
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

K18998

Computer GraphiCs
with Control enGineerinG

Computer GraphiCs
with Control enGineerinG

C
o

m
p

u
t

e
r

 G
r

a
p

h
iC

s
 w

ith
 C

o
n

t
r

o
l

 e
n

G
in

e
e

r
in

G

Gabriyel Wong
Jianliang Wang

Gabriyel Wong
Jianliang Wang

Wong
Wang

Real-Time
RendeRing

Real-Time
RendeRing

R
e

a
l

-T
im

e
 R

e
n

d
e

R
in

g

Consumers today expect extremely realistic imagery generated in real time for
interactive applications such as computer games, virtual prototyping, and sci-
entific visualisation. However, the increasing demands for fidelity coupled with
rapid advances in hardware architecture pose a challenge: how do you find opti-
mal, sustainable solutions to accommodate both speed of rendering and quality?
Real-Time Rendering: Computer Graphics with Control Engineering presents a
novel framework for solving the perennial challenge of resource allocation and the
trade-off between quality and speed in interactive computer graphics rendering.

Conventional approaches, mainly based on heuristics and algorithms, are largely
application specific, and offer fluctuating performance, particularly as applica-
tions become more complex. The solution proposed by the authors draws on
powerful concepts from control engineering to address these shortcomings. Ex-
panding the horizon of real-time rendering techniques, this book:

• Explains how control systems work with real-time computer graphics
• Proposes a data-driven modelling approach that more accurately represents

the system behaviour of the rendering process
• Develops a control system strategy for linear and non-linear models using

proportional, integral, derivative (PID) and fuzzy control techniques
• Uses real-world data from rendering applications in proof-of-concept experi-

ments
• Compares the proposed solution to existing techniques
• Provides practical details on implementation, including references to tools

and source code

This pioneering work takes a major step forward by applying control theory in the
context of a computer graphics system. Promoting cross-disciplinary research,
it offers guidance for anyone who wants to develop more advanced solutions for
real-time computer graphics rendering.

Computer Science and Engineering

CAT#K18998 cover.indd 1 9/2/13 8:37 AM

About the pagination of this eBook

Due to the unique page numbering of this book, the electronic pagination of the eBook does not match the
pagination of the printed version. To navigate the text, please use the electronic Table of Contents or the
Search function.

Computer GraphiCs
with Control enGineerinG

Real-Time
RendeRing

AUTOMATION AND CONTROL ENGINEERING
A Series of Reference Books and Textbooks

Series Editors

FRANK L. LEWIS, Ph.D.,
Fellow IEEE, Fellow IFAC

Professor
The Univeristy of Texas Research Institute

The University of Texas at Arlington

SHUZHI SAM GE, Ph.D.,
Fellow IEEE

Professor
Interactive Digital Media Institute

The National University of Singapore

PUBLISHED TITLES

Real-Time Rendering: Computer Graphics with Control Engineering,
Gabriyel Wong; Jianliang Wang

Anti-Disturbance Control for Systems with Multiple Disturbances,
Lei Guo; Songyin Cao

Tensor Product Model Transformation in Polytopic Model-Based Control,
Péter Baranyi; Yeung Yam; Péter Várlaki

Fundamentals in Modeling and Control of Mobile Manipulators, Zhijun Li;
Shuzhi Sam Ge

Optimal and Robust Scheduling for Networked Control Systems, Stefano Longo;
Tingli Su; Guido Herrmann; Phil Barber

Advances in Missile Guidance, Control, and Estimation, S.N. Balakrishna;
Antonios Tsourdos; B.A. White

End to End Adaptive Congestion Control in TCP/IP Networks,
Christos N. Houmkozlis; George A Rovithakis

Robot Manipulator Control: Theory and Practice, Frank L. Lewis;
Darren M Dawson; Chaouki T. Abdallah

Quantitative Process Control Theory, Weidong Zhang

Classical Feedback Control: With MATLAB® and Simulink®, Second Edition,
Boris Lurie; Paul Enright

Intelligent Diagnosis and Prognosis of Industrial Networked Systems,
Chee Khiang Pang; Frank L. Lewis; Tong Heng Lee; Zhao Yang Dong

Synchronization and Control of Multiagent Systems, Dong Sun

Subspace Learning of Neural Networks, Jian Cheng; Zhang Yi; Jiliu Zhou

Reliable Control and Filtering of Linear Systems with Adaptive Mechanisms,
Guang-Hong Yang; Dan Ye

Reinforcement Learning and Dynamic Programming Using Function
Approximators, Lucian Busoniu; Robert Babuska; Bart De Schutter; Damien Ernst

Modeling and Control of Vibration in Mechanical Systems, Chunling Du;
Lihua Xie

Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach,
Gang Feng

Lyapunov-Based Control of Robotic Systems, Aman Behal; Warren Dixon;
Darren M. Dawson; Bin Xian

System Modeling and Control with Resource-Oriented Petri Nets,
MengChu Zhou; Naiqi Wu

Sliding Mode Control in Electro-Mechanical Systems, Second Edition,
Vadim Utkin; Juergen Guldner; Jingxin Shi

Autonomous Mobile Robots: Sensing, Control, Decision Making and
Applications, Shuzhi Sam Ge; Frank L. Lewis

Linear Control Theory: Structure, Robustness, and Optimization,
Shankar P. Bhattacharyya; Aniruddha Datta; Lee H.Keel

Optimal Control: Weakly Coupled Systems and Applications, Zoran Gajic

Deterministic Learning Theory for Identification, Recognition, and Control,
Cong Wang; David J. Hill

Intelligent Systems: Modeling, Optimization, and Control, Yung C. Shin;
Myo-Taeg Lim; Dobrila Skataric; Wu-Chung Su; Vojislav Kecman

FORTHCOMING TITLES

Linear Control System Analysis and Design with MATLAB®, Sixth Edition,
Constantine H. Houpis; Stuart N. Sheldon

Modeling and Control for Micro/Nano Devices and Systems,
Ning Xi; Mingjun Zhang; Guangyong Li

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Computer GraphiCs
with Control enGineerinG

Gabriyel Wong
Jianliang Wang

Real-Time
RendeRing

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The
MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or
discussion of MATLAB® and Simulink® software or related products does not constitute endorsement
or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MAT-
LAB® and Simulink® software.

Cover design by Gabriyel Wong

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130822

International Standard Book Number-13: 978-1-4665-8360-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Especially for God, Crystal, Xavier, Xana, and Xaron, the love of my life.

G.W.

Could we with ink the ocean fill,
And were the skies of parchment made,
Were every stalk on earth a quill,
And every man a scribe by trade;
To write the love of God above
Would drain the ocean dry;
Nor could the scroll contain the whole,
Though stretched from sky to sky.

Frederick M. Lehman (1868–1953)

ix

Contents
List of Figures .. xiii
List of Tables ..xvii
List of Abbreviations...xix
Preface...xxi
Acknowledgements .. xxiii
Summary ..xxv
Authors ...xxvii

Chapter 1 Introduction ..1

1.1 Background and Motivation ..1
1.2 Objectives and Contributions ..2
1.3 Scope of Work ...3
1.4 Book Outline ...3

Chapter 2 Preliminaries ..5

2.1 Fundamentals of Real-Time 3D Rendering5
2.1.1 Polygon-Based Rendering ..5
2.1.2 Volumetric Rendering ..8
2.1.3 Image-Based Rendering ...9

2.2 System Identification ... 10
2.2.1 Data Collection ... 11
2.2.2 Model Selection .. 12
2.2.3 Computing Model Parameters 13
2.2.4 Evaluating Quality of Derived Model 13

2.3 Literature Review .. 14
2.3.1 Comparative Study on Existing Research 14
2.3.2 Control-Theoretic Approaches to Computer Systems ... 16
2.3.3 Control Principles in Computer Graphics Software 17

Chapter 3 Linear Model Analysis of Real-Time Rendering 19

3.1 Introduction ... 19
3.2 Background .. 19

3.2.1 Control-Centric Definition for Rendering Time
Control .. 21

3.2.2 Challenges in Using Heuristics 21
3.2.3 Purpose of Workload Characterisation and Analysis ...22

3.3 Case for Data-Driven Modelling ...23
3.3.1 Basis for Selection of System Variables23

x Contents

3.4 Linear System Model Representation for Real-Time
Rendering ..25

3.5 Experiments ...27
3.5.1 Experiment 1: Single-Input–Single-Output

(SISO) System ..27
3.5.2 Experiment 2: Multiple-Input–Single-Output

(MISO) System ...28
3.5.3 Experiment 3: Control Framework Using System

Model ..29
3.6 Results ...30

3.6.1 Experiment 1 ..30
3.6.2 Experiment 2 .. 33
3.6.3 Experiment 3 .. 38

3.7 Discussion ..40
3.7.1 Comparison with Other Estimation Techniques 41

3.8 Superposition in 3D Rendering System Model 43
3.8.1 Principle of Superposition .. 43
3.8.2 Experiment ...44
3.8.3 Simulation ..46
3.8.4 Summary ..48
3.8.5 Additional Notes ... 49

3.9 Conclusion ... 49

Chapter 4 Modelling Non-Linear Rendering Processes 51

4.1 Introduction ... 51
4.2 Background .. 51

4.2.1 System Modelling with Neural Networks 51
4.2.2 Systems Modelling with Fuzzy Logic 53

4.3 Experiments ... 56
4.3.1 Time Delay Neural Network 56
4.3.2 Adaptive Neuro-Fuzzy Inference System56

4.4 Experiment Results ..60
4.4.1 Time Delay Neural Networks60
4.4.2 ANFIS Model ... 61

4.5 Discussion .. 63
4.6 Linearised Approximation from Non-Linear Models64
4.7 Conclusion ...66

Chapter 5 Model-Based Control ... 67

5.1 Introduction ... 67
5.2 Control System Perspective of Computer Graphics

Rendering Process ... 67
5.2.1 Control System Architectures for Real-Time

Rendering ...68

xiContents

5.2.2 Control System Performance Concepts
Applicable to Real-Time Rendering 70

5.3 PID Control and Tuning .. 71
5.3.1 Implementing PID Control for Rendering Process 72
5.3.2 Data Preprocessing in PID Control System 75
5.3.3 Gain Scheduling for Non-Linear Rendering

Process Models ... 76
5.3.4 Neural PID Control .. 79

5.4 Experiments ... 81
5.5 Results ... 83

5.5.1 Simulation Environment .. 83
5.5.2 Control System with Actual Rendering Process 83
5.5.3 Gain Scheduling Control System85

5.6 Conclusion ...86

Chapter 6 Model-Less Control .. 89

6.1 Introduction ... 89
6.2 Fuzzy Control System ... 89
6.3 Adaptive Neural Fuzzy Control ...90
6.4 Experiment ..92
6.5 Results ...95

6.5.1 Simulation ..95
6.5.2 Fuzzy Control System with Rendering Process95

6.6 Discussion ..97
6.7 Conclusion ...98

Chapter 7 Applications, Challenges, and Possibilities ..99

7.1 System Architectures ...99
7.1.1 Software Design ... 101

7.2 Software and Hardware Performance Considerations103
7.2.1 Data Integrity ... 103
7.2.2 Plant–Controller Communication Latency103
7.2.3 Data Structures and Handling 103
7.2.4 Complexity of Control Algorithm 104

7.3 Applications of Rendering Control Systems 104
7.3.1 Extension of Control System Framework 105

7.4 Convergence with Future Technology 105
7.4.1 Greater Computing Parallelism 105
7.4.2 Increased Use of Mobile Devices 105
7.4.3 Vast Improvements in Internet Infrastructure 106

7.5 Economic and Productivity Impacts 106
7.5.1 Enhanced Product Lifespan 106
7.5.2 Increased Productivity.. 106
7.5.3 New Products and Markets 107

xii Contents

Chapter 8 Conclusion .. 109

8.1 Performance Analysis .. 109
8.1.1 Frame Rate Stability ... 109
8.1.2 Transient Response ... 110
8.1.3 Adaptive Tracking Capability 112

8.2 Summary ... 117
8.3 Future Work ... 118

Annex A: Sample Applications ... 121
A.1 Overview ... 121
A.2 ProgressiveMesh Sample ... 121
A.3 How Sample Works ... 121
A.4 Tessellation Sample ... 122
A.5 How Sample Works ... 122
A.6 Samples .. 122

Annex B: Patent for Application Method and System for
Adaptive Control of Real-Time Computer Graphics Rendering 153

Title of Invention .. 153
Field of Invention ... 153
Background of Invention .. 153
Summary of Invention .. 154
Brief Descriptions of Figures ... 155
Detailed Descriptions of Figures .. 155
Control Design and Mechanism ... 156

I. PID Gain Scheduling .. 156
II. Fuzzy Control (Model-Less Control) 159

Claims (Preliminary) .. 161

Annex C: Neural PID Control System Code ... 167

References ... 171

Publications and Achievements .. 177
Patent Application .. 177
Book ... 177
Book Chapters .. 177
Conference Papers .. 177
Achievements ... 178

xiii

List of Figures
FIGURE 2.1 Real-time 3D rendering pipeline..6

FIGURE 2.2 Camera view frustum in 3D space. ..7

FIGURE 2.3 Programmable rendering pipeline (DirectX 11).9

FIGURE 2.4 Samples of surface shading effects that can be achieved with
pixel programs. .. 10

FIGURE 2.5 Process flow in system identification methodology. 11

FIGURE 2.6 Comparison of two model outputs with measured system
response. ... 14

FIGURE 2.7 The comparative literature review workflow. 15

FIGURE 3.1 Visual effect of varying vertex count for 3D object
in discrete steps. ...25

FIGURE 3.2 ARX model structure. ..26

FIGURE 3.3 Screenshot of hardware tessellation sample application
from DirectX SDK adapted with Stanford Dragon model
in Experiments 1 and 2. ...28

FIGURE 3.4 Screenshot of application in Experiment 1.29

FIGURE 3.5 Screenshot of application in Experiment 3.30

FIGURE 3.6 Input and output profiles of application in Experiment 1. 31

FIGURE 3.7 Steady-state frame time and vertex count relationship
in Experiment 1. ... 31

FIGURE 3.8 Measured and simulated output of rendering application in
Experiment 1. ... 32

FIGURE 3.9 Error between measured and simulated output of application
in Experiment 1. ... 33

FIGURE 3.10 Steady-state outputs of the system based on selected
combinations of two input variables. ... 35

FIGURE 3.11 Profiles of two inputs and output of rendering system
in Experiment 2..36

FIGURE 3.12 Measured and simulated outputs of MISO rendering system
in Experiment 2.. 37

xiv List of Figures

FIGURE 3.13 Profiles of input and output of rendering system
in Experiment 3. .. 38

FIGURE 3.14 Measured and simulated rendering system output
in Experiment 3. ... 39

FIGURE 3.15 SISO control system in Experiment 3. ...40

FIGURE 3.16 Simulated reference tracking with PID controller.40

FIGURE 3.17 Reference tracking with actual rendering application. 41

FIGURE 3.18 Screenshot of test application in superposition experiment. 45

FIGURE 3.19 Measured output and predicted output from Model A.46

FIGURE 3.20 Measured output and predicted output from Model B.46

FIGURE 3.21 Measured output and predicted output from Model C. 47

FIGURE 3.22 Comparison of outputs from Model C and summed outputs
of Models A and B. .. 47

FIGURE 4.1 (a) Perceptron neuron. (b) Multi-layer perceptron network (MLP). 52

FIGURE 4.2 Two-layer distributed time delay neural network with
time delays at inputs of each layer. .. 53

FIGURE 4.3 Fuzzy inference system. ...54

FIGURE 4.4 Screenshot of application in Experiment 1. 57

FIGURE 4.5 Screenshot of application in Experiment 2. 57

FIGURE 4.6 Adaptive network. .. 58

FIGURE 4.7 Neural network in Experiment 1. ...60

FIGURE 4.8 Data collected from Experiment 1. .. 61

FIGURE 4.9 Data collected from Experiment 2. .. 62

FIGURE 4.10 Screenshot of rendering application in Experiment 3. 62

FIGURE 4.11 Measured and reference output from ANFIS in Experiment 3. 63

FIGURE 5.1 Rendering process from system perspective.68

FIGURE 5.2 Closed-loop feedback control system. ...68

FIGURE 5.3 Rendering system with adaptive controller and quality
of service feedback. ...69

FIGURE 5.4 Modular adaptive control system for real-time rendering. 70

FIGURE 5.5 PID control system in MATLAB. .. 73

xvList of Figures

FIGURE 5.6 (a) Setting PID controller gain values in MATLAB.
(b) Interactive graphical user interface in MATLAB/Simulink
for tuning PID controller. ... 74

FIGURE 5.7 Steady-state frame time and vertex count relationship shown
in Experiment 1. ... 76

FIGURE 5.8 Gain scheduling PID control system. .. 78

FIGURE 5.9 Single neuron PID control system. .. 79

FIGURE 5.10 Comparison of system outputs using SNPID and PID controllers. 81

FIGURE 5.11 Control input from SNPID and PID controller. 82

FIGURE 5.12 Screenshot of application with PID control. 82

FIGURE 5.13 Reference tracking using PID controller (low to high). 83

FIGURE 5.14 Reference tracking using PID controller (high to low).84

FIGURE 5.15 Reference tracking using PID controller (to higher FPS).84

FIGURE 5.16 Reference tracking using PID controller (to lower FPS)................85

FIGURE 5.17 Simulated output with gain scheduling PID controller.86

FIGURE 6.1 Fuzzy control system in Simulink/MATLAB.90

FIGURE 6.2 Configuring fuzzy controller in Simulink/MATLAB. 91

FIGURE 6.3 ANFIS editor graphical user interface in Simulink/MATLAB. 92

FIGURE 6.4 Neural network model structure in ANFIS.93

FIGURE 6.5 Using ANFIS for controlling real-time rendering process.93

FIGURE 6.6 Input and output membership functions.94

FIGURE 6.7 Fuzzy logic control system. ...95

FIGURE 6.8 Reference tracking using fuzzy controller (high to low).95

FIGURE 6.9 Reference tracking using fuzzy controller (low to high).96

FIGURE 6.10 Reference tracking using fuzzy controller (to lower FPS).96

FIGURE 6.11 Reference tracking using fuzzy controller (to higher FPS)............97

FIGURE 6.12 Continuous reference tracking using ANFIS controller.98

FIGURE 7.1 The timing diagram of the rendering application used
in the control system. ... 101

FIGURE 7.2 The high-level design of the rendering application...................... 102

FIGURE 8.1 Experiment results from Pouderoux and Marvie’s research. 110

xvi List of Figures

FIGURE 8.2 Experiment results from Gobbetti and Bouvier’s
multi-resolution technique. ... 111

FIGURE 8.3 Experiment results from Jeschke et al.’s approach with usage
of imposters. ... 112

FIGURE 8.4 Experiment results from Paravati et al’s adaptive control
technique. ...113

FIGURE 8.5 Screenshot of application in our experiment. 114

FIGURE 8.6 Reference tracking using PID controller (low to high). 114

FIGURE 8.7 Experiment results from Zheng et al’s work on rendering
large 3D models online. ... 115

FIGURE 8.8 Experiment results from Li and Shen’s research
on time-critical multi-resolution volume rendering using
3D texture mapping hardware. ... 116

FIGURE 8.9 Quick-VDR: Interactive view-dependent rendering
of massive models, Yoon et al. ... 117

FIGURE 8.10 Experiment results from Scherzer, Yang, and Mattausch’s
research on exploiting temporal coherence in real-time rendering. ... 118

FIGURE B.1 System model of open-loop rendering process. 162

FIGURE B.2 Closed-loop control system with feedback. 162

FIGURE B.3 Deployment in single computer device. 163

FIGURE B.4 Deployment in distributed computer environment. 163

FIGURE B.5 Plot of steady-state values of input and output data. 164

FIGURE B.6 Control system. .. 164

FIGURE B.7 Relationship of input and output of rendering system. 165

xvii

List of Tables
TABLE 2.1 Results from the Research Review Classification 16

TABLE 3.1 Performance Counters in DirectX ..24

TABLE 3.2 Parameters of ARX Model in Experiment 1 33

TABLE 3.3 Parameters of State Space Model in Experiment 134

TABLE 3.4 Parameters of ARX Model in Experiment 2 38

TABLE 3.5 Parameters of ARX Model in Experiment 3 39

TABLE 3.6 Parameters of ARX Model A in Superposition Experiment48

TABLE 3.7 Parameters of ARX Model B in Superposition Experiment48

TABLE 3.8 Parameters of ARX Model C in Superposition Experiment48

TABLE 5.1 Linear Operating Ranges ..85

TABLE 6.1 Fuzzy Inference Rule Set ..90

xix

List of Abbreviations
3D Three-dimensional (computer graphics)
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
ARX Auto-regressive with exogenous (input or term)
BIBO Bounded-input bounded-output
CAD Computer-aided design
CAM Computer-aided manufacturing
DTDNN Distributed time-delay neural network
FPS Frames per second (also known as frame rate)
GPU Graphical processing unit
GUI Graphical user interface
LAN Local area network
LoD Level of detail
MISO Multiple-input–single-output
MLP Multi-layer perception
N4SID N4 subspace identification method
PID Proportional, integral, derivative (control)
QoS Quality of service
SISO Single-input–single-output
SNPID Single neuron PID
TCP Transmission control protocol

xxi

Preface
Interactive computer graphics is a mature field of study. In fewer than 15 years,
the improvements in speed and realism of computer-generated graphics from even
consumer grade computers have been phenomenal. There is no lack of evidence to
substantiate this statement as we observe the ever-increasing number of cutting-edge
interactive applications such as computer games, virtual prototyping, and visualisa-
tion software. However, real-time computer graphics applications are often oriented
toward meeting a particular set of goals without consideration of some form of global
optimisation. A number of years ago, through real-life encounters in large-scale
 system implementation, the idea of convoluting computer graphics rendering with
control theory was born.

From a larger perspective, computer graphics rendering is akin to any other pro-
cess that runs on a computer. In recent years, researchers found that the increasing
inclination to employ control engineering techniques in computer-related processes
is not so much a matter of computer control (using a computer as a controller) as
controlling the processes within a computer. Examples of such implementation are
discussed in the vast array of research literature about server performance, network
traffic control, and adaptive software with defined quality-of-service metrics. We
believe the trend is no coincidence; it represents wide acceptance of benefits from
integrating control theory with computer processes.

Our motivation for this work is simple. First, we want to provide a fundamen-
tal analysis of interactive computer graphics rendering from a systems perspec-
tive. Second, we want to establish a framework that facilitates interactive computer
graphics rendering in an environment providing optimal utilisation of resources and
good responses to rendering load changes. These goals can be accomplished through
the adoption of digital signal processing, system identification and control engineer-
ing techniques that we believe will draw the interest of researchers and practitioners
in the computer graphics-related fields.

While classical control demands meticulous evaluation of numerous criteria, the
goals of our control system described in this book focus on tracking user-defined
performance objectives while providing good transient responses so that changes
arising from rendering load control will not lead to abrupt changes in visual displays.
Furthermore, unlike physical systems utilised in aircraft, motors, and chemical mix-
ers in which a failure of a control mechanism may lead to a catastrophic outcome,
interactive computer graphics rendering is generally fail-safe.

In the course of this work, the computer graphics rendering process is modelled
from a data-driven and black-box approach. We have shown the possibilities of vari-
ous input–output configurations in a system model setting. While some may argue that
the rendering process is too complex to be modelled by a few variables, we hope the
reader can appreciate that the modelling technique in this book is in fact not congruent
to this argument, but rather a systematic approach because the derived system models
are substantiated with measured data.

xxii Preface

Finally, it is our sincere hope that this work can further stimulate cross-disciplinary
research and provide a premise upon which more interesting modelling and control
techniques for real-time computer graphics may be developed.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information,
please contact

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

xxiii

Acknowledgements
Words are just inadequate to express my gratitude toward Professor Wang Jianliang,
who is more than just my supervisor, he is a mentor and friend for many years.
Through him, I have learnt to appreciate the beauty of control theory. More impor-
tantly, his enduring encouragement and support have left me with a deep appreciation
of him as a true educator. If there is one conversation I would choose to remember
for life, it would be when he distilled the spirit of academic research as a pursuit of
excellence and challenge.

This book would not have been possible without the support of many, especially
my family. My heartfelt appreciation goes to my parents who did not have an exten-
sive education yet believed wholeheartedly in the value of continual education, to
the extent of making sacrifices for me in so many ways. To me, there is no closer
personification of selfless love than this. My wife Crystal, the gem of my life, has
been most instrumental in this endeavor. I wish to thank her for carrying the burden
on the home front and being such a dedicated partner. She is a godsend whom I can
never do without in every season of my life. The credit and fruit of this labor belong
to all of them.

Last but certainly not least, I thank God for this journey of molding and growth.
I thank Him for all the people who have made a difference in my life through this
work and every step which He has hand-held me. To complete writing this book
is a task that requires unimaginable perseverance and strength which He has so
 graciously given to me.

Gabriyel Wong

xxv

Summary
The value of interactive computer graphics is underscored by myriad applications in
many domains of our lives. Consumers today can expect extremely realistic imag-
ery generated in real time from commodity graphics hardware in applications such
as virtual prototyping, computer games, and scientific visualisation. However, the
constant and increasing demands for fidelity coupled with hardware architecture
advancement pose many challenges to researchers and developers as they endeavour to
find optimal solutions to accommodate speed of rendering and quality in interactive
applications with real-time computer graphics rendering. The qualitative requirement
of such applications, apart from the subjective perception of the displayed imagery,
is the response time of a system based on user input. In other words, the requirement
translates to the speed at which the machine can produce a rendered image according
to the input provided by the person in the loop of the feedback system.

Earlier research attempted to address the frame latency problem by providing
mathematical models of the rendering process. The models were often primitive
because they were derived from coarse approximation or depended on specific
application level data structures. Most approaches are based on heuristics and algo-
rithms and are largely dependent on a specific type of application corresponding to
the research. A major shortcoming of such techniques lies in the non-guarantee of
performance.

From a systems perspective, the rendering process is modelled from an open-loop
approach underpinned by constraints and estimations of the constituents of the render-
ing process. As a result, the output often fluctuates within an acceptable performance
range. Furthermore, many such techniques rely on specific hardware or they may
require unfriendly implementation on current computer graphics hardware. The advent
of more sophisticated consumer graphics hardware in recent years has caused the
rendering pipeline to be used in a far more complex manner to achieve ultra-realistic
visual effects. Consequently, adapting models into applications becomes progres-
sively more challenging as hardware and software technologies continue to evolve.

We can see from this background the exciting opportunities for the introduction
of modelling and control principles into existing computer graphics systems. Our
research focused on a systematic approach to realising a framework for modelling
and control of real-time computer rendering in two stages:

 1. Investigation, analysis, and implementation of a data-driven system identi-
fication process for real time rendering

 2. Structured analysis of the derived model for the selection and design of a
suitable control strategy

The first part of this book focuses on the modelling aspects of real-time render-
ing. Based on the dynamic natures of the possible and myriad variations of render
states, polygon streams, and the non-linearity of the rendering process, we propose

xxvi Summary

a data-driven modelling approach that accurately represents the system behaviour
of this process from two angles: (1) the larger operating range where non-linearity
exists and (2) the piecewise linear operating range. We propose two techniques for
tackling the modelling challenge: (1) using a feed-forward time delay neural network
derived from experimental data and (2) fuzzy modelling.

We demonstrate that both techniques can yield very accurate results in compari-
son with actual measured data. In addition, we compare the estimated outputs of our
models with other mathematical estimation methods to show that the models derived
from our approach yield better results than mathematical estimations. Starting with
single-input–single-output (SISO) system models, we extend our work to investigate
the validity of multiple-input–single output (MISO) systems as well.

The second part of this book focuses on the design of a control strategy based on
the process nature investigated in the earlier chapters. The benefits of applying control
theory in the context of a computer graphics system are explained and the relative
advantages of the theory over the performances of existing heuristics and algorithms
(open-loop estimations of rendering) are highlighted.

Our research proposed two controller designs to achieve stable output with accu-
rate tracking: (1) proportional, integral, derivative (PID) control and (2) neural and
fuzzy control. We investigated control system implementation in both local and dis-
tributed configurations.

In the local configuration, the rendering process (“plant”) and controller reside in
the same computer. In the distributed configuration, the controller runs on a com-
puter different from the one used for rendering. The control activities and plant feed-
back are communicated between the computers via a network link. Despite network
latency, this configuration allows flexible usage of system-wide resources in an inte-
grated environment. The approach will be especially useful if elaborate controller
designs adopted in the future result in the introduction of heavy computational loads
into overall systems.

xxvii

Authors
Gabriyel Wong is an entrepreneur, innovator, and author with extensive experience
spanning leadership, managerial, and consulting roles in technology businesses. He
currently works for one of Europe’s largest private equity businesses in e-commerce
and heads product performance and strategy activities in Southeast Asia.

Wong was the co-founder of XPEGIA, a Singapore-based start-up specialising in
interactive media solutions for the advertisement and education markets. Before that,
he was the R&D Director at EON Reality, a global leader in virtual reality technology
based in the United States; he spearheaded the company’s research and development.
Before joining EON Reality, Wong was the founding director of gameLAB, the first
research laboratory in Singapore to focus on computer game design and technology.
He was a faculty member at Singapore’s Nanyang Technological University (NTU)
and lectured in both undergraduate and post-graduate programs.

He started his career as a technical lead at Singapore Technologies, one of Asia’s
largest engineering conglomerates and led the pioneering work on advanced com-
puter graphics technology for defense applications.

Wong has published papers and spoken at conferences around the world and
secured public and commercial funding for patenting his inventions. He earned
B Eng and M Eng degrees in 2000 and 2012 from NTU and will be earning his
PhD in 2013.

Jianliang Wang, PhD, earned a BE in electrical engineering from Beijing Institute
of Technology in China in 1982 and pursued MSE (1985) and PhD (1988) degrees
in electrical engineering from The Johns Hopkins University in the United States.

From 1988 to 1990, Dr Wang was a lecturer in the Department of Automatic
Control at Beijing University of Aeronautics and Astronautics. In 1990, he joined
the School of Electrical and Electronic Engineering at Nanyang Technological
University, Singapore, where he is currently a tenured associate professor.

Dr Wang’s current research interests include modelling and control of computer
graphics rendering systems and also robust and reliable controls, nonlinear controls,
and their applications to flight control systems. He has published 4 book chapters,
about 70 journal papers, and more than 130 conference papers.

Dr Wang currently serves as an associate editor of Transactions of the Institute of
Measurement and the Asian Journal of Control. He was a guest editor for a special
issue of Control and Intelligent Systems. The special issue of this international journal
published in January 2012 was dedicated to networked control and unmanned systems.

Dr Wang also served as the general chair of IEEE’s 2007 International Conference
on Control and Automation and program chair for the 2010 conference. He also
chaired various aspects of several conferences including the International Conference
on Control, Automation, Robotics, and Vision; the Asian Control Conference;
the Chinese Control Conference; and others. He was named chairman of IEEE’s
Singapore Control Systems Chapter for 2008–2009. He is a senior member of IEEE.

1

1 Introduction

1.1 BACKGROUND AND MOTIVATION

While modern rendering software claims to have controlling mechanisms that enhance
runtime performance, the mechanisms are often very primitive and inadequate. The
results of this deficiency are indeterminate drops in the visual quality of generated
imagery and frame rates that can severely affect usage experience. By applying control
theories in real-time rendering, it is possible to rectify these shortcomings altogether.

The vision is to create an intelligent rendering system that can systematically
adapt to its operating environment to produce optimum runtime performance at all
times. To our best knowledge, no commercial product exists as this work is written
and no active research is in progress in this cross-disciplinary application field.

The application of control concepts in the computer graphics software provides
new opportunities for better performance derivable from graphics hardware. Until
today, typical rendering applications struggled to utilise hardware efficiently. Much of
the burden of optimisation falls on the software programmer who must be extremely
conversant with the graphics pipeline.

The predominance of interactive computer graphics is underscored by a burgeon-
ing variety of applications in various aspects of daily life. For example, it is easy
to observe various types of interactive systems in an urban environment such as a
shopping mall or an office building. These systems range from digital signage to
projection-based displays and touch panels. At the industrial level, interactive com-
puter graphics technology powers important processes such as computer-aided design
and manufacturing, virtual prototyping, and scientific visualisation and simulation.

While customers constantly demand high quality computer-generated graphics,
the cost associated with their demands may not be within reach. To illustrate, the
price of a performance workstation is typically many times more than the cost of
a desktop PC for home use. Furthermore, mobile devices such as PDAs and cell
phones lack sufficient computing power to render high quality graphics for produc-
tivity at work.

Our research concerns a fully automated technology that circumvents the afore-
mentioned problems and allows users to enjoy high quality interactive computer
graphics on both desktop and mobile devices. The objective of this project is to
leverage earlier research on this subject and extend the work to allow a product-ready
toolkit to be developed for commercialisation opportunities.

Over the past few years, we developed a framework that realises the concept of
delivering adaptive interactive rendering through laboratory experiments, theoretical
modelling, and simulation. Our technology employs control theory and the system
identification methodology, both of which are mature fields, proven by their use in

2 Real-Time Rendering

aeronautical, mechanical and electrical engineering, and electronics industries. The
concept is based on feedback control that can provide consistent performance moni-
toring and regulation with no requirement for human intervention. From a systems
perspective, the technical challenge translates into the form of a “plant” (process
to be controlled) and a “controller” component that ensures the process performs
 optimally according to predefined objectives.

This technology clearly has numerous applications and commercialisation pos-
sibilities. We conceived the possibilities listed below.

Computer-aided design (CAD) and -manufacturing (CAM)—Three-dimensional
(3D) datasets used widely in many industrial applications. Our technology will allow
a user to view such datasets even on a mobile device. This brings productivity out of
the office and makes it available to people on the move.

Virtual communication—The market for 3D virtual communication is growing,
particularly in the education and corporate services segments. As a viral social net-
working medium or mode of communication in professional exchanges, 3D inter-
active applications will remain key factors in online virtual communication. We see
our technology as an enabling factor for linking more people to such networks.

Marketing and sales—More companies are moving toward high quality inter-
active content intended for consumers. This provides an opportunity for us to
introduce our technology so that more people can utilise it without the limitations
imposed by hardware. As a result, commercial entities can expect greater market
reach and corresponding increases in revenue.

Training and education—Our technology can be deployed in various training
and education products, enabling them to be delivered to audiences utilising hard-
ware with different capabilities. The benefit offered by our technology is the easy
ability to visualise 3D information even in a collaborative environment, therefore
enhancing the value of training and knowledge dissemination.

1.2 OBJECTIVES AND CONTRIBUTIONS

Based on the shortcomings of current real-time rendering software, our research
entailed the investigation and development of a feasible solution that would allow accu-
rate and sustainable control of the real-time rendering process on different hardware
platforms. The two key objectives affecting implementation of the technology are:

 1. Despite the complexities involved in real-time rendering, it is imperative to
devise a systematic method to describe this process in a form that relates its
inputs and outputs consistently.

 2. Based on the derivable form and the known characteristics of the rendering
process, it is critical to find applicable control principles and frameworks
that will ensure control of the process over a variety of scenarios.

Our research spans knowledge of the computer science (computer graphics rendering)
and control engineering disciplines. Both fields imposed challenges that made our
research both exciting and fulfilling. Our key research contributions are listed below.

3Introduction

 1. We describe a novel framework by which the real-time rendering pro-
cess may be modelled accurately. This framework involves the adoption
of data-driven system identification methodology. Previous attempts to
 characterise the rendering process via only observable variables and
case-specific formulations led to inaccurate models. Our model addresses
these shortcomings.

 2. Apart from linear models, our data-driven framework is extended to non-
linear models using soft computing techniques such as neural networks and
fuzzy models.

 3. We developed control system frameworks for both linear and non-linear
models in real-time rendering using (a) PID control with and without gain
scheduling and (b) fuzzy control with and without adaptive neural networks.

The application of our control frameworks has shown much better resource utilisa-
tion in the real-time rendering process than earlier work that generally demonstrated
coarse performance tracking.

1.3 SCOPE OF WORK

Real-time rendering is a vast topic in the field of computer graphics. Although the
modelling techniques and control framework may be applicable to areas such as
 volume- and image-based rendering, our study deals with polygonal-based rendering
pipelines found in commodity graphics hardware and it leverages geometry sub-
division technique as a basis for controlling the input to the rendering system.

At this juncture, our work is based largely on the rendering of a single large
3D mesh that is used as a pseudo-representation of more complex 3D scenes with
numerous objects. From a different perspective, this system is useful for applications
involving a single large object of interest, for example, massive model rendering and
computer-aided design.

Since the focus of this research is on real-time rendering relating to the response
time of a system in an interactive environment, we consider the time required to
render an image (frame) as the critical performance metric. While computer graphics
activity is essentially visual, the quality of the generated image is frequently taken as
the next most important metric for assessment. However, due to the subjectivity and
complexity involved in processing image comparisons, the image quality component
is omitted as a performance object in this work. From the system perspective, the
real-time rendering framework proposed in this research is flexible to accommodate
a multiple-input–multiple-output (MIMO) configuration. This means the user has
the full freedom to implement additional output variables, which may include image
quality related performance variables.

1.4 BOOK OUTLINE

Chapter 1 provides the background and motivation that led to this research.
Chapter 2 discusses the fundamental knowledge in two key disciplines related to
this research—real-time computer graphics rendering and system identification

4 Real-Time Rendering

methodology. We then provide a systems perspective of the rendering process
and explain the impacts of variables surrounding the system inputs and outputs.
After that, a survey of previous research in the areas of rendering load control and
 characterisation is discussed.

Chapter 3 delves into the details of our data-driven modelling approach to
real-time rendering with a focus on linear system structures and their derivation.
Through experiments, we provide rendering models for single-input–single-output
(SISO) systems and show how they may be extended to more complex and practical
systems involving multiple inputs.

In Chapter 4, we explore the use of soft computing techniques for modelling
the real-time rendering process. The application of such techniques is performed
at the operating range of the rendering system where non-linear characteristics are
exhibited. Following that, we provide the basis for linearisation from the derived
non-linear rendering system model.

Chapter 5 begins with the introduction of model-based control and deals with
the control system framework for the linear rendering system model obtained in
Chapter 3. The key control mechanism discussed in this chapter is the closed-loop
feedback design with PID controller. We demonstrate how systems with single and
multiple inputs may be controlled as well.

The focus of Chapter 6 is on advanced control techniques and considers our pro-
posed framework from a model-less perspective. This chapter illustrates the estab-
lishment of a control system framework without the need for an explicit system
model as described in Chapters 3 and 4. By using a variety of fuzzy control tech-
niques, we demonstrate that a control system can perform very well when tracking
the performance of a real-time rendering process.

Chapter 7 discusses applications, challenges, and possibilities, including system
architectures, software and hardware performance and future technology.

The conclusions of our research and suggestions for future work are discussed in
Chapter 8.

Annex A contains sample applications.
Annex B discusses the authors’ patent for Method and System for Adaptive Control

of Real-Time Computer Graphics Rendering.
Annex C delineates Neural PID Control System Code.

1

2 Preliminaries

2.1 FUNDAMENTALS OF REAL-TIME 3D RENDERING

In real-time computer graphics, 3D rendering refers to the process of generating a
sequence of images that produces not just the animated effect of motion and change
but the visual cue of depth for objects in the imagery given an external input or stimu-
lus to the system. In typical applications, the goal is to provide visual feedback to the
user when there is interaction via the human-computer interface. The speed at which
each image, known as a frame, of the animation sequence is generated defines the
performance of the system.

Because speed of rendering every image is crucial in real-time rendering, both the
computer hardware and software have to work together in the most optimal way so
that the best possible image quality can be achieved in tandem with an acceptable
frame rate (a metric that measures the number of frames that can be generated in one
second). Over many years of research and development, the real-time 3D rendering
process has taken leaps and bounds in terms of the image quality that is produced in
various real-world applications such as computer games, training simulators and 3D
product demonstrations. This involves an intricate process that spans the preparation
of 3D content in elaborate modelling tools to processing combinations of rendering
algorithms with myriad configurations of parameters for the final output which is the
image to be shown eventually on the display device. Modern computers have dedicated
hardware to handle computer graphics rendering. This hardware provides acceleration
to computer graphics rendering routines so that the computer’s central processor unit
(CPU) can focus on other non-computer-graphics-related and auxiliary tasks. In gen-
eral, real-time or interactive 3D rendering applications are supported by an abstraction
layer that communicates with the hardware. This layer is commonly known as the
3D rendering Application Programming Interface (API) and it is fully responsible for
pushing rendering commands to the hardware and managing the render state machine.

2.1.1 Polygon-Based RendeRing

Figure 2.1 shows the multi-stage 3D real-time rendering pipeline. The transforma-
tion of inputs to the final visible pixels on a display device may be described system-
atically via the following steps.

• Creation in Local 3D Model Coordinate System
• Each object is created individually in its own 3D coordinate system.
• Objects may be represented in a variety of geometry formats (triangles,

rectangles, strips of polygons, etc.). Essentially, every polygon in a 3D
space consists of points known as vertices.

2 Real-Time Rendering

• For polygons to be rendered with visually correct features, each vertex
is associated with a set of attributes such as position (coordinates in 3D
space), colour, normal (perpendicular) vector from a surface, texture
coordinates (user-defined mapping onto the surface), and other factors.

• Transformation to Global World Coordinates
• To compose a scene in 3D space consisting of different objects, all cre-

ated 3D objects must be transformed into the same coordinate system.
• These transformations modify only the relative positions of the vertices

and the normal. Visual attributes such as colour and texture coordinates
are not modified.

• Transformation to 3D View Coordinate System
• A viewpoint in 3D space is commonly cited as the “camera” location.
• The geometry (vertex arrangement) from the 3D space is transformed

into the camera view coordinate system. Depending on the rendering
software, the common definition for this space is based on a right-
handed coordinate system with the camera at the origin pointing down
the negative z axis. The x axis is to the right and the y axis up. The
projection from 3D to 2D space is performed at this stage.

• The depth information of any object can be obtained from the z coordi-
nate value at this stage.

• The effect of virtual “lights” that create illumination properties in the
3D scene is computed at this stage. For example, a surface colour shad-
ing algorithm known as Gouraud shading will be computed at each
vertex of a 3D object using the light parameters, light position, normal
vectors, and the 3D object’s texture or material properties.

• The removal of polygonal surfaces not shown in the view due to occlu-
sion is known as “culling” and is performed at this stage as well.

• Culling is related to the attributes of the camera view defined by a
 virtual trapezoid volume known as the “view frustum” using six planes
(left, right, up, down, front, and back) as shown in Figure 2.2.

Per-vertex
operations

Rasterisation

Per-pixel
operations

Per-fragment
operation Framebuffer

Texture
assembly

Display lists

Vertex data

Pixel data

FIGURE 2.1 Real-time 3D rendering pipeline.

3Preliminaries

• Transformation to 3D Clip Coordinate System
• The geometry data in this stage are prepared for a post-processing step

known as “clipping.”
• The transformation of the geometry depends on the type of view pro-

jection used. Certain non-linear transformation may take place, for
example, when perspective projection creates a tapering-off view of
objects at a distant horizon in contrast to orthographic projection that
consistently preserves the dimensions of a 3D object.

• Transformation to Normalised Device Coordinates
• The geometry is normalised for display in a 2D window on a physical

 display device.
• Further clipping is done to remove geometry outside the user-defined

 window boundaries.

• Transformation to Display Window Coordinates
• All vertices are converted to units of the display (pixels) window.
• Typically, the origin of reference is at the lower left corner of the display

window.

• Transformation to 2D Screen Coordinate System
• The conversion to screen pixels (rasterisation) is performed. Pixels are

 visible colour dots that can be displayed on a screen.
• To generate shaded pixels, attributes such as texture coordinates, colour,

and normal vectors are used in the computation and interpolated across
the vertices and polygon surfaces.

• Algorithms may be used to perform further hidden surface removal by
using depth information obtained from the geometry.

Eye point

Near plane

Far plane

Line of sight

Top plane

Bottom plane

Left plane

Right plane

FIGURE 2.2 Camera view frustum in 3D space.

4 Real-Time Rendering

• The final colour of the pixel is determined by combining all other
effect state settings (e.g., blending and stencil operations) in the ren-
dering pipeline.

• The output of this stage is the final colour of every pixel placed in the
 memory of the display hardware (the frame buffer).

In the course of rendering a 3D scene, many inputs and settings such as the geom-
etries of 3D objects and their material “look” parameters are sent to the graphics
hardware for processing. About a decade ago, outdated graphics hardware relied
solely on a few hard-wired algorithms to process such data via a method known as
the fixed function rendering pipeline. As a result, real-time rendering application
developers had little space to control the look of a 3D object based on a limited set of
functions that computed the rendering output. The impact of such limitations is the
lower quality of imagery generated from computer graphics hardware.

This problem was circumvented by the advances represented by a new generation
of computer graphics hardware that allows rendering routines known as shaders
to be injected into the hardware before or during the runtime of an application.
This capability now gives application developers full control over the quality of the
generated output by varying shader routines. Figure 2.3 depicts this new-generation
fully programmable rendering pipeline.

Shaders come in two formats: vertex and pixel types. A vertex shader is a graph-
ics processing function used to add special effects to objects in a 3D environment.
It is executed once for each vertex sent to the graphics processor. The purpose is to
transform each vertex’s 3D position in virtual space to the 2D coordinate at which
it appears on the screen and the as a depth value in the graphics hardware. A pixel
shader is a computation kernel function that computes colour and other attributes of
each pixel. Pixel shader functions range from always outputting the same colour to
applying a lighting value to adding visual effects such as bump mapping, shadows,
specular highlights, and translucency properties. They can alter pixel depth or output
more than one colour if multiple render targets are active. Figure 2.4 illustrates an
example of the effects of pixel shaders on a 3D object. Apart from vertex and pixel
shaders, an important feature of state-of-the-art graphics rendering architectures is
the functionality of geometry shaders. Geometry shaders are added to the rendering
pipeline to enable generation of graphics primitives, such as points, lines and dif-
ferent types of triangles after the execution of vertex shaders. With this capability,
it is then possible to perform operations such as mesh resolution manipulation and
procedural geometry generation.

Computer hardware technology and new rendering algorithms continue to
advance quickly. The evolution of the real-time rendering pipeline also continues as
this book is written.

2.1.2 VolumetRic RendeRing

In Section 2.1.1, we described how animation can be produced using 3D data and
physics-based principles for surface shading effects. Another technique for pro-
ducing 3D visualization is through the usage of volume data that consists of not

5Preliminaries

just positional information in 3D space but continuous depth data with additional
dimensions and possibly its materials information as well. This type of spatial data
is commonly used in scientific and medical work where cross-sectional information
is important for evaluation and study. Volume rendering produces the exterior and
the interior look of an object, usually with visual cues such as transparency and color
differentiation. The image generation process considers the absorption of light along
the ray path to the eye and volume rendering algorithms can be designed to avoid
visual artifacts caused by aliasing and quantisation.

2.1.3 image-Based RendeRing

In contrast to polygon-based rendering in which 3D geometry is provided for con-
structing the 3D hull of an object, image-based rendering techniques render novel
3D views by using a set of input images. This avoids the need for a stage where 3D
data has to be explicitly provided by manual labour or some data acquisition means.
These techniques focus on computer vision algorithms in feature detection and
extraction from a set of basis images and thereafter reconstruct a 3D object or scene.

Input

Vertex Shader

Input Assembler

Geometry
Shader

Stream
Output

M
em

or
y R

es
ou

rc
es

 (B
uff

er
, T

ex
tu

re
s,

et
c.

..)

Rasteriser

Pixel Shader

Output Merger

FIGURE 2.3 Programmable rendering pipeline (DirectX 11).

6 Real-Time Rendering

Image-based rendering techniques are often classified according to the degree by
which geometry information is used. More importantly and in recent years, there has
been a confluence of image-based techniques with polygon-based rendering in many
applications due to the close continuum in 3D and 2D space in computer graphics.

As volume and image-based rendering are topics beyond the scope of this
research, they are introduced here as auxiliary information on alternative 3D ren-
dering techniques and more information can be found on the Internet and major
research publication portals.

2.2 SYSTEM IDENTIFICATION

The goal of system identification is to derive a mathematical model of a dynamic
 system based on observed input and output data. Usually a priori information per-
taining to a system will be useful for postulating the preliminary model structure.
The system may then be modelled according to empirical data (black-box modelling)
or conceivable mathematical functions such as physical laws (white-box modelling).
Often, real world systems are non-linear and operate with reliance on state memory.
The systems are dynamic and thus their outputs may depend on a combination of pre-
vious inputs, outputs, and states. The combination provides the basis for time series
and regression mathematical expressions (models) for different reproducible systems.

System identification is an iterative procedure that can be summarised briefly
by the flowchart in Figure 2.5. A model structure is chosen in advance based on

FIGURE 2.4 (See colour insert.) Samples of surface shading effects that can be achieved
with pixel programs.

7Preliminaries

preliminary information obtained from the system. The parameters of this model
structure are then computed based on the set of experimental data collected previ-
ously. A portion of this data is allocated for model validation and the entire process
from choosing a model structure to validation is repeated until the user-defined
simulation performance criteria are met.

From a system identification perspective, we treat the real-time rendering process
as the subject to be modelled. Since the rendering process cannot be described intui-
tively by physical laws such as mass, velocity, and temperature, black-box modelling
is adopted. The system is first tested with a set of predefined inputs and the outputs
are collected. This input–output dataset that captures a certain dynamic range of
the behaviour of the system is then used with mathematical regression techniques to
derive the estimated model.

Due to the scope of this book, we briefly summarise the steps in the system iden-
tification process below. A detailed and authoritative coverage of this topic can be
found in Ljung’s book [1].

2.2.1 data collection

To obtain an effective model of a system, it is necessary for the measured data to
capture and show the behaviour of the system adequately. An appropriate experi-
mental design can ensure that the correct variables and dynamics of the system are

Design experiment and
collect data

Post-process dataY

N

N Y
End

Validate model

Model is acceptable

Data require post-
processing

Choose model
structure

Select model
parameters and fit

model to data

FIGURE 2.5 Process flow in system identification methodology.

8 Real-Time Rendering

measured at sufficiently good resolution. In general, the following principles should
be observed:

 1. Select inputs that can excite the system dynamics adequately.
 2. Minimise the effects of noise and disturbance to obtain a good signal-to-noise

ratio.
 3. Choose appropriate sampling intervals for measuring data.
 4. Set a sufficient long duration of data collection to ensure capture of impor-

tant time constants.

2.2.2 model selection

In system identification, we begin by determining the model structure best expressed
by a mathematical relationship between input and output variables. This model
structure typically provides the flexibility to describe a system based on certain
parameters. Some examples of model structures include parameterised functions
and state space equations. To illustrate, a linear parametric model is provided in the
 equation below.

 y k ay k bu k() = −()+ ()1 (2.1)

where u is the input, y, the output, k, the discrete time step and a and b are model
structure variables.

Essentially, system identification is a systematic approach that begins with the
selection of a model structure and then using approximation techniques to estimate
the numerical values of the model parameters. While it may seem arbitrary to start
with the selection of a model structure, it is not an entirely ad hoc process. The fol-
lowing approaches may be adopted in deciding on an appropriate model structure.

 1. Start with the simplest system model structures to avoid unnecessary com-
plexity in cases where the data can be modelled by a simple structure.
Alternatively, a user can try various mathematical structures in a technique
known as black-box modelling.

 2. Designate a specific model structure for the data to be modelled by establish-
ing certain predetermined principles; this technique is known as grey-box
modelling.

Some well known system model structures from established research include the:

Auto-regressive exogenous (ARX) model
Auto-regressive moving average (ARMA) model
Box–Jenkins model
Output error model
State space model

9Preliminaries

2.2.3 comPuting model PaRameteRs

In system identification, the model parameters are estimated by minimising the func-
tion that describes errors between the derived system model output and the measured
response. Assuming a system is linear and time-invariant, the output of the linear
model ymodel can be expressed as

 y t G s u tmodel () = () () (2.2)

where G(s) is the transfer function, y the model output and u, the input to the model.
To determine G(s), we can minimise the difference between the model output ymodel(t)
and the measured output ymeas(t). We can use the minimisation criterion which is a
weighted norm of the error v(t):

 v t y t y t y t G s u tmeas model meas() = ()− () = ()− () () (2.3)

where ymodel(t) is either the model’s simulated response given an input u(t) or its pre-
dicted response given a finite series of past output measurements, i.e., (ymeas(t–1),
ymeas(t–1),…).

From the above, v(t) is otherwise known as the simulation error or prediction
error. The objective of the estimation algorithm is to generate a set of parameters in
the model structure G such that eventually this error is minimised.

2.2.4 eValuating Quality of deRiVed model

The steps taken to evaluate the quality of a derived system model generally include
the comparison of the model response to the measured response and the analysis
of model residuals. Figure 2.6 compares the outputs of two different models with a
measured output.

Residuals are differences between a model’s one-step-predicted output and the
measured data. In other words, residuals may be understood as portions of validation
data that are not well described by the model. In residual analysis, the whiteness and
independence tests are key performance indicators.

The whiteness text examines whether a model includes a residual auto-correlation
function inside the confidence interval of the estimates. If it does, the model passes
the test and the outcome indicates that the residuals are not correlated.

In addition, a model is qualified when it passes the independence test (no correla-
tion between its residuals and past inputs). If evidence indicates such a correlation,
the information revealing how the output relates to the input is incomplete. A simple
example is an output y(t) beyond the confidence interval during a lag k that originates
from the input u(t – k). A good model should perform both tests relatively well.

The system identification methodology accommodates an iterative process in the
determination of the final model structure and parameters. A real world system may
not be represented by only a single model structure. Whenever a derived model is
found inadequate, it is necessary to revisit the model selection process, reconsider

10 Real-Time Rendering

the model parameter determination algorithm, and perhaps re-evaluate the data
 collection procedure.

2.3 LITERATURE REVIEW

While control theory is a mature field of study developed after the industrial revolu-
tion, the adoption of the techniques in the domain of computer software, particularly
real-time computer graphics systems, remains nascent. This literature review pro-
vides a survey of research in these areas as background for our research.

2.3.1 comPaRatiVe study on existing ReseaRch

The premise of the novelty in our research is founded upon close examination of
previous work done in the fields of both real-time computer graphics and control
theory, particularly those that have been successful in fusing the two disciplines and
a careful thought process in terms of innovation in this area. A broad-stroke but sys-
tematic and progressive approach was taken to consider research publications within
two decades to ensure that relevant techniques are not missed out regardless of their
age and how they might contribute to further knowledge development.

Figure 2.7 shows the research comparative study flow conducted in this work
which consists of the Classification Stage and the Qualitative Comparison Stage.
In the Classification Stage, we begin with the most relevant keywords in the litera-
ture search terms. We consider the following words as the “lowest denomination”

55 60 65 70 75 80 85

−10

−5

0

5

10

Model Outputs vs Measure Output

Time

y

Output; measured
Model1; fit: 76.48%
Model2; fit: 55.82%

FIGURE 2.6 Comparison of two model outputs with measured system response.

11Preliminaries

because of their relative importance in a subject matter. For example, omitting
words such as “real-time”, “graphics” and “3D” since they are either rhetorical in
computer graphics research or they may be replaced by stronger keywords such as
“interactive ”, “rendering” and directly meaningful candidates such as “frame rate”
and “control”. These keywords are used in search fields in major research publica-
tion online portals which indexes the world’s largest collection of research literature.
The gleaning process covers more than 500 research papers in a combined cohort of
4,000 search results from the publication portals.

As described in Section 1.3 in Chapter 1, the research in this thesis is primarily
focused on polygon-based rendering technique which is predominant in common
consumer and industrial applications such as computer games, virtual reality soft-
ware and computer-aided design and prototyping. Hence, the Classification stage
ends with segregating research literature that shares the same technique and is
related to the topic of interactive 3D rendering. Table 2.1 shows the results from this
classification stage from the initial pool of publications.

Start

Yes

Yes

Yes

No No

No

End

Classification Stage

Qualitative
Comparison

Similar
Technique?

(Polygon-based
Rendering)

Provide
frame rate

history?

Provide
frame rate

history?

Other
considerations

Compare
oscillatory
behavior

Compare
output error
from target
frame rate

Compare
frame rate

stability

Compare
frame rate
transition

speed

FIGURE 2.7 The comparative literature review workflow.

12 Real-Time Rendering

The next step in this comparative study is to select literature which provides
experimental results on frame rate control since we need to conduct a qualitative
analysis on them. For this purpose, these results should contain a history of data
points in the time domain that demonstrate certain desirable qualities such as stabil-
ity, offset errors and smooth frame rate transitions. These features would be com-
pared to the results we obtain from the experiments conducted using the techniques
proposed in this research with both qualitative and quantitative perspectives.

While research papers could be found relating to the topic of interactive rendering,
however many of them alluded to concrete experiment results on sustainable perfor-
mance as shown in the references from the bottom row of Table 2.1. In some cases
[61] [71] [76], only static frame rates are given as an approximation to the interactive
requirement. Furthermore, other researchers have chosen to work on volumetric [71]
[76] [80] and image-based rendering [68] [70] [83] techniques which are prevalent
in medical and large-scale visualization research but they differ from polygon-based
rendering vastly. As a result, it is not straightforward to establish a direct comparison
on the benefits offered by our research with these techniques. Despite these differ-
ences, we strive to provide a detailed qualitative and quantitative analysis on the
aforementioned rendering architectures and their respective performance with our
rendering framework in Chapter 8, Section 8.1.

2.3.2 contRol-theoRetic aPPRoaches to comPuteR systems

As computer systems become increasingly complex through advances in hardware
and software technology, traditional approaches to providing performance guaran-
tees have become inefficient. In recent years, control engineering principles used
successfully in real-world applications such as mechanical and electrical systems
and process control have emerged as promising solutions to meet performance con-
trol challenges such as real-time scheduling, network bandwidth control, and power
management in complex computer systems.

The comprehensive framework presented by Abdelzaher et al. [2] introduces
feedback performance control in software services. The authors emphasised the
importance of guaranteed quality of service (QoS) in modern computer software
and systems that indicates the need for robust frameworks to achieve certain perfor-
mance objectives. They further defined and explained the attributes of a QoS-aware
 service consisting of performance metrics such as queuing delays, execution
 latencies, and service response times. They also demonstrated that a software

TABLE 2.1
Results from the Research Review Classification

Polygon-based Rendering Non-Polygon-based

With Frame Rate Data [62] [64] [65] [67] [72] [74] [77] [81] [84]
[85] [92]

[69] [73] [80] [83] [86] [87]

Without Frame Rate Data [61] [63] [66] [68] [75] [78] [79] [82] [89]
[90] [91]

[70] [71] [76] [88]

13Preliminaries

system can be approximated by a linearised model with corresponding conceptual
software representations of actuators and sensors. Although the feedback control
architecture was provided for generic software systems, the entire work focuses on
web server applications.

Abdelwahed et al. [3] proposed a generic online control framework to design
self-managing computer systems. The control actions governing system operations
were obtained by optimising system behaviour as forecasted by a mathematical
model over a specified time horizon. The case studies cited deal with power manage-
ment under time-varying workloads and signal detection accuracy and latency levels.

Since computer systems in networked environments are gaining importance due to
increasing Internet usage, Li and Nahrstedt [4] proposed a task control model to illus-
trate the dynamics of QoS adaptations using digital control theory. The objective was
to provide optimum resource allocation to tasks in a distributed environment where
multiple applications compete for and share limited system resources, thus ensuring the
best user experience and efficiency. A proportional, integral, derivative (PID) control-
ler was used to achieve the desired performance objectives relating to the QoS metrics.

Hellerstein et al. [5] provided a comprehensive overview of the challenges in con-
trol engineering of computer systems. Similar studies were reported by Abdelzaher
et al. [7], Lu et al. [8], and Karamanolis et al. [9].

2.3.3 contRol PRinciPles in comPuteR gRaPhics softwaRe

In Li and Shen’s work [10], a fuzzy logic controller serves as an automatic mecha-
nism for controlling error tolerance in hierarchical volume rendering. Volume ren-
dering is a technique for directly displaying a sampled 3D scalar field without first
fitting geometric primitives to the 3D discrete sampled date set. The performance
criterion is a user-defined frame rate that the control system will strive to achieve
based on adjusting the error tolerance.

Sort-last rendering is a computer graphics applications technique for rendering
extremely large datasets in clusters of computers, usually in a distributed environ-
ment. Kirihata et al. [11] showed that it is possible to use feedback control to harness
large data transfer processes in sort-last rendering.

Another example of the adoption of control principles in computer graphics
 software is the work by Dayal et al. [97]. They proposed an adaptive form of
 frameless rendering with the potential to increase rendering speed dramatically over
conventional interactive rendering. This is done without the rigid sampling patterns
of framed renderers and by allowing sampling and reconstruction to adapt with very
fine granularity over spatial–temporal colour changes. A sampler uses closed-loop
feedback to guide sampling toward edges or motion in the image to maximise ren-
dering efficiency.

To date, little research has focused on the adoption of control principles in com-
puter graphics applications related to rendering. While the potential benefits are
immense based on a broader perspective in which control techniques have been used
successfully in generic software, the challenges usually lie in specific applications
that require in-depth understanding and appropriate modelling before the control
concepts may be introduced.

15

3 Linear Model Analysis
of Real-Time Rendering

3.1 INTRODUCTION

The real-time computer graphics rendering process embodies complex state transi-
tions and fast dynamics amidst observable steady-state behaviour. To yield realistic
or visually useful graphical information, the rendering process may be loaded with
myriad combinations of the input variables and states to the point where it is impor-
tant to describe this function in simple terms.

In this chapter, we describe the application of system identification methodology
to real-time rendering. The basis for such an approach is that the rendering process
may be treated from a system perspective as a data processing function. This allows
us to analyse the process input and output data to establish some formal relationship
between them.

3.2 BACKGROUND

The perennial and increasing demands for fidelity, coupled with hardware archi-
tecture advancements, pose many challenges to researchers and developers as they
endeavour to find the optimal solution to accommodate both speed and quality of
rendering. To this end, key techniques developed since the evolution of computer
graphics three decades ago revolve around their ability to reduce the rendering load
at application runtime. They are largely based on the principles of visibility reduc-
tion, geometry decimation, image-based methods, and more recently, techniques
such as programmable shading.

As space does not permit an exhaustive review of these research efforts, we refer
the reader to the comprehensive surveys by Cohen-Or et al. [12], Haines [13], and
Akenine-Moller et al. [14]. Despite the ability of each approach to reduce rendering
loads during runtime, their common weakness lies in the inability to guarantee stable
frame rates.

In this chapter, we introduce a novel framework for obtaining an accurate model
of an interactive rendering process. This framework is based upon the system iden-
tification methodology [1] that is a mature field of study associated with systems and
control theory.

In addition to expanding understanding of the dynamics relating to the rendering
process, the objective of modelling this process is to establish the groundwork for a
control framework. Only with an accurate model can we design this control frame-
work around the rendering process to yield the sustainable performance we desire.

16 Real-Time Rendering

In this research, we focus on exploiting a current trend in hardware technol-
ogy that provides fine resolution in geometry control, known as tessellation. Since
geometry is the primitive construct of any object in 3D space, it becomes a natural
choice as one of the modelling variables in our framework. In brief, tessellation is
the process of sub-dividing surfaces into smaller shapes with the objective of gen-
erating higher resolution information of the 3D model. Tessellation, also known as
a sub division technique, is a well researched field in computer graphics and had
been adopted widely in many interactive rendering applications because of the visual
acuity it provides. However, only recently has graphics hardware provided sufficient
support for tessellation-based techniques in applications [30].

We introduce our modelling framework via experiments in two interactive render-
ing applications that use subdivision techniques in rendering load control. We aim to
establish the fundamental validity of a system-based approach to modelling the ren-
dering processes in applications similar to those selected in these experiments. Since
rendering tasks are inherently complex in real-world applications, we provide a sys-
tematic extension from a single-input–single-output (SISO) model of the rendering
process to a multiple-input–single-output (MISO) model that more closely resembles
a broader class of applications. We hope that this progression along with the system
modelling principles and fundamental considerations related to 3D rendering will
enable readers to appreciate the value of this framework and acquire the necessary
knowledge for its implementation.

Current research in rendering workload characterisation [16,17] and rendering
time estimation [18,19] strives to profile the attributes of rendering without providing
a systematic way to control the process. Often, the user is expected to arrive at some
form of a primitive control strategy based on profile information. This often requires
several attempts to re-evaluate control strategy and ad hoc refinement steps are often
needed to remove major rendering bottlenecks.

This motivated us to attempt to utilise a systems perspective to model the render-
ing process. In this chapter, we demonstrate that accurate models can be obtained
via our data-driven framework and extend this framework by introducing the use of
a controller that can track and regulate frame rates with guaranteed performance.
In comparison with other work, our research offers the following benefits:

• Our framework does not require the pre-processing of the 3D content
utilised in other research [20,21,22]. Its performance is not limited to static
pre-processed geometry and scenes.

• Our approach leverages hardware-accelerated technology (tessellation) that
provides smooth transitions in geometry scaling unlike techniques that may
generate visual hysteresis [21,22,23].

• The outputs of the derived rendering models exhibit very high accuracy
when compared to actual rendering process outputs.

• When the derived rendering model is used in conjunction with a suit-
able controller, the closed-loop system can produce guaranteed frame
rates. The self-correction process occurs entirely online during runtimes
unlike current techniques that may require repetitive and labour-intensive
offline evaluation.

17Linear Model Analysis of Real-Time Rendering

3.2.1 contRol-centRic definition foR RendeRing time contRol

In contrast to previous research on interactive and time-critical rendering [20,22,24],
we define rendering time control as a mechanism that should produce stable frame
rates very close to the user-defined target instead of fluctuating below it. To date, much
research on rendering time control has focused loosely on keeping the time required
to render each frame within a certain budget and ignoring the quality of the control or
the fluctuations resulting from the technique. This leads to two consequences.

The first implies that the times allocated to perform other tasks in an interactive appli-
cation such as logic computation, collision detection, and animation will not be consistent.
In some cases, “starvation” of other processes that require CPU or GPU resources may
occur. This is detrimental to the effectiveness of visual simulation applications in which
external devices that require CPU cycles are tightly coupled to the rendering process.

Second, weak frame rate control leads to suboptimal resource use. For example,
an object rendered at 15 FPS that achieves acceptable visual quality should not be
rendered at 25 FPS unless allowed by the user for valid reasons. This requirement is
especially critical in interactive applications and systems with tight resource control
policies such as in game consoles [25,26] and portable devices where sustainable
and guaranteed performance is vital because processor time must be allocated for
related non-graphics computations. In contrast, applying control engineering leads to
analysis of system attributes such as output overshoot, settling time, and steady-state
errors that constitute a better qualitative framework for performance monitoring .
We feel that this is a more powerful outcome than the current research focus on
frame rate control.

3.2.2 challenges in using heuRistics

Heuristics usually refers to an experience-based speculative formulation of a solution
to a problem. Much research in the area of rendering performance control has been
based on heuristics and analytical models [22,23,24,27]. As Gobbetti and Bouvier
noted [24]:

“…Static heuristics are not adaptive and are therefore inherently unable to produce
uniform frame rates….”

Leukbe describes the difficulty in modelling the rendering process in his book on
level of detail (LoD) for 3D graphics [28]:

“…a predictive scheduler estimates the complexity of the frame about to be rendered…
this approach is substantially more complicated to implement…because it requires an
accurate way to model how long the specific hardware will take to render a given set
of polygons.”

The challenge in establishing reliable heuristics is straightforward. Driven by com-
mercial demand and innovation, computer graphics hardware and software continue
to change at unprecedented rates. In confirmation of this fact, Dumont et al. [29]

18 Real-Time Rendering

stated that given the complexity of real-rendering applications today, heuristics may
fail in controlling rendering time. Haines [13] also describes this trend:

“Perhaps one of the most exciting elements of computer graphics is that some of the
ground rules change over time. Physical and perceptual laws are fixed, but what was
once an optimal algorithm might fall by the wayside due to changes in hardware, both
on the CPU and GPU. This gives the field vibrancy: we must constantly re-examine
assumptions, exploit new capabilities, and discard old ways.”

Based on these findings, dissecting the rendering process into distinct compo-
nents that contribute to rendering cycle time is no trivial task. Tack et al. [18] did not
consider overhead time in their performance model because of the complexity and
additional costs it represented. The heuristics proposed in Wimmer and Wonker’s
work [19] varied in performance for different applications. This implies that unless
an application is specially built to fit into their proposed framework it may not be
easy to achieve stable frame rates across a broader range of applications.

Heuristics ignore non-linearity in their formulation, that is, they assume that func-
tional relationships are always linear. This is unrealistic in practical applications
because of the underlying hardware. Our experiments have shown that the time taken
to render a vertex varies at different total processed vertex counts. The work of Lakhia
et al. on interactive rendering [22] demonstrated that texture size has a non-linear rela-
tionship with the time taken to render a 3D object. Finally, heuristics face the same
challenges as other frame rate control mechanisms in terms of balancing qualitative
requirements such as visual hysteresis [23] and rendering performance.

3.2.3 PuRPose of woRkload chaRacteRisation and analysis

Apart from heuristics in the quest to limit rendering time, researchers also analysed
rendering workloads with the goal of identifying and eradicating bottlenecks at
runtime. Kyöstilä et al. [16] created a debugger and system analyser for graphics
applications running on mobile hardware. Monfort and Grossman [17] attempted to
characterise the rendering workloads of 3D computer games via a specially devel-
oped tool. In recent years, major graphics hardware vendors have provided software
toolkits that allow low level access to their hardware for debugging and in-depth
analysis of graphics workload with the goal of optimising performance of interactive
applications during runtime.

However, workload characterisation and analysis are not adaptive mechanisms that
will bring about stable frame rates. They are helpful only for tracing bottlenecks and
manifesting an application’s rendering workload profile. To utilise these mechanisms
for runtime performance, the process usually involves (1) identification of the problem
(such as the cause of a bottleneck) during runtime followed by (2) manual effort to
eradicate the bottleneck offline and then re-run the same scenario. This approach does
not guarantee performance when the application use or 3D scene content changes.
Since interactive rendering usually causes dynamic changes to visual content, the
approach of using workload characterisation and tuning is not generally robust.

19Linear Model Analysis of Real-Time Rendering

3.3 CASE FOR DATA-DRIVEN MODELLING

In system identification, we approach the problem of modelling a dynamic sys-
tem from the observable data generated by its input and output. The case for using
data-driven modelling is especially compelling for real-time rendering because the
process is inherently complex. Rendering is a computer system process that thus
raises considerations at both the hardware and software levels. Furthermore, unlike
mechanical systems or chemical processes, no physical laws or intuitive functional
relationships can be applied easily to achieve high accuracy.

Considering the real-time rendering process as a black box does not necessar-
ily imply high risk of inappropriate modelling of the system as long as reasonable
assumptions are based on a priori understanding of the system and can be reinforced
from experiment results. In this book, we approach the challenge of modelling a ren-
dering system by considering the expanded scopes of both single and multiple inputs.
We also consider the output of the rendering process in terms of measurable quanti-
ties and the benefit of registering them as system outputs. This chapter discusses the
inputs and outputs considered in system modelling and their eventual roles in system
model representations.

To proceed with the modelling process, we first establish the relationship between
the input and output of a system. This means that we must define and qualify the set
of inputs and outputs before proceeding to identify their relationship. In the context
of a real-time rendering application, it is reasonable to associate the geometry used
for construction of 3D objects with the input to the rendering system and the output
with the frame rate since empirical data indicate that they have an inverse relation-
ship. Furthermore, in system identification, the input variables must be modifiable
by the user in a straightforward manner. This is different from research in workload
characterisation and heuristics where the defined variables are quantities such as
hardware level parameters and processing time that cannot be changed by a user
during runtime.

3.3.1 Basis foR selection of system VaRiaBles

With reference to the data flow in the computer graphics rendering pipeline shown in
Figure 2.3 in Chapter 2, the inputs to the rendering process are obtained from mem-
ory resources (rectangle at far right) of the computer system. These inputs consist of
various types of data ranging from geometry information to textures (image-related
information) and rendering routines such as shader programs.

In order to define a set of variables to describe a rendering system, the input and
output variables must be easily measurable. Furthermore, it is imperative that the
input variables are controllable so that control actions can be implemented properly.
Based on these criteria, we investigated the available performance counters with
common low level graphics rendering profiler toolkits that included Microsoft’s PIX.
Table 3.1 shows a set of performance counters commonly used in many computer
graphics applications.

Since many performance counters fall into the same category and are derivatives
of one another, we chose the lowest denomination or most primitive variable in each

20 Real-Time Rendering

selected category. To illustrate, the input geometry to the rendering pipeline may
include lines, triangle fans, strips, and polygons. These are different input formats
that share the same basis—3D geometry data. Hence the natural choice as the input
variable of a rendering system should be the vertex count.

In addition to finding the appropriate variable by using its simplified form, another very
important characteristic that determines suitability is whether a variable can be changed
easily. For example, the batch counts and batch sizes of indexed buffers can impact the
performance of a rendering system. However, little can be done to control these variables
during an application runtime because these batches of vertices are predefined.

Finally, the resolution at which the selected variable may be adjusted affects the
quality of the system model as well. The ideal case would involve a variable that
allows fine resolution changes. For example, since the number of vertices is used
as an input variable of a rendering system, it may be difficult to obtain an accurate
model when this number can be varied only in limited steps.

One reason for this limitation is the underlying geometry LoD mechanism that
controls the resolution of a 3D object with a certain topological objective and algo-
rithm. The discrete LoD technique is an example of such a mechanism. Figure 3.1
illustrates the progressive variation (in steps) in the number of vertices that describe
a 3D object. Conversely, other techniques such as progressive meshes and geometry
tessellation allow 3D geometry variation at fine resolution levels. These techniques
are preferred in comparison to the approaches cited earlier.

So far we have discussed guidelines for inputs to the rendering system. As for the
output of the rendering system, the performance metric of primary concern to a user
of real-time computer graphics is widely accepted as the frame rate (inverse of the
time required to render one frame or image in a sequence) and quality of the gener-
ated imagery. The frame rate has a significant impact on the quality of the visual

TABLE 3.1
Performance Counters in DirectX
Direct3D Counter Description Official Name

FPS (#) D3D FPS

Frame time in milliseconds D3D frame time

Driver time in milliseconds D3D time in driver

Triangle count (#) D3D triangle count

Triangle count instanced (#) D3D triangle count instanced

Batch count (#) D3D batch count

Locked render targets count (#) D3D locked render targets count

AGP/PCIE memory used in integer MB (#) D3D agpmem MB

AGP/PCIE memory used in bytes (#) D3D agpmem bytes

Video memory used in integer MB (#) D3D vidmem MB

Video memory used in bytes (#) D3D vidmem bytes

Total video memory available in bytes (#) D3D vidmem total bytes

Total video memory available in integer MB (#) D3D vidmem total MB

Source: NVPerfKit documentation from www.nvidia.com

21Linear Model Analysis of Real-Time Rendering

experience offered by a real-time rendering application. While the quality of the
generated imagery may be important to the user, the interactive experience is usu-
ally dominated by the application response rather than the quality of the generated
imagery. Furthermore, quality is a subjective notion that complicates the adequacy
of any useful metric.

3.4 LINEAR SYSTEM MODEL REPRESENTATION
FOR REAL-TIME RENDERING

This section describes the modelling process applied to the real-time rendering
system and the derivation of the mathematical models for various types of rendering
applications. Using the system identification methodology, we demonstrate that lin-
ear time-invariant models can be obtained from the input and output data collected
from experiments conducted using sample rendering applications.

A basic relationship between the input and output of a system may be expressed
as a linear difference equation as follows.

y t a y t a y t n b u t n b u t nn a k n ka b()+ −()+… −() = −()+…+ − −1 11 nn e tb +()+1 () (3.1)

where:

a1 … ana and b1 … bnb are parameters to be estimated.
y(t) is the output of the system at time t.
y t −()1 and y t na−() are the previous outputs on which the current output depends.
u t nk−() and u t n nk b− − +()1 are the previous inputs on which the current output

depends.
na is the number of poles of the system or the order of the system.
nb represents the number of zeroes plus one.
nk denotes delay in the system.
e(t) equals noise.

An alternative way to represent Equation (3.1) in a more compact manner is the ARX
model described below:

 A q y t B q u t n e tk() () = () −()+ () (3.2)

Image

Vertices ~5500 ~2880 ~1580 ~670 140
Maximum detail,
for closeups.

Minimum detail,
very far objects.Notes

FIGURE 3.1 Visual effect of varying vertex count for 3D object in discrete steps. (Source:
http://en.wikipedia.org/wiki/Level_of_detail#A_discrete_LOD_example)

