stands for charge conjugation with which particles are replaced by their antiparticles
and vice versa, P represents space reflection, while T denotes time reversal.

Local Lorentz invariant quantum field theories preserve (Sect. 4.10) the CPT
symmetry. Experimentally, symmetry violations are well known to occur when
one restricts to one or to the product of two transformations in CPT in dealing
with some fundamental processes. For example the violation of parity was already
established in 1957114 as well as the violation of charge symmetry.115 Later, in
1964 CP violation, and hence also of T, was observed in neutral Kaon decays.116

The CP transformation and C, provide the fundamental relations between matter
and anti-matter. The question then arises as to why we observe, apart in accelerator
experiments, only one form (matter) than the other form in the visible universe –
a key criterion for our own existence. If an equal amount of matter and anti-matter
was produced at some stage then why, our visible universe is matter dominated.
Sakharov in 1967 [177] proposed that a key reason for this is CP violation. In
more details to explain this asymmetry, he proposed that (1) baryon number is not
conserved. (This is supported by recent grand unified field theories,) (2) CP and C
are violated, (3) the universe has gone through a phase of extremely rapid expansion
to avoid the pairing of matter and anti-matter. The violation of such symmetries, at

112Recall that the two dimensional holographic plate which registers the interference of reflected
light off an object and an unperturbed Laser beam stores information of the shape of the three
dimensional object. As one shines a Laser beam on it an image of the three dimensional object
emerges.
113’t Hooft [220], see also especially Thorn [223], as well as the analysis with further interpretations
by Susskind [212]. See also Bousso [27].
114Wu et al. [246], Garwin et al. [91], and Friedman and Telegdi [86].
115Garwin et al. [91].
116Christenson et al. [32].
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the microscopic level, and their consequences on a macroscopic scale is certainly
intriguing.

Clearly, the “Spin & Statistics” connection, of which the Pauli exclusion
principle is a special case applicable to spin 1/ 2 particles, is important not only
in physics but in all of the sciences, and is relevant to our own existence. For
one thing, the periodic table of elements in chemistry is based on the exclusion
principle. In simplest terms, the upshot of this is that half-odd-integer spin fields
are quantized by anti-commutators, while integer spins fields are quantized by
commutators. This result is of utmost significance for our existence. As a matter of
fact the Pauli exclusion principle is not only sufficient for the stability of matter117

in our world but it is also necessary.118 In the problem of stability of neutral
matter, with a finite number of electrons per atom, but involving several nuclei, and
correspondingly a large number of electrons N, the stability of matter, based on the
Pauli exclusion principle, or instability of so-called “bosonic matter”, in which the
exclusion principle is abolished, rests rather on the following. For “bosonic matter”,
the ground state energy EN � �N˛ , with ˛ > 1,119 where .N C N/ denotes
the number of the negatively charged particles plus an equal number of positively
charged particles. This behavior for “bosonic matter” is unlike that of matter, with
the exclusion principle, for which ˛ D 1.120 A power law behavior with ˛ > 1

implies instability as the formation of a single system consisting of .2N C 2N/
particles is favored over two separate systems brought together each consisting
of .N C N/ particles, and the energy released upon collapse of the two systems
into one, being proportional to Œ.2N/˛ � 2.N/˛�, will be overwhelmingly large
for realistic large N, e.g., N � 1023. Dyson [61], has estimated that without the
exclusion principle, the assembly of two macroscopic objects would release energy
comparable to that of an atomic bomb, and such “matter” in bulk would collapse
into a condensed high-density phase and our world will cease to exist.121 Ordinary
matter, due to the exclusion principle, occupies a very large volume. This point
was emphasized by Ehrenfest in a discussion with Pauli in 1931122 on the occasion
of the Lorentz medal to this effect: “We take a piece of metal, or a stone. When
we think about it, we are astonished that this quantity of matter should occupy so
large a volume”. He went on by stating that the exclusion principle is the reason:
“Answer: only the Pauli principle, no two electrons in the same state”. In this regard,

117For a pedagogical treatment of the problem of “stability of matter” and related intricacies, see
Manoukian [151], Chapter 14.
118Lieb and Thirring [144] and Thirring [222].
119Dyson [61], Lieb [143], and Manoukian and Muthaporn [156].
120Lieb and Thirring [144] and Thirring [222].
121In the Preface of Tomonaga’s book on spin [226], one reads: “The existence of spin, and the
statistics associated with it, is the most subtle and ingenious design of Nature – without it the
whole universe would collapse”.
122See Ehrenfest [62].
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a rigorous treatment123 shows that the extension of matter radially grows not any
slower than N1=3 for large N. No wonder why matter occupies so large a volume.
The importance of the “Spin & Statistics” connection and the role it plays in our
world cannot be overemphasized. Needless to say, no quantum field theory treatment
is complete without the CPT Theorem and the Spin & Statistics Connection.

The present volume deals with the foundations of quantum field theory and with
the intricacies of abelian and non-abelian gauge theories. Volume II deals with
quantum gravity, supersymmetry, and string theory.
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