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Consumers today expect extremely realistic imagery generated in real time for 
interactive applications such as computer games, virtual prototyping, and sci-
entific visualisation. However, the increasing demands for fidelity coupled with 
rapid advances in hardware architecture pose a challenge: how do you find opti-
mal, sustainable solutions to accommodate both speed of rendering and quality? 
Real-Time Rendering: Computer Graphics with Control Engineering presents a 
novel framework for solving the perennial challenge of resource allocation and the 
trade-off between quality and speed in interactive computer graphics rendering. 

Conventional approaches, mainly based on heuristics and algorithms, are largely 
application specific, and offer fluctuating performance, particularly as applica-
tions become more complex. The solution proposed by the authors draws on 
powerful concepts from control engineering to address these shortcomings. Ex-
panding the horizon of real-time rendering techniques, this book:

• Explains how control systems work with real-time computer graphics 
• Proposes a data-driven modelling approach that more accurately represents 

the system behaviour of the rendering process
• Develops a control system strategy for linear and non-linear models using 

proportional, integral, derivative (PID) and fuzzy control techniques
• Uses real-world data from rendering applications in proof-of-concept experi-

ments
• Compares the proposed solution to existing techniques
• Provides practical details on implementation, including references to tools 

and source code

This pioneering work takes a major step forward by applying control theory in the 
context of a computer graphics system. Promoting cross-disciplinary research, 
it offers guidance for anyone who wants to develop more advanced solutions for 
real-time computer graphics rendering.

Computer Science and Engineering
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Preface
Interactive computer graphics is a mature field of study. In fewer than 15 years, 
the improvements in speed and realism of computer-generated graphics from even 
consumer grade computers have been phenomenal. There is no lack of evidence to 
substantiate this statement as we observe the ever-increasing number of cutting-edge 
interactive applications such as computer games, virtual prototyping, and visualisa-
tion software. However, real-time computer graphics applications are often oriented 
toward meeting a particular set of goals without consideration of some form of global 
optimisation. A number of years ago, through real-life encounters in large-scale 
 system implementation, the idea of convoluting computer graphics rendering with 
control theory was born.

From a larger perspective, computer graphics rendering is akin to any other pro-
cess that runs on a computer. In recent years, researchers found that the increasing 
inclination to employ control engineering techniques in computer-related processes 
is not so much a matter of computer control (using a computer as a controller) as 
controlling the processes within a computer. Examples of such implementation are 
discussed in the vast array of research literature about server performance, network 
traffic control, and adaptive software with defined quality-of-service metrics. We 
believe the trend is no coincidence; it represents wide acceptance of benefits from 
integrating control theory with computer processes.

Our motivation for this work is simple. First, we want to provide a fundamen-
tal analysis of interactive computer graphics rendering from a systems perspec-
tive. Second, we want to establish a framework that facilitates interactive computer 
graphics rendering in an environment providing optimal utilisation of resources and 
good responses to rendering load changes. These goals can be accomplished through 
the adoption of digital signal processing, system identification and control engineer-
ing techniques that we believe will draw the interest of researchers and practitioners 
in the computer graphics-related fields.

While classical control demands meticulous evaluation of numerous criteria, the 
goals of our control system described in this book focus on tracking user-defined 
performance objectives while providing good transient responses so that changes 
arising from rendering load control will not lead to abrupt changes in visual displays. 
Furthermore, unlike physical systems utilised in aircraft, motors, and chemical mix-
ers in which a failure of a control mechanism may lead to a catastrophic outcome, 
interactive computer graphics rendering is generally fail-safe.

In the course of this work, the computer graphics rendering process is modelled 
from a data-driven and black-box approach. We have shown the possibilities of vari-
ous input–output configurations in a system model setting. While some may argue that 
the rendering process is too complex to be modelled by a few variables, we hope the 
reader can appreciate that the modelling technique in this book is in fact not congruent 
to this argument, but rather a systematic approach because the derived system models 
are substantiated with measured data.



xxii Preface

Finally, it is our sincere hope that this work can further stimulate cross-disciplinary 
research and provide a premise upon which more interesting modelling and control 
techniques for real-time computer graphics may be developed.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, 
please contact

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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Summary
The value of interactive computer graphics is underscored by myriad applications in 
many domains of our lives. Consumers today can expect extremely realistic imag-
ery generated in real time from commodity graphics hardware in applications such 
as  virtual prototyping, computer games, and scientific visualisation. However, the 
constant and increasing demands for fidelity coupled with hardware architecture 
advancement pose many challenges to researchers and developers as they endeavour to 
find optimal solutions to accommodate speed of rendering and quality in interactive 
applications with real-time computer graphics rendering. The qualitative requirement 
of such applications, apart from the subjective perception of the displayed imagery, 
is the response time of a system based on user input. In other words, the requirement 
translates to the speed at which the machine can produce a rendered image according 
to the input provided by the person in the loop of the feedback system.

Earlier research attempted to address the frame latency problem by providing 
mathematical models of the rendering process. The models were often primitive 
because they were derived from coarse approximation or depended on specific 
application level data structures. Most approaches are based on heuristics and algo-
rithms and are largely dependent on a specific type of application corresponding to 
the research. A major shortcoming of such techniques lies in the non-guarantee of 
performance.

From a systems perspective, the rendering process is modelled from an open-loop 
approach underpinned by constraints and estimations of the constituents of the render-
ing process. As a result, the output often fluctuates within an acceptable performance 
range. Furthermore, many such techniques rely on specific hardware or they may 
require unfriendly implementation on current computer graphics hardware. The advent 
of more sophisticated consumer graphics hardware in recent years has caused the 
rendering pipeline to be used in a far more complex manner to achieve ultra-realistic 
visual effects. Consequently, adapting models into applications becomes progres-
sively more challenging as hardware and software technologies continue to evolve.

We can see from this background the exciting opportunities for the introduction 
of modelling and control principles into existing computer graphics systems. Our 
research focused on a systematic approach to realising a framework for modelling 
and control of real-time computer rendering in two stages:

 1. Investigation, analysis, and implementation of a data-driven system identi-
fication process for real time rendering

 2. Structured analysis of the derived model for the selection and design of a 
suitable control strategy

The first part of this book focuses on the modelling aspects of real-time render-
ing. Based on the dynamic natures of the possible and myriad variations of render 
states, polygon streams, and the non-linearity of the rendering process, we propose 
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a data-driven modelling approach that accurately represents the system behaviour 
of this process from two angles: (1) the larger operating range where non-linearity 
exists and (2) the piecewise linear operating range. We propose two techniques for 
tackling the modelling challenge: (1) using a feed-forward time delay neural network 
derived from experimental data and (2) fuzzy modelling.

We demonstrate that both techniques can yield very accurate results in compari-
son with actual measured data. In addition, we compare the estimated outputs of our 
models with other mathematical estimation methods to show that the  models derived 
from our approach yield better results than mathematical estimations. Starting with 
single-input–single-output (SISO) system models, we extend our work to investigate 
the validity of multiple-input–single output (MISO) systems as well.

The second part of this book focuses on the design of a control strategy based on 
the process nature investigated in the earlier chapters. The benefits of applying control 
theory in the context of a computer graphics system are explained and the relative 
advantages of the theory over the performances of existing heuristics and algorithms 
(open-loop estimations of rendering) are highlighted.

Our research proposed two controller designs to achieve stable output with accu-
rate tracking: (1) proportional, integral, derivative (PID) control and (2) neural and 
fuzzy control. We investigated control system implementation in both local and dis-
tributed configurations.

In the local configuration, the rendering process (“plant”) and controller reside in 
the same computer. In the distributed configuration, the controller runs on a com-
puter different from the one used for rendering. The control activities and plant feed-
back are communicated between the computers via a network link. Despite network 
latency, this configuration allows flexible usage of system-wide resources in an inte-
grated environment. The approach will be especially useful if elaborate controller 
designs adopted in the future result in the introduction of heavy computational loads 
into overall systems.
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1 Introduction

1.1  BACKGROUND AND MOTIVATION

While modern rendering software claims to have controlling mechanisms that enhance 
runtime performance, the mechanisms are often very primitive and  inadequate. The 
results of this deficiency are indeterminate drops in the visual quality of generated 
imagery and frame rates that can severely affect usage experience. By applying control 
theories in real-time rendering, it is possible to rectify these shortcomings altogether.

The vision is to create an intelligent rendering system that can systematically 
adapt to its operating environment to produce optimum runtime performance at all 
times. To our best knowledge, no commercial product exists as this work is written 
and no active research is in progress in this cross-disciplinary application field.

The application of control concepts in the computer graphics software provides 
new opportunities for better performance derivable from graphics hardware. Until 
today, typical rendering applications struggled to utilise hardware efficiently. Much of 
the burden of optimisation falls on the software programmer who must be extremely 
conversant with the graphics pipeline.

The predominance of interactive computer graphics is underscored by a burgeon-
ing variety of applications in various aspects of daily life. For example, it is easy 
to observe various types of interactive systems in an urban environment such as a 
shopping mall or an office building. These systems range from digital signage to 
projection-based displays and touch panels. At the industrial level, interactive com-
puter graphics technology powers important processes such as computer-aided design 
and manufacturing, virtual prototyping, and scientific visualisation and simulation.

While customers constantly demand high quality computer-generated graphics, 
the cost associated with their demands may not be within reach. To illustrate, the 
price of a performance workstation is typically many times more than the cost of 
a desktop PC for home use. Furthermore, mobile devices such as PDAs and cell 
phones lack sufficient computing power to render high quality graphics for produc-
tivity at work.

Our research concerns a fully automated technology that circumvents the afore-
mentioned problems and allows users to enjoy high quality interactive computer 
graphics on both desktop and mobile devices. The objective of this project is to 
leverage earlier research on this subject and extend the work to allow a product-ready 
toolkit to be developed for commercialisation opportunities.

Over the past few years, we developed a framework that realises the concept of 
delivering adaptive interactive rendering through laboratory experiments, theoretical 
modelling, and simulation. Our technology employs control theory and the system 
identification methodology, both of which are mature fields, proven by their use in 
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aeronautical, mechanical and electrical engineering, and electronics industries. The 
concept is based on feedback control that can provide consistent performance moni-
toring and regulation with no requirement for human intervention. From a systems 
perspective, the technical challenge translates into the form of a “plant” (process 
to be controlled) and a “controller” component that ensures the process performs 
 optimally according to predefined objectives.

This technology clearly has numerous applications and commercialisation pos-
sibilities. We conceived the possibilities listed below.

Computer-aided design (CAD) and -manufacturing (CAM)—Three-dimensional 
(3D) datasets used widely in many industrial applications. Our technology will allow 
a user to view such datasets even on a mobile device. This brings productivity out of 
the office and makes it available to people on the move.

Virtual communication—The market for 3D virtual communication is growing, 
particularly in the education and corporate services segments. As a viral social net-
working medium or mode of communication in professional exchanges, 3D inter-
active applications will remain key factors in online virtual communication. We see 
our technology as an enabling factor for linking more people to such networks.

Marketing and sales—More companies are moving toward high quality inter-
active content intended for consumers. This provides an opportunity for us to 
introduce our technology so that more people can utilise it without the limitations 
imposed by hardware. As a result, commercial entities can expect greater market 
reach and corresponding increases in revenue.

Training and education—Our technology can be deployed in various training 
and education products, enabling them to be delivered to audiences utilising hard-
ware with different capabilities. The benefit offered by our technology is the easy 
ability to visualise 3D information even in a collaborative environment, therefore 
enhancing the value of training and knowledge dissemination.

1.2  OBJECTIVES AND CONTRIBUTIONS

Based on the shortcomings of current real-time rendering software, our research 
entailed the investigation and development of a feasible solution that would allow accu-
rate and sustainable control of the real-time rendering process on different hardware 
platforms. The two key objectives affecting implementation of the technology are:

 1. Despite the complexities involved in real-time rendering, it is imperative to 
devise a systematic method to describe this process in a form that relates its 
inputs and outputs consistently.

 2. Based on the derivable form and the known characteristics of the rendering 
process, it is critical to find applicable control principles and frameworks 
that will ensure control of the process over a variety of scenarios.

Our research spans knowledge of the computer science (computer graphics rendering) 
and control engineering disciplines. Both fields imposed challenges that made our 
research both exciting and fulfilling. Our key research contributions are listed below.
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 1. We describe a novel framework by which the real-time rendering pro-
cess may be modelled accurately. This framework involves the adoption 
of data-driven system identification methodology. Previous attempts to 
 characterise the rendering process via only observable variables and 
case-specific formulations led to inaccurate models. Our model addresses 
these shortcomings.

 2. Apart from linear models, our data-driven framework is extended to non-
linear models using soft computing techniques such as neural networks and 
fuzzy models.

 3. We developed control system frameworks for both linear and non-linear 
models in real-time rendering using (a) PID control with and without gain 
scheduling and (b) fuzzy control with and without adaptive neural networks.

The application of our control frameworks has shown much better resource utilisa-
tion in the real-time rendering process than earlier work that generally demonstrated 
coarse performance tracking.

1.3  SCOPE OF WORK

Real-time rendering is a vast topic in the field of computer graphics. Although the 
modelling techniques and control framework may be applicable to areas such as 
 volume- and image-based rendering, our study deals with polygonal-based rendering 
pipelines found in commodity graphics hardware and it leverages geometry sub-
division technique as a basis for controlling the input to the rendering system.

At this juncture, our work is based largely on the rendering of a single large 
3D mesh that is used as a pseudo-representation of more complex 3D scenes with 
numerous objects. From a different perspective, this system is useful for applications 
involving a single large object of interest, for example, massive model rendering and 
computer-aided design.

Since the focus of this research is on real-time rendering relating to the response 
time of a system in an interactive environment, we consider the time required to 
render an image (frame) as the critical performance metric. While computer graphics 
activity is essentially visual, the quality of the generated image is frequently taken as 
the next most important metric for assessment. However, due to the subjectivity and 
complexity involved in processing image comparisons, the image quality component 
is omitted as a performance object in this work. From the system perspective, the 
real-time rendering framework proposed in this research is flexible to accommodate 
a multiple-input–multiple-output (MIMO) configuration. This means the user has 
the full freedom to implement additional output variables, which may include image 
quality related performance variables.

1.4  BOOK OUTLINE

Chapter 1 provides the background and motivation that led to this research. 
Chapter 2 discusses the fundamental knowledge in two key disciplines related to 
this research—real-time computer graphics rendering and system identification 
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methodology. We then provide a systems perspective of the rendering process 
and explain the impacts of variables surrounding the system inputs and outputs. 
After that, a survey of previous research in the areas of rendering load control and 
 characterisation is discussed.

Chapter 3 delves into the details of our data-driven modelling approach to 
real-time rendering with a focus on linear system structures and their derivation. 
Through experiments, we provide rendering models for single-input–single-output 
(SISO) systems and show how they may be extended to more complex and practical 
systems involving multiple inputs.

In Chapter 4, we explore the use of soft computing techniques for modelling 
the real-time rendering process. The application of such techniques is performed 
at the operating range of the rendering system where non-linear characteristics are 
exhibited. Following that, we provide the basis for linearisation from the derived 
non-linear rendering system model.

Chapter 5 begins with the introduction of model-based control and deals with 
the control system framework for the linear rendering system model obtained in 
Chapter 3. The key control mechanism discussed in this chapter is the closed-loop 
feedback design with PID controller. We demonstrate how systems with single and 
multiple inputs may be controlled as well.

The focus of Chapter 6 is on advanced control techniques and considers our pro-
posed framework from a model-less perspective. This chapter illustrates the estab-
lishment of a control system framework without the need for an explicit system 
model as described in Chapters 3 and 4. By using a variety of fuzzy control tech-
niques, we demonstrate that a control system can perform very well when tracking 
the performance of a real-time rendering process.

Chapter 7 discusses applications, challenges, and possibilities, including system 
architectures, software and hardware performance and future technology.

The conclusions of our research and suggestions for future work are discussed in 
Chapter 8.

Annex A contains sample applications.
Annex B discusses the authors’ patent for Method and System for Adaptive Control 

of Real-Time Computer Graphics Rendering.
Annex C delineates Neural PID Control System Code.
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2 Preliminaries

2.1  FUNDAMENTALS OF REAL-TIME 3D RENDERING

In real-time computer graphics, 3D rendering refers to the process of generating a 
sequence of images that produces not just the animated effect of motion and change 
but the visual cue of depth for objects in the imagery given an external input or stimu-
lus to the system. In typical applications, the goal is to provide visual feedback to the 
user when there is interaction via the human-computer interface. The speed at which 
each image, known as a frame, of the animation sequence is generated defines the 
performance of the system. 

Because speed of rendering every image is crucial in real-time rendering, both the 
computer hardware and software have to work together in the most optimal way so 
that the best possible image quality can be achieved in tandem with an acceptable 
frame rate (a metric that measures the number of frames that can be generated in one 
second). Over many years of research and development, the real-time 3D rendering 
process has taken leaps and bounds in terms of the image quality that is produced in 
various real-world applications such as computer games, training simulators and 3D 
product demonstrations. This involves an intricate process that spans the preparation 
of 3D content in elaborate modelling tools to processing combinations of rendering 
algorithms with myriad configurations of parameters for the final output which is the 
image to be shown eventually on the display device. Modern computers  have dedicated 
hardware to handle computer graphics rendering. This hardware provides acceleration 
to computer graphics rendering routines so that the computer’s central processor unit 
(CPU) can focus on other non-computer-graphics-related and auxiliary  tasks. In gen-
eral, real-time or interactive 3D rendering applications are supported by an abstraction 
layer that communicates with the hardware. This layer is commonly known as the 
3D rendering Application Programming Interface (API) and it is fully responsible for 
pushing rendering commands to the hardware and managing the render state machine. 

2.1.1 Polygon-Based RendeRing

Figure 2.1 shows the multi-stage 3D real-time rendering pipeline. The transforma-
tion of inputs to the final visible pixels on a display device may be described system-
atically via the following steps.

• Creation in Local 3D Model Coordinate System
• Each object is created individually in its own 3D coordinate system.
• Objects may be represented in a variety of geometry formats (triangles, 

rectangles, strips of polygons, etc.). Essentially, every polygon in a 3D 
space consists of points known as vertices.
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• For polygons to be rendered with visually correct features, each vertex 
is associated with a set of attributes such as position (coordinates in 3D 
space), colour, normal (perpendicular) vector from a surface, texture 
coordinates (user-defined mapping onto the surface), and other factors.

• Transformation to Global World Coordinates
• To compose a scene in 3D space consisting of different objects, all cre-

ated 3D objects must be transformed into the same coordinate system.
• These transformations modify only the relative positions of the vertices 

and the normal. Visual attributes such as colour and texture coordinates 
are not modified.

• Transformation to 3D View Coordinate System
• A viewpoint in 3D space is commonly cited as the “camera” location.
• The geometry (vertex arrangement) from the 3D space is transformed 

into the camera view coordinate system. Depending on the rendering 
software, the common definition for this space is based on a right-
handed coordinate system with the camera at the origin pointing down 
the negative z axis. The x axis is to the right and the y axis up. The 
projection from 3D to 2D space is performed at this stage.

• The depth information of any object can be obtained from the z coordi-
nate value at this stage.

• The effect of virtual “lights” that create illumination properties in the 
3D scene is computed at this stage. For example, a surface colour shad-
ing algorithm known as Gouraud shading will be computed at each 
vertex of a 3D object using the light parameters, light position, normal 
vectors, and the 3D object’s texture or material properties.

• The removal of polygonal surfaces not shown in the view due to occlu-
sion is known as “culling” and is performed at this stage as well.

• Culling is related to the attributes of the camera view defined by a 
 virtual trapezoid volume known as the “view frustum” using six planes 
(left, right, up, down, front, and back) as shown in Figure 2.2.

Per-vertex
operations

Rasterisation

Per-pixel
operations

Per-fragment
operation Framebuffer

Texture
assembly

Display lists

Vertex data

Pixel data

FIGURE 2.1 Real-time 3D rendering pipeline.
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• Transformation to 3D Clip Coordinate System
• The geometry data in this stage are prepared for a post-processing step 

known as “clipping.”
• The transformation of the geometry depends on the type of view pro-

jection used. Certain non-linear transformation may take place, for 
example, when perspective projection creates a tapering-off view of 
objects at a distant horizon in contrast to orthographic projection that 
consistently preserves the dimensions of a 3D object.

• Transformation to Normalised Device Coordinates
• The geometry is normalised for display in a 2D window on a physical 

 display device.
• Further clipping is done to remove geometry outside the user-defined 

 window boundaries.

• Transformation to Display Window Coordinates
• All vertices are converted to units of the display (pixels) window.
• Typically, the origin of reference is at the lower left corner of the display 

window.

• Transformation to 2D Screen Coordinate System
• The conversion to screen pixels (rasterisation) is performed. Pixels are 

 visible colour dots that can be displayed on a screen.
• To generate shaded pixels, attributes such as texture coordinates, colour, 

and normal vectors are used in the computation and interpolated across 
the  vertices and polygon surfaces.

• Algorithms may be used to perform further hidden surface removal by 
using depth information obtained from the geometry.

Eye point

Near plane

Far plane

Line of sight

Top plane

Bottom plane

Left plane

Right plane

FIGURE 2.2 Camera view frustum in 3D space.
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• The final colour of the pixel is determined by combining all other 
effect state settings (e.g., blending and stencil operations) in the ren-
dering pipeline.

• The output of this stage is the final colour of every pixel placed in the 
 memory of the display hardware (the frame buffer).

In the course of rendering a 3D scene, many inputs and settings such as the geom-
etries of 3D objects and their material “look” parameters are sent to the graphics 
hardware for processing. About a decade ago, outdated graphics hardware relied 
solely on a few hard-wired algorithms to process such data via a method known as 
the fixed function rendering pipeline. As a result, real-time rendering application 
developers had little space to control the look of a 3D object based on a limited set of 
functions  that computed the rendering output. The impact of such limitations is the 
lower  quality of imagery generated from computer graphics hardware.

This problem was circumvented by the advances represented by a new generation 
of computer graphics hardware that allows rendering routines known as  shaders 
to be injected into the hardware before or during the runtime of an application. 
This capability now gives application developers full control over the quality of the 
generated output by varying shader routines. Figure 2.3 depicts this new-generation 
fully programmable rendering pipeline.

Shaders come in two formats: vertex and pixel types. A vertex shader is a graph-
ics processing function used to add special effects to objects in a 3D environment. 
It is executed once for each vertex sent to the graphics processor. The purpose is to 
transform each vertex’s 3D position in virtual space to the 2D coordinate at which 
it appears on the screen and the as a depth value in the graphics hardware. A pixel 
shader is a computation kernel function that computes colour and other attributes of 
each pixel. Pixel shader functions range from always outputting the same colour to 
applying a lighting value to adding visual effects such as bump mapping, shadows, 
specular highlights, and translucency properties. They can alter pixel depth or output 
more than one colour if multiple render targets are active. Figure 2.4 illustrates an 
example of the effects of pixel shaders on a 3D object. Apart from vertex and pixel 
shaders, an important feature of state-of-the-art graphics rendering architectures is 
the functionality of geometry shaders. Geometry shaders are added to the rendering 
pipeline to enable generation of graphics primitives, such as points, lines and dif-
ferent types of triangles after the execution of vertex shaders. With this capability, 
it is then possible to perform operations such as mesh resolution manipulation and 
procedural geometry generation.

Computer hardware technology and new rendering algorithms continue to 
advance quickly. The evolution of the real-time rendering pipeline also continues as 
this book is written.

2.1.2  VolumetRic RendeRing

In Section 2.1.1, we described how animation can be produced using 3D data and 
physics-based principles for surface shading effects. Another technique for pro-
ducing 3D visualization is through the usage of volume data that consists of not 
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just positional information in 3D space but continuous depth data with additional 
dimensions and possibly its materials information as well. This type of spatial data 
is commonly used in scientific and medical work where cross-sectional information 
is important for evaluation and study. Volume rendering produces the exterior and 
the interior look of an object, usually with visual cues such as transparency and color 
differentiation. The image generation process considers the absorption of light along 
the ray path to the eye and volume rendering algorithms can be designed to avoid 
visual artifacts caused by aliasing and quantisation.

2.1.3  image-Based RendeRing

In contrast to polygon-based rendering in which 3D geometry is provided for con-
structing the 3D hull of an object, image-based rendering techniques render novel 
3D views by using a set of input images. This avoids the need for a stage where 3D 
data has to be explicitly provided by manual labour or some data acquisition means. 
These techniques focus on computer vision algorithms in feature detection and 
extraction from a set of basis images and thereafter reconstruct a 3D object or scene. 
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FIGURE 2.3 Programmable rendering pipeline (DirectX 11).
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Image-based rendering techniques are often classified according to the degree by 
which geometry information is used. More importantly and in recent years, there has 
been a confluence of image-based techniques with polygon-based rendering in many 
applications due to the close continuum in 3D and 2D space in computer graphics.

As volume and image-based rendering are topics beyond the scope of this 
research, they are introduced here as auxiliary information on alternative 3D ren-
dering techniques and more information can be found on the Internet and major 
research publication portals.

2.2  SYSTEM IDENTIFICATION

The goal of system identification is to derive a mathematical model of a dynamic 
 system based on observed input and output data. Usually a priori information per-
taining to a system will be useful for postulating the preliminary model structure. 
The system may then be modelled according to empirical data (black-box  modelling) 
or conceivable mathematical functions such as physical laws (white-box modelling). 
Often, real world systems are non-linear and operate with reliance on state memory. 
The systems are dynamic and thus their outputs may depend on a combination of pre-
vious inputs, outputs, and states. The combination provides the basis for time series 
and regression mathematical expressions (models) for different reproducible systems.

System identification is an iterative procedure that can be summarised briefly 
by the flowchart in Figure 2.5. A model structure is chosen in advance based on 

FIGURE 2.4 (See colour insert.) Samples of surface shading effects that can be achieved 
with pixel programs.
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preliminary information obtained from the system. The parameters of this model 
structure are then computed based on the set of experimental data collected previ-
ously. A portion of this data is allocated for model validation and the entire process 
from choosing a model structure to validation is repeated until the user-defined 
simulation performance criteria are met.

From a system identification perspective, we treat the real-time rendering process 
as the subject to be modelled. Since the rendering process cannot be described intui-
tively by physical laws such as mass, velocity, and temperature, black-box modelling 
is adopted. The system is first tested with a set of predefined inputs and the outputs 
are collected. This input–output dataset that captures a certain dynamic range of 
the behaviour of the system is then used with mathematical  regression techniques to 
derive the estimated model.

Due to the scope of this book, we briefly summarise the steps in the system iden-
tification process below. A detailed and authoritative coverage of this topic can be 
found in Ljung’s book [1].

2.2.1  data collection

To obtain an effective model of a system, it is necessary for the measured data to 
capture and show the behaviour of the system adequately. An appropriate experi-
mental design can ensure that the correct variables and dynamics of the system are 

Design experiment and
collect data

Post-process dataY

N

N Y
End

Validate model

Model is acceptable

Data require post-
processing

Choose model
structure

Select model
parameters and fit

model to data

FIGURE 2.5 Process flow in system identification methodology.
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measured at sufficiently good resolution. In general, the following principles should 
be observed:

 1. Select inputs that can excite the system dynamics adequately.
 2. Minimise the effects of noise and disturbance to obtain a good signal-to-noise 

ratio.
 3. Choose appropriate sampling intervals for measuring data.
 4. Set a sufficient long duration of data collection to ensure capture of impor-

tant time constants.

2.2.2  model selection

In system identification, we begin by determining the model structure best expressed 
by a mathematical relationship between input and output variables. This model 
structure typically provides the flexibility to describe a system based on certain 
parameters. Some examples of model structures include parameterised functions 
and state space equations. To illustrate, a linear parametric model is provided in the 
 equation below.

 y k ay k bu k( ) = −( )+ ( )1  (2.1)

where u is the input, y, the output, k, the discrete time step and a and b are model 
structure variables.

Essentially, system identification is a systematic approach that begins with the 
selection of a model structure and then using approximation techniques to estimate 
the numerical values of the model parameters. While it may seem arbitrary to start 
with the selection of a model structure, it is not an entirely ad hoc process. The fol-
lowing approaches may be adopted in deciding on an appropriate model structure.

 1. Start with the simplest system model structures to avoid unnecessary com-
plexity in cases where the data can be modelled by a simple structure. 
Alternatively, a user can try various mathematical structures in a technique 
known as black-box modelling.

 2. Designate a specific model structure for the data to be modelled by establish-
ing certain predetermined principles; this technique is known as grey-box 
modelling.

Some well known system model structures from established research include the:

Auto-regressive exogenous (ARX) model
Auto-regressive moving average (ARMA) model
Box–Jenkins model
Output error model
State space model
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2.2.3  comPuting model PaRameteRs

In system identification, the model parameters are estimated by minimising the func-
tion that describes errors between the derived system model output and the measured 
response. Assuming a system is linear and time-invariant, the output of the linear 
model ymodel can be expressed as

 y t G s u tmodel ( ) = ( ) ( )  (2.2)

where G(s) is the transfer function, y the model output and u, the input to the model. 
To determine G(s), we can minimise the difference between the model output ymodel(t) 
and the measured output ymeas(t). We can use the minimisation criterion which is a 
weighted norm of the error v(t):

 v t y t y t y t G s u tmeas model meas( ) = ( )− ( ) = ( )− ( ) ( )  (2.3)

where ymodel(t) is either the model’s simulated response given an input u(t) or its pre-
dicted response given a finite series of past output measurements, i.e., (ymeas(t–1), 
ymeas(t–1),…).

From the above, v(t) is otherwise known as the simulation error or prediction 
error. The objective of the estimation algorithm is to generate a set of parameters in 
the model structure G such that eventually this error is minimised.

2.2.4  eValuating Quality of deRiVed model

The steps taken to evaluate the quality of a derived system model generally include 
the comparison of the model response to the measured response and the analysis 
of model residuals. Figure 2.6 compares the outputs of two different models with a 
measured output.

Residuals are differences between a model’s one-step-predicted output and the 
measured data. In other words, residuals may be understood as portions of validation 
data that are not well described by the model. In residual analysis, the whiteness and 
independence tests are key performance indicators.

The whiteness text examines whether a model includes a residual auto-correlation 
function inside the confidence interval of the estimates. If it does, the model passes 
the test and the outcome indicates that the residuals are not correlated.

In addition, a model is qualified when it passes the independence test (no correla-
tion between its residuals and past inputs). If evidence indicates such a correlation, 
the information revealing how the output relates to the input is incomplete. A simple 
example is an output y(t) beyond the confidence interval during a lag k that originates 
from the input u(t – k). A good model should perform both tests relatively well.

The system identification methodology accommodates an iterative process in the 
determination of the final model structure and parameters. A real world system may 
not be represented by only a single model structure. Whenever a derived model is 
found inadequate, it is necessary to revisit the model selection process, reconsider 
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the model parameter determination algorithm, and perhaps re-evaluate the data 
 collection procedure.

2.3  LITERATURE REVIEW

While control theory is a mature field of study developed after the industrial revolu-
tion, the adoption of the techniques in the domain of computer software, particularly 
real-time computer graphics systems, remains nascent. This literature review pro-
vides a survey of research in these areas as background for our research.

2.3.1  comPaRatiVe study on existing ReseaRch

The premise of the novelty in our research is founded upon close examination of 
previous work done in the fields of both real-time computer graphics and control 
theory, particularly those that have been successful in fusing the two disciplines and 
a careful thought process in terms of innovation in this area. A broad-stroke but sys-
tematic and progressive approach was taken to consider research publications within 
two decades to ensure that relevant techniques are not missed out regardless of their 
age and how they might contribute to further knowledge development.

Figure 2.7 shows the research comparative study flow conducted in this work 
which consists of the Classification Stage and the Qualitative Comparison Stage. 
In the Classification Stage, we begin with the most relevant keywords in the litera-
ture search terms. We consider the following words as the “lowest denomination” 
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FIGURE 2.6 Comparison of two model outputs with measured system response.
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because of their relative importance in a subject matter. For example, omitting 
words such as “real-time”, “graphics” and “3D” since they are either rhetorical in 
computer  graphics research or they may be replaced by stronger keywords such as 
“interactive ”, “rendering” and directly meaningful candidates such as “frame rate” 
and “control”. These keywords are used in search fields in major research publica-
tion online portals  which indexes the world’s largest collection of research literature. 
The gleaning process covers more than 500 research papers in a combined cohort of 
4,000 search results from the publication portals. 

As described in Section 1.3 in Chapter 1, the research in this thesis is primarily 
focused on polygon-based rendering technique which is predominant in common 
consumer and industrial applications such as computer games, virtual reality soft-
ware and computer-aided design and prototyping. Hence, the Classification stage 
ends with segregating research literature that shares the same technique and is 
related to the topic of interactive 3D rendering. Table 2.1 shows the results from this 
classification stage from the initial pool of publications.

Start

Yes

Yes

Yes

No No

No

End

Classification Stage

Qualitative
Comparison

Similar
Technique?

(Polygon-based
Rendering)

Provide
frame rate

history?

Provide
frame rate
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Other
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output error
from target
frame rate
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frame rate
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transition
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FIGURE 2.7 The comparative literature review workflow.
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The next step in this comparative study is to select literature which provides 
experimental results on frame rate control since we need to conduct a qualitative 
analysis on them. For this purpose, these results should contain a history of data 
points in the time domain that demonstrate certain desirable qualities such as stabil-
ity, offset errors and smooth frame rate transitions. These features would be com-
pared to the results we obtain from the experiments conducted using the techniques 
proposed in this research with both qualitative and quantitative perspectives.

While research papers could be found relating to the topic of interactive  rendering, 
however many of them alluded to concrete experiment results on sustainable perfor-
mance as shown in the references from the bottom row of Table 2.1. In some cases 
[61] [71] [76], only static frame rates are given as an approximation to the interactive 
requirement. Furthermore, other researchers have chosen to work on volumetric [71] 
[76] [80] and image-based rendering [68] [70] [83] techniques which are prevalent 
in medical and large-scale visualization research but they differ from polygon-based 
rendering vastly. As a result, it is not straightforward to establish a direct comparison 
on the benefits offered by our research with these techniques. Despite these differ-
ences, we strive to provide a detailed qualitative and quantitative analysis on the 
aforementioned rendering architectures and their respective performance with our 
rendering framework in Chapter 8, Section 8.1.

2.3.2  contRol-theoRetic aPPRoaches to comPuteR systems

As computer systems become increasingly complex through advances in hardware 
and software technology, traditional approaches to providing performance guaran-
tees have become inefficient. In recent years, control engineering principles used 
successfully in real-world applications such as mechanical and electrical systems 
and process control have emerged as promising solutions to meet performance con-
trol challenges such as real-time scheduling, network bandwidth control, and power 
management in complex computer systems.

The comprehensive framework presented by Abdelzaher et al. [2] introduces 
feedback performance control in software services. The authors emphasised the 
importance of guaranteed quality of service (QoS) in modern computer software 
and systems that indicates the need for robust frameworks to achieve certain perfor-
mance objectives. They further defined and explained the attributes of a QoS-aware 
 service consisting of performance metrics such as queuing delays, execution 
 latencies, and service response times. They also demonstrated that a software 

TABLE 2.1
Results from the Research Review Classification

Polygon-based Rendering Non-Polygon-based

With Frame Rate Data [62] [64] [65] [67] [72] [74] [77] [81] [84] 
[85] [92]

[69] [73] [80] [83] [86] [87]

Without Frame Rate Data [61] [63] [66] [68] [75] [78] [79] [82] [89] 
[90] [91]

[70] [71] [76] [88]
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system can be approximated by a linearised model with corresponding conceptual 
software representations of actuators and sensors. Although the feedback control 
architecture was provided for generic software systems, the entire work focuses on 
web server applications.

Abdelwahed et al. [3] proposed a generic online control framework to design 
self-managing computer systems. The control actions governing system operations 
were obtained by optimising system behaviour as forecasted by a mathematical 
model over a specified time horizon. The case studies cited deal with power manage-
ment under time-varying workloads and signal detection accuracy and latency levels.

Since computer systems in networked environments are gaining importance due to 
increasing Internet usage, Li and Nahrstedt [4] proposed a task control model to illus-
trate the dynamics of QoS adaptations using digital control theory. The objective was 
to provide optimum resource allocation to tasks in a distributed environment where 
multiple applications compete for and share limited system resources, thus ensuring the 
best user experience and efficiency. A proportional, integral, derivative (PID) control-
ler was used to achieve the desired performance objectives relating to the QoS metrics.

Hellerstein et al. [5] provided a comprehensive overview of the challenges in con-
trol engineering of computer systems. Similar studies were reported by Abdelzaher 
et al. [7], Lu et al. [8], and Karamanolis et al. [9].

2.3.3  contRol PRinciPles in comPuteR gRaPhics softwaRe

In Li and Shen’s work [10], a fuzzy logic controller serves as an automatic mecha-
nism for controlling error tolerance in hierarchical volume rendering. Volume ren-
dering is a technique for directly displaying a sampled 3D scalar field without first 
fitting geometric primitives to the 3D discrete sampled date set. The performance 
criterion is a user-defined frame rate that the control system will strive to achieve 
based on adjusting the error tolerance.

Sort-last rendering is a computer graphics applications technique for rendering 
extremely large datasets in clusters of computers, usually in a distributed environ-
ment. Kirihata et al. [11] showed that it is possible to use feedback control to harness 
large data transfer processes in sort-last rendering.

Another example of the adoption of control principles in computer graphics  
 software is the work by Dayal et al. [97]. They proposed an adaptive form of 
 frameless rendering with the potential to increase rendering speed dramatically over 
conventional interactive rendering. This is done without the rigid sampling patterns 
of framed renderers and by allowing sampling and reconstruction to adapt with very 
fine granularity over spatial–temporal colour changes. A sampler uses closed-loop 
feedback to guide sampling toward edges or motion in the image to maximise ren-
dering efficiency.

To date, little research has focused on the adoption of control principles in com-
puter graphics applications related to rendering. While the potential benefits are 
immense based on a broader perspective in which control techniques have been used 
successfully in generic software, the challenges usually lie in specific applications 
that require in-depth understanding and appropriate modelling before the control 
concepts may be introduced.
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3 Linear Model Analysis 
of Real-Time Rendering

3.1  INTRODUCTION

The real-time computer graphics rendering process embodies complex state transi-
tions and fast dynamics amidst observable steady-state behaviour. To yield realistic 
or visually useful graphical information, the rendering process may be loaded with 
myriad combinations of the input variables and states to the point where it is impor-
tant to describe this function in simple terms.

In this chapter, we describe the application of system identification methodology 
to real-time rendering. The basis for such an approach is that the rendering process 
may be treated from a system perspective as a data processing function. This allows 
us to analyse the process input and output data to establish some formal relationship 
between them.

3.2  BACKGROUND

The perennial and increasing demands for fidelity, coupled with hardware archi-
tecture advancements, pose many challenges to researchers and developers as they 
endeavour to find the optimal solution to accommodate both speed and quality of 
rendering. To this end, key techniques developed since the evolution of computer 
graphics three decades ago revolve around their ability to reduce the rendering load 
at application runtime. They are largely based on the principles of visibility reduc-
tion, geometry decimation, image-based methods, and more recently, techniques 
such as programmable shading.

As space does not permit an exhaustive review of these research efforts, we refer 
the reader to the comprehensive surveys by Cohen-Or et al. [12], Haines [13], and 
Akenine-Moller et al. [14]. Despite the ability of each approach to reduce rendering 
loads during runtime, their common weakness lies in the inability to guarantee stable 
frame rates.

In this chapter, we introduce a novel framework for obtaining an accurate model 
of an interactive rendering process. This framework is based upon the system iden-
tification methodology [1] that is a mature field of study associated with systems and 
control theory.

In addition to expanding understanding of the dynamics relating to the rendering 
process, the objective of modelling this process is to establish the groundwork for a 
control framework. Only with an accurate model can we design this control frame-
work around the rendering process to yield the sustainable performance we desire.
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In this research, we focus on exploiting a current trend in hardware technol-
ogy that provides fine resolution in geometry control, known as tessellation. Since 
geometry is the primitive construct of any object in 3D space, it becomes a natural 
choice as one of the modelling variables in our framework. In brief, tessellation is 
the process of sub-dividing surfaces into smaller shapes with the objective of gen-
erating higher resolution information of the 3D model. Tessellation, also known as 
a sub division technique, is a well researched field in computer graphics and had 
been adopted widely in many interactive rendering applications because of the visual 
acuity it provides. However, only recently has graphics hardware provided sufficient 
support for tessellation-based techniques in applications [30].

We introduce our modelling framework via experiments in two interactive render-
ing applications that use subdivision techniques in rendering load control. We aim to 
establish the fundamental validity of a system-based approach to modelling the ren-
dering processes in applications similar to those selected in these experiments. Since 
rendering tasks are inherently complex in real-world applications, we provide a sys-
tematic extension from a single-input–single-output (SISO) model of the rendering 
process to a multiple-input–single-output (MISO) model that more closely resembles 
a broader class of applications. We hope that this progression along with the system 
modelling principles and fundamental considerations related to 3D rendering will 
enable readers to appreciate the value of this framework and acquire the necessary 
knowledge for its implementation.

Current research in rendering workload characterisation [16,17] and rendering 
time estimation [18,19] strives to profile the attributes of rendering without providing 
a systematic way to control the process. Often, the user is expected to arrive at some 
form of a primitive control strategy based on profile information. This often requires 
several attempts to re-evaluate control strategy and ad hoc refinement steps are often 
needed to remove major rendering bottlenecks.

This motivated us to attempt to utilise a systems perspective to model the render-
ing process. In this chapter, we demonstrate that accurate models can be obtained 
via our data-driven framework and extend this framework by introducing the use of 
a controller that can track and regulate frame rates with guaranteed performance. 
In comparison with other work, our research offers the following benefits:

• Our framework does not require the pre-processing of the 3D content 
utilised in other research [20,21,22]. Its performance is not limited to static 
pre-processed geometry and scenes.

• Our approach leverages hardware-accelerated technology (tessellation) that 
provides smooth transitions in geometry scaling unlike techniques that may 
generate visual hysteresis [21,22,23].

• The outputs of the derived rendering models exhibit very high accuracy 
when compared to actual rendering process outputs.

• When the derived rendering model is used in conjunction with a suit-
able controller, the closed-loop system can produce guaranteed frame 
rates. The self-correction process occurs entirely online during runtimes 
unlike current techniques that may require repetitive and labour-intensive 
offline evaluation.
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3.2.1  contRol-centRic definition foR RendeRing time contRol

In contrast to previous research on interactive and time-critical rendering [20,22,24], 
we define rendering time control as a mechanism that should produce stable frame 
rates very close to the user-defined target instead of fluctuating below it. To date, much 
research on rendering time control has focused loosely on keeping the time required 
to render each frame within a certain budget and ignoring the quality of the control or 
the fluctuations resulting from the technique. This leads to two consequences.

The first implies that the times allocated to perform other tasks in an interactive appli-
cation such as logic computation, collision detection, and animation will not be consistent. 
In some cases, “starvation” of other processes that require CPU or GPU resources may 
occur. This is detrimental to the effectiveness of visual simulation applications in which 
external devices that require CPU cycles are tightly coupled to the rendering process.

Second, weak frame rate control leads to suboptimal resource use. For example, 
an object rendered at 15 FPS that achieves acceptable visual quality should not be 
rendered at 25 FPS unless allowed by the user for valid reasons. This requirement is 
especially critical in interactive applications and systems with tight resource control 
policies such as in game consoles [25,26] and portable devices where sustainable 
and guaranteed performance is vital because processor time must be allocated for 
related non-graphics computations. In contrast, applying control engineering leads to 
analysis of system attributes such as output overshoot, settling time, and steady-state 
errors that constitute a better qualitative framework for performance monitoring . 
We  feel that this is a more powerful outcome than the current research focus on 
frame rate control.

3.2.2  challenges in using heuRistics

Heuristics usually refers to an experience-based speculative formulation of a solution 
to a problem. Much research in the area of rendering performance control has been 
based on heuristics and analytical models [22,23,24,27]. As Gobbetti and Bouvier 
noted [24]:

“…Static heuristics are not adaptive and are therefore inherently unable to produce 
uniform frame rates….”

Leukbe describes the difficulty in modelling the rendering process in his book on 
level of detail (LoD) for 3D graphics [28]:

“…a predictive scheduler estimates the complexity of the frame about to be rendered…
this approach is substantially more complicated to implement…because it requires an 
accurate way to model how long the specific hardware will take to render a given set 
of polygons.”

The challenge in establishing reliable heuristics is straightforward. Driven by com-
mercial demand and innovation, computer graphics hardware and software continue 
to change at unprecedented rates. In confirmation of this fact, Dumont et al. [29] 
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stated that given the complexity of real-rendering applications today, heuristics may 
fail in controlling rendering time. Haines [13] also describes this trend:

“Perhaps one of the most exciting elements of computer graphics is that some of the 
ground rules change over time. Physical and perceptual laws are fixed, but what was 
once an optimal algorithm might fall by the wayside due to changes in hardware, both 
on the CPU and GPU. This gives the field vibrancy: we must constantly re-examine 
assumptions, exploit new capabilities, and discard old ways.”

Based on these findings, dissecting the rendering process into distinct compo-
nents that contribute to rendering cycle time is no trivial task. Tack et al. [18] did not 
consider overhead time in their performance model because of the complexity and 
additional costs it represented. The heuristics proposed in Wimmer and Wonker’s 
work [19] varied in performance for different applications. This implies that unless 
an application is specially built to fit into their proposed framework it may not be 
easy to achieve stable frame rates across a broader range of applications.

Heuristics ignore non-linearity in their formulation, that is, they assume that func-
tional relationships are always linear. This is unrealistic in practical applications 
because of the underlying hardware. Our experiments have shown that the time taken 
to render a vertex varies at different total processed vertex counts. The work of Lakhia 
et al. on interactive rendering [22] demonstrated that texture size has a non-linear rela-
tionship with the time taken to render a 3D object. Finally, heuristics face the same 
challenges as other frame rate control mechanisms in terms of balancing qualitative 
requirements such as visual hysteresis [23] and rendering performance.

3.2.3  PuRPose of woRkload chaRacteRisation and analysis

Apart from heuristics in the quest to limit rendering time, researchers also  analysed 
rendering workloads with the goal of identifying and eradicating bottlenecks at 
runtime. Kyöstilä et al. [16] created a debugger and system analyser for graphics 
applications running on mobile hardware. Monfort and Grossman [17] attempted to 
characterise the rendering workloads of 3D computer games via a specially devel-
oped tool. In recent years, major graphics hardware vendors have provided software 
toolkits that allow low level access to their hardware for debugging and in-depth 
analysis of graphics workload with the goal of optimising performance of interactive 
applications during runtime.

However, workload characterisation and analysis are not adaptive mechanisms that 
will bring about stable frame rates. They are helpful only for tracing bottlenecks and 
manifesting an application’s rendering workload profile. To utilise these mechanisms 
for runtime performance, the process usually involves (1) identification of the problem 
(such as the cause of a bottleneck) during runtime followed by (2) manual effort to 
eradicate the bottleneck offline and then re-run the same scenario. This approach does 
not guarantee performance when the application use or 3D scene content changes. 
Since interactive rendering usually causes dynamic changes to visual content, the 
approach of using workload characterisation and tuning is not generally robust.
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3.3  CASE FOR DATA-DRIVEN MODELLING

In system identification, we approach the problem of modelling a dynamic sys-
tem from the observable data generated by its input and output. The case for using 
data-driven modelling is especially compelling for real-time rendering because the 
process is inherently complex. Rendering is a computer system process that thus 
raises considerations at both the hardware and software levels. Furthermore, unlike 
mechanical systems or chemical processes, no physical laws or intuitive functional 
relationships can be applied easily to achieve high accuracy.

Considering the real-time rendering process as a black box does not necessar-
ily imply high risk of inappropriate modelling of the system as long as reasonable 
assumptions are based on a priori understanding of the system and can be reinforced 
from experiment results. In this book, we approach the challenge of modelling a ren-
dering system by considering the expanded scopes of both single and multiple inputs. 
We also consider the output of the rendering process in terms of measurable quanti-
ties and the benefit of registering them as system outputs. This chapter discusses the 
inputs and outputs considered in system modelling and their eventual roles in system 
model representations.

To proceed with the modelling process, we first establish the relationship between 
the input and output of a system. This means that we must define and qualify the set 
of inputs and outputs before proceeding to identify their relationship. In the context 
of a real-time rendering application, it is reasonable to associate the geometry used 
for construction of 3D objects with the input to the rendering system and the output 
with the frame rate since empirical data indicate that they have an inverse relation-
ship. Furthermore, in system identification, the input variables must be modifiable 
by the user in a straightforward manner. This is different from research in workload 
characterisation and heuristics where the defined variables are quantities such as 
hardware level parameters and processing time that cannot be changed by a user 
during runtime.

3.3.1  Basis foR selection of system VaRiaBles

With reference to the data flow in the computer graphics rendering pipeline shown in 
Figure 2.3 in Chapter 2, the inputs to the rendering process are obtained from mem-
ory resources (rectangle at far right) of the computer system. These inputs consist of 
various types of data ranging from geometry information to textures (image-related 
information) and rendering routines such as shader programs.

In order to define a set of variables to describe a rendering system, the input and 
output variables must be easily measurable. Furthermore, it is imperative that the 
input variables are controllable so that control actions can be implemented properly. 
Based on these criteria, we investigated the available performance counters with 
common low level graphics rendering profiler toolkits that included Microsoft’s PIX. 
Table 3.1 shows a set of performance counters commonly used in many computer 
graphics applications.

Since many performance counters fall into the same category and are derivatives 
of one another, we chose the lowest denomination or most primitive variable in each 
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selected category. To illustrate, the input geometry to the rendering pipeline may 
include lines, triangle fans, strips, and polygons. These are different input formats 
that share the same basis—3D geometry data. Hence the natural choice as the input 
variable of a rendering system should be the vertex count.

In addition to finding the appropriate variable by using its simplified form, another very 
important characteristic that determines suitability is whether a variable can be changed 
easily. For example, the batch counts and batch sizes of indexed buffers can impact the 
performance of a rendering system. However, little can be done to control these variables 
during an application runtime because these batches of vertices are predefined.

Finally, the resolution at which the selected variable may be adjusted affects the 
quality of the system model as well. The ideal case would involve a variable that 
allows fine resolution changes. For example, since the number of vertices is used 
as an input variable of a rendering system, it may be difficult to obtain an accurate 
model when this number can be varied only in limited steps.

One reason for this limitation is the underlying geometry LoD mechanism that 
controls the resolution of a 3D object with a certain topological objective and algo-
rithm. The discrete LoD technique is an example of such a mechanism. Figure 3.1 
illustrates the progressive variation (in steps) in the number of vertices that describe 
a 3D object. Conversely, other techniques such as progressive meshes and geometry 
tessellation allow 3D geometry variation at fine resolution levels. These techniques 
are preferred in comparison to the approaches cited earlier.

So far we have discussed guidelines for inputs to the rendering system. As for the 
output of the rendering system, the performance metric of primary concern to a user 
of real-time computer graphics is widely accepted as the frame rate (inverse of the 
time required to render one frame or image in a sequence) and quality of the gener-
ated imagery. The frame rate has a significant impact on the quality of the visual 

TABLE 3.1
Performance Counters in DirectX
Direct3D Counter Description Official Name

FPS (#) D3D FPS

Frame time in milliseconds D3D frame time

Driver time in milliseconds D3D time in driver

Triangle count (#) D3D triangle count

Triangle count instanced (#) D3D triangle count instanced

Batch count (#) D3D batch count

Locked render targets count (#) D3D locked render targets count

AGP/PCIE memory used in integer MB (#) D3D agpmem MB

AGP/PCIE memory used in bytes (#) D3D agpmem bytes

Video memory used in integer MB (#) D3D vidmem MB

Video memory used in bytes (#) D3D vidmem bytes

Total video memory available in bytes (#) D3D vidmem total bytes

Total video memory available in integer MB (#) D3D vidmem total MB

Source: NVPerfKit documentation from www.nvidia.com
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experience offered by a real-time rendering application. While the quality of the 
generated imagery may be important to the user, the interactive experience is usu-
ally dominated by the application response rather than the quality of the generated 
imagery. Furthermore, quality is a subjective notion that complicates the adequacy 
of any useful metric.

3.4  LINEAR SYSTEM MODEL REPRESENTATION 
FOR REAL-TIME RENDERING

This section describes the modelling process applied to the real-time rendering 
system and the derivation of the mathematical models for various types of rendering 
applications. Using the system identification methodology, we demonstrate that lin-
ear time-invariant models can be obtained from the input and output data  collected 
from experiments conducted using sample rendering applications.

A basic relationship between the input and output of a system may be expressed 
as a linear difference equation as follows.

y t a y t a y t n b u t n b u t nn a k n ka b( )+ −( )+… −( ) = −( )+…+ − −1 11 nn e tb +( )+1   ( )  (3.1)

where:

a1 … ana and b1 … bnb are parameters to be estimated.
y(t) is the output of the system at time t.
y t −( )1  and y t na−( )  are the previous outputs on which the current output depends.
u t nk−( ) and u t n nk b− − +( )1  are the previous inputs on which the current output 

depends.
na is the number of poles of the system or the order of the system.
nb represents the number of zeroes plus one.
nk denotes delay in the system.
e(t) equals noise.

An alternative way to represent Equation (3.1) in a more compact manner is the ARX 
model described below:

 A q y t B q u t n e tk( ) ( ) = ( ) −( )+ ( )  (3.2)
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FIGURE 3.1 Visual effect of varying vertex count for 3D object in discrete steps. (Source: 
http://en.wikipedia.org/wiki/Level_of_detail#A_discrete_LOD_example)


