Rolf Kindmann, Matthias Kraus
Steel Structures
Design using FEM



Rolf Kindmann/Matthias Kraus

Steel Structures

Design using FEM



Prof. Dr.-Ing. Rolf Kindmann Dr.-Ing. Matthias Kraus

Ruhr-Universitat Bochum Ingenieursozietat SKP
Lehrstuhl fir Stahl-, Holz- und Leichtbau Prinz-Friedrich-Karl-Str. 36
UniversitatsstraBe 150 44135 Dortmund

44801 Bochum

Language Polishing by Paul Beverley, London

Cover: SIGNAL IDUNA PARK, Dortmund, © Professor Rolf Kindmann

Library of Congress Card No.:
applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on
the Internet at <http:/dnb.d-nb.de>.

© 2011 Wilhelm Ernst & Sohn, Verlag fiir Architektur und technische Wissenschaften GmbH & Co. KG,
RotherstraBe 21, 10245 Berlin, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form — by
photoprint, microfilm, or any other means — nor transmitted or translated into a machine language without written permission from the
publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered
unprotected by law.

Coverdesign: Sophie BleifuB, Berlin
Herstellung: pp030 — Produktionsbiiro Heike Praetor, Berlin
Printing and Binding: Betz-Druck GmbH, Darmstadt

Printed in the Federal Republic of Germany.
Printed on acid-free paper.

ISBN 978-3-433-02978-7
Electronic version available. O-book ISBN 978-3-433-60077-1



Preface

Steel structures are usually beam or plate structures consisting of thin-walled cross
sections. For their design, deformations, internal forces and moments as well as
stresses are needed, and the stability of the structures is of great importance. Generally,
the finite element method (FEM) is used for structural analysis and as a basis for the
verification of sufficient load-bearing capacity.

This book presents the relevant procedures and methods needed for calculations,
computations and verifications according to the current state of the art in Germany and
the rest of Europe. In doing so the following topics are treated in detail:

e determination of cross-section properties, stresses and plastic cross section
bearing capacity

¢ finite element method for linear and nonlinear calculations of beam structures

e solution of eigenvalue problems (stability) for flexural, lateral torsional,
torsional and plate buckling

e verification of sufficient load-bearing capacity

¢ finite element method for open and hollow cross sections

The basis of the calculations and verifications are the German standard DIN 18800 and
the German version of Eurocode 3. They are widely comparable, however, the final
version of Eurocode 3 has just been published and the corresponding national annexes
have to be considered.

This book has evolved from the extensive experience of the authors in designing and
teaching steel structures. It is used as lecture notes for the lecture “Computer-oriented
Design of Steel Structures” on the Masters’ programme “Computational Engineering”
at the Ruhr-University Bochum, Germany. Large parts of the contents were taken from
German books — see [25], [31] and [42] — and therefore, the references at the end of
the book contain many publications in the German language. Further information can
be found at www .kindmann.de, www.rub.de/stahlbau and www.skp-ing.de.

The authors would like to thank Mr Florian Gerhard for the translations, Mr Paul
Beverley for language polishing and Mr Peter Steinbach for the drawing of figures.

Rolf Kindmann
Matthias Kraus

Steel Structures. Design using FEM. First Edition.  Rolf Kindmann, Matthias Kraus.
© 2011 Ernst & Sohn GmbH & Co. KG. Published by Ernst & Sohn GmbH & Co. KG.
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1 Introduction

1.1 Verification Methods

For civil engineering structures the ultimate limit state (structural safety) and ser-
viceability limit state have to be verified, see for example DIN 18800 Part 1. Since
components for steel constructions are usually rather slender and thin-walled, struc-
tural safety verifications for constructions susceptible to losing stability regarding
flexural, lateral torsional and plate buckling are of major significance and therefore
constitute a main focal subject in static calculations. In this context, the determination
of internal forces and moments, deformations and critical loads is a central task. Its
solution is treated in this book using the finite element method (FEM).

The calculations and verifications have to meet the legal requirements as well as the
state of the art. For steel structures the basic standard DIN 18800 and corresponding
engineering standards, or Eurocode 3, have to be taken into consideration. Table 1.1
contains a compilation of the verification methods according to DIN 18800 and the
verifications as they are generally applied. Eurocode 3 contains similar regulations.

Table 1.1 Verification procedures according to DIN 18800 and common verifications
Verification Calculation of Calculation of e
. Verifications
procedure stresses Sy resistances Ry
: Verification of stresses:
Elastic- Elastic theory qoastie theory o < 0ra = fyg
Elastic = stresses c and t = 9 + ¢ y T< TRy = fy,d/\/g
stress v.d 6, < ORd = fy,d
. Plastic theory .
Elastic- Elastic theory = utilisation of the plastic | . &9 My < Mpys or using
Plastic = internal forces and bearing capacity of the interaction conditions or the
moments N, M,, etc. g capacity partial internal forces method
cross sections
Plastic theory Plastic theory According to the plastic
Plastic- = internal forces and | = utilisation of the plastic hinge theory or according to
Plastic moments according bearing capacity of the the plastic zone theory (with
to the plastic hinge or cross sections and the computer programs)
plastic zone theory static system P prog

The use of a verification method implies that the individual cross section parts (webs
and flanges) can carry the compression stresses, so that no buckling occurs and a suf-
ficient rotation capacity is provided. Assistance for the checking of the b/t relations
can be found in profile tables; see for example [29]. If only longitudinal axial stresses

and shear stresses occur, it is 6, =+/o” +3t* . The verification of the equivalent

stress (verification method Elastic-Elastic) is only required for o/ogry and t/tg4 >

Steel Structures. Design using FEM. First Edition.  Rolf Kindmann, Matthias Kraus.
© 2011 Ernst & Sohn GmbH & Co. KG. Published by Ernst & Sohn GmbH & Co. KG.



2 1 Introduction

0.5. Perfectly plastic internal forces and moments for rolled sections can be found in
profile tables [29], interaction conditions and verifications using the partial internal
forces method in [29] and [25].

The subscript "d" for Sy and Ry in Table 1.1 indicates that the stresses must be de-
termined using the design parameters of the loads and that the design resistance
has to be applied; see Section 1.7. Section 1.4 “Linear and Nonlinear Calculations”
includes specifications concerning the calculation of stress and resistance.

1.2 Methods to Determine the Internal Forces and Moments

As it is generally known, internal forces and moments in statically determinate sys-
tems may be calculated with the help of equilibrium conditions and intersection
methods. This is not possible with statically indeterminate systems and thus another
solution procedure is used, such as the force method, which is the classical method
of structural analysis. It is appropriate for hand calculation and very straightforward
since it is easy to understand in engineering terms. However, the disadvantage is that
for differing structural systems many approaches must be developed and, moreover, it
is completely inappropriate for many tasks.

Structural system: Force method: Displacement method: Reduction method:

YYVVYVVVY 4 My, ?ode 1 element R 1 element
A N A ,9) X L. t
} ¢ qL unknown M, unknown o, unknowns o, and V,
2 b or or or

Moment diagram:
10 elements

4 N 10 elements I N
T N AKX N A N
) node
max M. =0.07q-£ Va
M, = —1§ q'ZZ unknown V, unknowns w and ¢ unknowns as for
in the nodes 1 element
=>1 unknown =>1 or 19 unknowns => 2 unknowns

Figure 1.1 Unknown values of the force, displacement and reduction method for a
selected example

Figure 1.1 exemplifies a singlely indeterminate girder. Hence, when using the force
method, one unknown force value must be defined. After this, the moment distribu-
tion can be determined using the equilibrium conditions. The basis of the method is
always the choice of a statically determinate structure (primary structure). Since there
are several possibilities for doing so, the two systems in Figure 1.1 are selected exam-
ples.
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Generally, there are three methods for determining the internal forces and moments:
e Force method
o Displacement method — FEM
e Reduction method — FEM

Moreover, there are numerous variations within these three methods, which cannot be
discussed in detail here. Whereas when using the force method, the forces are the
unknown variables of the emerging equation system, when using the displacement
method, the unknown variables are the displacements, i.e. the displacements and
rotations. If the structural system is divided into finite elements (e.g. beam elements
or segments), the displacement method is extremely appropriate for a generalised
formulation and so is applicable in many different situations. The ideas involved are
not simple in engineer terms but are very mathematical because large amounts of data
must be handled with sizable equation systems solved. The actual amount of data and
the size of the equation system will, of course, depend on the system under consider-
ation, but it will certainly be more than would be needed for the force method.

Figure 1.1 shows the application of the displacement method. Using this method, the
unknown values are the deformations at the nodes, i.e. for the examined beam the
displacement w and the rotation ¢. Thus, there are two unknowns per node, so
depending on the geometric boundary conditions, there will be between one and 19
unknowns in each example. Using the FE model with 10 elements, a relatively large
number of unknowns (19) occur, but there is no need of further hand calculation,
which is an advantage. For procedural reasons, all state variables (bending moments,
shear forces, displacements, rotations) at the nodes, i.e. virtually in the entire system,
are determined.

Due to the numeric complexity, the widespread use of the FEM with the displacement
method is closely connected to the rapid development of high-capacity computers.
Until about 1985, it was important to model structures using finite elements in such a
way that the limited memory capacity was sufficient and that computing times did not
escalate. Nowadays, these considerations are only important for exceptional
structures and calculations. Then again, it is often seen that in static calculations
exaggeratedly fine FE-modelling or the use of inappropriate finite elements create
reams of paper. As shown in Figure 1.1, it can be very reasonable to calculate a
single-span beam using an FEM program, since all values for the necessary
verifications are directly obtained by the program and the corresponding pages for the
static calculation can be printed out with minimal effort.

The third method mentioned above is the reduction method, which is suitable for
continuous beams including instance sharp bends. The unknowns of the resulting
equation system are the unknown internal forces and displacements at the beginning
of the beam structure (see Figure 1.1), so that for beams, a maximum of seven
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unknowns results. Accordingly, the requirements for disc space and calculating time
are low, which was, as already mentioned above, of vital importance until about
1985. The reduction method was often used to design plate-girder bridges, since even
for multi-span girders only two unknowns arise (main beam, transfer of vertical
loads). Computer programs using the reduction method are rare these days. However,
the procedure can definitely be found in current FEM programs for beams and
frameworks, though here it is first calculated with a relatively rough division into
finite elements according to the displacement method. Subsequently, the individual
beams are generally divided into five to ten elements in order to be analysed more
closely using the reduction method. Further details on the reduction method can be
found in [31].

1.3 Element Types and Fields of Application

For FEM calculations structures are idealised using structural systems (beams,
frameworks, plates, etc.) and are then appropriately divided into finite elements — see
Figure 1.3. A distinction is drawn between:

o line elements (one-dimensional, straight or curvilinear)
e area elements (two-dimensional, plane or circumflex)

o volume elements (three-dimensional, block-shaped or with curved surfaces)

Line elements (beam elements)

-

Area elements

Possible degrees of freedom:

N

node )
® Displacements u, v and w

* Rotations ¢, or 8 (twist), o, and¢,
(0]

Vel
0w

oor8
0,

¢ derivative of the angle of twist 3'or w"

Volume elements

<

Figure 1.2  Element types and possible nodal degrees of freedom
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a) Beam elements for frames c¢) Curvilinear boundary

IEEEEREEEEEEEEEREEEEEEERE . elements for
g = cross sections

Figure 1.3  Examples for the discretisation of different problems of steel structures
using finite elements

In Figure 1.2, corresponding elements are exemplified. If beams and frameworks are
to be analysed, it may in some cases be useful to examine the cross section with the
help of the FEM. Depending on the task, the following elements are used:

e line elements (one-dimensional, straight or curvilinear) or
e area elements (rectangular or triangular, straight or curvilinear boundaries)

For the calculation of steel structures almost exclusively beam elements are used (see
Figure 1.3a). These are often part of the following structural systems:

e single-span and continuous beams
e columns and plane frames

e plane and three-dimensional trusses
e three-dimensional frameworks

e girder grids

The quoted static systems mainly appear in structural, industrial and plant engi-
neering. Due to different stresses, beam elements with up to seven deformation
variables in each node (degrees of freedom) are required. The number of required de-
formations per node is discussed in more detail in the Chapters 3 and 5.

Finite beam elements are also commonly used for the calculation of bridges. Area
elements (plates, shells) are rarely used, whether for plate, beam-framework, bow or
cable-stayed bridges. An essential reason for this is that the current standards and
codes are almost exclusively designed to suit the needs of calculating beam
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structures. Moreover, apart from a few exceptions, the accuracy of these calculations
is quite sufficient.

An interesting field of application for finite area elements in steel structures is plate
buckling. For example, Figure 1.3b shows the upper flange of a beam which has been
divided into finite elements in order to perform an analysis of plate buckling. This
topic is discussed in Chapter 10, where a rectangular plate element for the determina-
tion of eigenvalues and modal shapes is derived. Apart from that, area elements are of
course used for specific scientific research and development. Since, as has been
mentioned, area elements are not often used, and volume elements even less so, for
steel structures, the following can be stated:

e Steel structures are almost exclusively calculated by using beam elements.

e A range of beam elements are needed to appropriately calculate all occurring
structures and loads.

Finite elements for the analysis of cross sections are covered in Chapter 11. As an
example, Figure 1.3c shows the finite element modelling of a rolled I-section using
area elements with curvilinear boundaries.

1.4 Linear and Nonlinear Calculations

Theoretically and numerically, linear calculations (first order theory) constitute the
starting point. The following assumptions are the basis:

e The material provides a linear elastic behaviour in the whole structure, which
means that Hooke’s law is valid without restrictions of any kind.

e The influence of the deformations of the structure is so small that it may be
neglected and the equilibrium conditions may be formulated for the
undeformed structure.

e Structural and geometric imperfections, i.e. residual stresses and initial defor-
mations, may be neglected.

Nonlinear calculations usually require a higher effort than linear calculations. Con-
cerning the nonlinearity, we need to distinguish between physical and geometric
nonlinearities. Regarding physical nonlinearity, the assumption of a linear elastic
material behaviour is renounced and the plastifications in parts of the construction are
considered in order to obtain more economic structures, i.e. structures of less weight.
As far as the plastification is only considered regarding the bearing capacity of the
cross sections, this approach is to be assigned to the verification method Elastic-
Plastic in Table 1.1. Internal forces and moments are determined according to the
elastic theory (elastic calculation of the system) and only load cases are permitted
where a maximum of one plastic hinge occurs. In comparison to that, the plastic
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bearing capacity of the cross sections and the system are utilised with the verification
method Plastic-Plastic, i.c. the spread of plastic zones or the development of several
plastic hinges is permitted.

While the physical nonlinearity is mainly considered for economic reasons, the
geometrical nonlinearities for structures susceptible to losing stability are
indispensable for safety reasons. In comparison to linear calculations, relatively large
deformations lead to higher internal forces and moments. For that reason,
verifications against flexural, lateral torsional or plate buckling have to be executed.

In conjunction with geometric nonlinear calculations, it should be mentioned that the
verifications according to the valid standards and codes, as for instance DIN 18800
Part 2, rely on a linearisation according to second order theory. This approximation is
therefore the basis for the determination of deformations, internal forces and
moments as well as critical loads (eigenvalues) in conformity with the codes. As a
general rule, the accuracy of calculations according to second order theory is
sufficient in terms of applications in engineering practice since deformations for steel
structures are usually relatively small. In exceptional cases, it may be necessary to
perform precise geometric nonlinear calculations. This is always the case when large
or even very large deformations occur.

Summing up, the following can be stated:

o The verification method Elastic-Elastic is still most frequently used; see Table
1.1. For the calculation of the static system a linear elastic material behaviour
is assumed with which the internal forces and moments as well as the corre-
sponding stresses are determined. Using these stresses, the verification can be
executed.

e Recently, the verification method Elastic-Plastic has been used more often.
With this procedure, the bearing capacity can be increased until reaching the
first plastic hinge.

e For structures susceptible to losing stability the geometric nonlinear problem is
linearised and internal forces and moments are determined according to second
order theory. This linearisation is also used for the determination of critical
loads (eigenvalues).

1.5 Designations and Assumptions

In this section, descriptions and assumptions are compiled which are needed for
beam and frame structures. Some also apply for plates and the FE analysis of cross
sections. In the Chapters 10 and 11, other terms and assumptions are added relating to
these topics. The basis for the designations is found in DIN 1080 and DIN 18800.
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Abbreviations

ODE ordinary differential equation
COS coordinate system

LCC load case combination

SMI self moment of inertia
PIF-method partial internal forces method
tot total

ult ultimate

cr critical

Variables in the global X-Y-Z coordinate system

Beam structures are divided into beam elements, which are connected to each other at
the nodes. As shown in Figure 1.2, nodes can also be arranged on the inside of an
element (internal nodes). Nodes are defined in the global X-Y-Z coordinate system
(COS) by using the coordinates Xy, Yy and Zy as shown in Figure 1.4. Moreover, all
global deformations and loads at the nodes relate to this COS. For reasons of clarity,
the subscript k has been neglected for these values in Figure 1.4.

The deformations in the global COS are marked by an overbar (horizontal line

above the variable). This designation will also be used for vectors and matrices if
they apply to the global COS.

0 (point of origin) 0 (point of origin)

Py

IVIYL *
IVIZL

deformations loads

Figure 1.4  Definition of deformations and loads in the global X-Y-Z coordinate system
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Variables in the local x-y-z coordinate system

Coordinates, ordinates and reference points

>

Y.z

g»e

Figure 1.5

longitudinal direction of the local COS
principal axes in the cross section plane (local COS)
standardised warping ordinate

centre of gravity
shear centre

\9
i beam axis/\'QX
ZV (longitudinal)

~

beam axis x, principal axes y and z, centre of gravity S, shear centre M

Beam in the local coordinate system with displacements, internal forces and

moments

Beam elements apply to a local x-y-z COS and, as longitudinal beam axis, the x-axis
is defined through the centre of gravity S. The axes y and z are the principal axes of
the cross section. According to Figure 1.5, some of the displacements and internal
forces and moments apply to the centre of gravity S, others to the shear centre M (y =
VM, Z = Zy). For warping torsion a standardised warping ordinate ® is used.

Deformation variables

u, v, w

displacements in X,

y and z-direction
(local COS)
rotation about the
x-axis (twist)
rotation about the
y-axis

rotation about the
Z-axis

derivative of the
angle of twist

s

(pyE—W‘

|

Figure 1.6 Definition of positive deformations in
the local COS
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N

.

X

Mgy in M
where required!

Loads
Jx> 9y 9z distributed loads
my distributed torsional moment
ML single load warping moment
S
=]
y Zy
Ym
M
/ \ y
qy mx
Q.
Figure 1.7 Positive directions and application points of local loads

Internal forces and moments

N longitudinal, axial force

Vs, V, shear forces

M,, M, bending moments

M, torsional moment

My, My primary and secondary
torsional moment

M, warping bimoment

M, see Table 5.1 (page 172)

Subscript el: Limit internal forces and
moments according to
the elastic theory

Subscript pl: Limit internal forces
according to the plastic
theory

Subscript d:  design value

v Mx= Mxp+ st

additional warping bimoment M, in M!

Internal forces and
moments at the positive
intersection of a beam

Figure 1.8

If the common definition of positive internal forces and moments (internal force defi-
nition ) is used, the forces at the negative beam intersection act in directions
opposite to the ones specified in Figure 1.8. With the sign definition II, the direc-
tions of actions at both beam intersections are in compliance with the ones in Figure
1.8. In Figure 1.9, both definitions are shown for uniaxial bending with axial force.
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According to custom, further subscripts are used to distinguish beam elements and

nodes.
Node k: Node k+1:
Myek, Ve « Mye k+1
<—<T o> l}—» common definition
Nex J7z Vye k1 Nek+1  (sign definition I)
beam element "e"
X
—><l £ l}—b sign definition I
vz
opposite same
directions! directions!
Figure 1.9  Internal forces and moments of the beam element “e” for uniaxial bending
with axial force and sign definitions | and Il
Stresses
Gy, Oy, 6,  hormal stresses

Txys Txz> Tyz
Oy

shear stresses
equivalent stress

element area

y of the cross
section
r/’ |
i’
G
Tyy x
z
TXZ

Figure 1.10 Stresses at the positive
intersection of a beam

Cross section properties

A

Iy, 1,

Lo

It

Wy, W,
Sy, S,

lMa rv: r27 ru)

z

Iy+I
lp— A

area
principal moments of inertia

warping constant

torsion constant (St Venant)

section modulus

static moments

values for second order theory and stability; see Table 5.1

polar radius of gyration (inertia)
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Further symbols and assumptions

Material properties (isotropic material)

E modulus of elasticity, Young’s modulus
G shear modulus

v transverse contraction, Poisson’s ratio
f, yield strength, yield stress

fu ultimate tensile strength

€u ultimate strain

Partial safety factors

™ factor for resistances (material)
Yr factor for loads (force)
SN
f T e T ey i
uk o —~— tensile test
//” S~
. _- - » fracture
vk T - i — - B =
fol H perfectly plastic: o,=1, =1, /vy : E=0
|
: f,«: Ultimate tensile strength
: f, 4: Design value of the
| linear elastic: yield strength
| 6=E-¢ €, Ultimate strain
|
| t €
Eg €y D X

Figure 1.11  Assumptions for material behaviour

Matrices and vectors

s vector of internal forces and moments
K stiffness matrix

G geometric stiffness matrix

v vector of deformations

p load vector

subscript e: element

An overbar above the matrices and vectors indicates that they refer to the global co-
ordinate system (X, Y, Z).
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As long as nothing else is stated, the following assumptions and conditions apply:

e A linear elastic-perfectly plastic material behaviour as shown in Figure 1.11 is
assumed.

e In terms of the beam theory, occurring deformations are small. For that reason,
geometric correlations may be linearised.

e The cross section shape of a beam is sustained when exposed to loads and
deformations.

e For biaxial bending with axial force, Bernoulli’s hypothesis is assumed, which
states that the cross sections remain plane and that the influence of the shear
stresses on the deformations due to shear forces is neglected (beams with infi-
nite shear stiffness).

e For warping torsion, Wagner’s hypothesis is assumed and the influence of the
shear stresses on the rotation due to the secondary torsional moment is ne-
glected.

1.6 Fundamental Relationships

Displacements (linear beam theory)

As is common for beams, y and z are the principal axes of the cross section and  is
the standardised warping ordinate — see Chapter 2. The longitudinal displacement ug
refers to the centre of gravity S and the displacements vy and wy describe the
displacement of the shear centre M. For the longitudinal displacement u of an
arbitrary point of the cross section the following formula applies:

U=Ug—y @, +Z: 0y —0-y (1.1)

The first component is the displacement due to an axial force load. The second and
the third components result from the bending moments and describe the displace-
ments as a consequence of cross section rotations ¢y and ¢,. Here Formula (1.1) only
covers displacements for which the cross section remains plane. The fourth compo-
nent comprises the longitudinal displacement due to torsional loads depending on the
derivative of the angle of twist y.

The displacements v und w in the cross section plane result from the displacement of
the shear centre M and from additional components deriving from the rotation
9 about the longitudinal axis (twist):

v=vy—(z-2y)-9 (1.2)
W=WM+(y—yM)-S (1.3)
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Strains

The strains are linked to the displacements by geometric relationships. According to
[25], the following relations are valid for the linear beam theory. For the displace-
ments, Formulas (1.1) to (1.3) are considered and in addition, by neglecting
secondary shear deformations, itis vy, =¢,, wy, =—¢@, and y=9'.

gx:@ _y(p'z_}_z(p’y_(DS” (14&)
ox
ov oW
ay=5=0, az=—=0 (1.4b, ¢)
ou ov
Yy =t =|(2—2y)- (1.4d)
dy 0Ox [ ay
ou oOw om
=—+—= - — 1.4
sz 82 aX |:(y YM) 8 ( e)
oV Oow
=—+—=-9+39=0
Yyz oz oy (1.49)

Constitutive equations and stresses

The constitutive equations describe the correlation between stresses and strains. Neg-
lecting the transverse strain, with the use of Hooke’s law, a material law describing
isotropic, linear elastic material behaviour, and the strains defined in Formulas (1.4),
the following stresses can be stated:

o, =E-&, =E-(uf-y-q,+2-¢, ~0-9') (1.5)
o | .,

Txy:G"ny |: (Z ZM)_ay:| 9 (16)

TXZZG'YXZ:G |:(y YM)_Z:| 9’ (17)

Internal forces and moments

Stresses can be summarised to resulting internal forces and moments. It must be
pointed out that the axial force and the bending moments act at the centre of gravity,
while shear forces, the torsional moments as well as the warping bimoment are re-
lated to the shear centre — see Figure 1.8.
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Table 1.2 Internal forces and moments as resultants of stresses
Condition Internal force/moment Definition
ZFX =0: axial force N = jcx -dA
A
D'V, =0: shearforce Vv, = ery -dA

A
shear force V, = _[sz -dA
A

>V, =0:
> M, =0:

torsional moment M, = I [sz (Y =ym)— Ty (2~ ZM)] -dA
A
M, = Mxp +Mys

bending moment

>'M, =0:
>M,=0:

M, = [oy-z-dA
A

bending moment M, = —I o, -y-dA
A

warping bimoment M, = ch -o-dA
A

Division of linear beam theory (infinite shear stiffness) into four subproblems

Table 1.3 shows four subproblems — biaxial bending with axial force and torsion —
associated with the linear theory of beams with infinite shear stiffness. The table
contains an allocation of loads, displacements and internal forces/moments as well as
information concerning the equilibrium of a beam element and the stress o,.

Table 1.3 Division of the linear beam theory according to [25]
“Axial force” “Bi?gi;_%;:? ut “Bterr: : ?_g;g? ut “Torsion”
Loads dy; Fy dys Fy; M, dz; Fys My,_ my; My s My
Deformations | u=ug V=vy W =Wy 9
u=-y-viy u=-z-wjy u=-oY
v=-Az-2y)9
w=(y-yy) 9
Internal forces |N M, M, M,
and moments v, v, My =M, + M,
Equilibrium N =-q, M, = -V M =V, M;, =M,
Vy =-qy V; =-q, M =-my
=E-us =E-y-vi —E.z-w) =-E-0-9"
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1.7 Limit States and Load Combinations

Limit states

The limit states of structures to be analysed and the corresponding load combinations
are defined in “load standards” such as DIN 1055 [7] and EC 1 [9]. For the applica-
tion additional information is given in the standards (e.g. DIN 18800 [8], EC 3 [10]).
In this context, the bearing capacity of a structure characterises the ability of the car-
rying members to resist all loadings which may occur during the erection work and
the service life. The ultimate limit state describes a load situation of the structure
where a violation of the limit would lead to a calculative collapse or a comparable
failure, for example a rupture or a loss of stability and stable equilibrium, respec-
tively. The demands on the ultimate limit state are related to the safety of people and
the safety of the building including its equipment and facilities. In general, the states
which may have to be observed cover the loss of the position stability (lifting, over-
turning, buoying upwards), the failure of the structure or its members including the
foundation (rupture, changeover in a kinematic chain, loss of stability) and the failure
due to fatigue influences on the material and other time-related effects. With regard to
steel structures, the ultimate limit state to be verified depends on the verification
method (see Table 1.1):

e Dbeginning of a plastification
e cross section being fully plasticised at one position
e formation of a kinematic chain

e rupture

Other limit states that may be relevant are: flexural buckling, lateral torsional
buckling, plate and shell buckling as well as fatigue. In general, it has to be verified,
for the entire structure and its members, that the design value of the internal forces
and moments or stresses Sy due to the design loading F4 is smaller than the design
resistance Ry:

Sq <Ry (1.8)

The servicability limit state describes the conditions of a building beyond which it
can no longer be used for its designated purpose. The demands on the serviceability
are related to the function of the building, the safety of people and the structural
appearance. It has to be verified that the design value of stress at the serviceability
limit state does not exceed the design value of a serviceability criterion (e.g. tolerable
deformations). Limit states for the serviceability are not specified in DIN 18800 and
they are usually arranged and agreed on individually if they are not specified in other
basic or engineering standards.



1.7 Limit States and Load Combinations 17

Since the ultimate limit state is the basis of a safe design, ensuring that the structure
and its parts do not fail, is primary focus of this book.

Design loads and resistances

The safety concepts of the German and European standards are very similar. Both use
so-called partial safety factors yr and yy for the determination of the design loads and
resistances. These factors increase the “actual” loads to the design level and decrease
the resistances accordingly. The factor yr considers a possible unfavourable deviation
of the load in terms of the statistical spatiotemporal spread and, in addition, possible
insecurities in the mechanical and stochastic model. The factor vy includes the spread
of the particular resistance value and also covers inaccuracies in the mechanical
model related to the calculation of the resistances.

The design value of a load F, is determined by:
Fy=ve-v-K (1.9)

Here, vy is the partial safety factor which is associated with the particular load and Fy
is the characteristic value of the load. If necessary, a combination factor  as stated in
Eq. (1.9) may be considered.

The design value of the resistance parameters My is calculated by dividing the char-
acteristic value of the resistance My (e.g. strength of the material f;y and f, ) with the
partial safety factor yy:

My =My /vy (1.10)

Load combinations and resistance at the ultimate limit state

For the verification of the bearing capacity of a steel structure at the ultimate limit
state different load combinations have to be examined which are mainly classified as
follows:

e Dbasic combinations

e exceptional combinations

For the basic combinations two separate cases with corresponding loads F have to be
considered. According to DIN 18800, this results in the following combinations:

e permanent (dead) loads G and all variable loads Q; acting unfavourably:

Vg - Ok @ZYF,Q‘\Vi Qi (1.11a)

i>1
e permanent (dead) loads G and one unfavourable variable load Q; at a time:
YrG "G @ vrq - Qi (1.11b)
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To clarify that the loads in the combination are rather combined and not necessarily
directly added to each other, possibly due to acting in different directions or even at
different positions of the structure, the symbol “® ” is used.

The design value of the permanent loads G4 is determined by:
G4 =7 -Gy with  yg =YrG =1.35 (1.12)

If the permanent load reduces the stress due to the variable loads, the partial safety for
the permanent load has to be set to v = 1.0. It should be mentioned that additional
rules are specified in the standards concerning the reduction of stress due to parts of
the permanent loads.

The design value of the variable loads Q; 4 of the combinations with one unfavourable
variable load at a time is

Q4 =7 Qix with  yp=7ypq =15 (1.13a)
and for all variable loads acting unfavourably it is:
Q4 =7r Vi Qix with  yp =yg o =1.5 and y; =0.9 (1.13b)

For exceptional combinations, design values of the permanent loads Gy, all variable
loads Q;4 and one exceptional load F,4 have to be considered. In contrast to
Formulas (1.12) and (1.13b), the partial safety factor is used with yr = 1.0 here. The
design value for the exceptional load F, 4 is determined with a partial factor of yp =
1.0 as well.

At the ultimate limit state, the partial safety factor for the resistance is usually taken
with:

Ym =1.1 (1.14)

The factor is not only used for the determination of the design material strength but
has to be used for the design stiffness as well, which is determined with the nominal
values of the cross section properties and the characteristic values of the elasticity
modulus or the shear modulus, respectively. If the stability of members is not
decisive, the factor yy may be taken as 1.0.

Load combinations and resistance at the serviceability limit state

The safety factors yg, combination factors y and load combinations to be considered
for the verification have to be arranged individually if they are not specified in
different basic or engineering standards. At the serviceability limit state a partial
safety factor of vy = 1.0 is usually valid.
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1.8 Introductory Example

The following example is aimed to give a first overview of the verification methods
according to DIN 18800 given in Table 1.1. In doing so, the main focus is set to the
ultimate limit state. Due to the significance of this state as the basis of a safe design,
as mentioned previously, it is the main focus of this book. Figure 1.12 illustrates a
two-span girder with a uniformly distributed load to be verified. The distributed load
is considered to consist of two components, one due to the dead load and one
component including the snow loads, as shown in the figure.

g+s
TI I It I I iiig
VAW VA A I
‘L f=6m ,_L f=6m ,L IPE 400, S 235

Self weight (permanent load): gx = 30 kN/m
Snow load (variable load): sk = 20 kN/m

Figure 1.12  Structural system of the introductory example

The calculation of the design load values follows with the load combination of Eq.
(1.11b) regarding the partial safety factors yr = 1.35 for the permanent load and yr =
1.50 for one variable load according to Eq. (1.12) and (1.13a). This leads to the fol-
lowing design load qq:

Qa=8g¢tsqa=135-30+1.5-20=40.5+30="70.5kN/m
With the partial safety factor of yy = 1.1, the design yield strength of steel S 235 is:
f,4=24.0/1.1 = 21.82 kN/cm®

Verification method Elastic-Elastic

First of all, the stress in the system is determined by calculating the internal forces
and moments. The mid support plays a key role for the verification of the bearing
capacity since here the internal forces and moments are at maximum (see Figure
1.13). Using the internal forces and moments, maximum stresses can be calculated,
leading to the following verifications:

21.82

T = V__ 20438 596 kNJem? < =12.6 kN/cm?
A,y 332 V3
maxo = 231725 _ o7 351N /em? > 21.82 KN/ em?
W 1160

= verification is not successful!
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The (necessary) verification of the equivalent stress
o, =Vo?+3.1* < £y
cannot be successful due to max ¢ > f 4.

2.
-0.125q-£%= Mg

Internal forces at the

\%_/ e F @ mid support:

2
M, =0.0703q-¢ Mg =-0.125-70.5 - 67
_ . ~ -317.25 kNm
- — Vg, =0.625-70.5-6
; % + @ = 264.38 kN
=9 0.625q-¢

Figure 1.13 Bending moment and shear force according to the elastic theory

Verification method Elastic-Plastic

In order to verify the system in Figure 1.12, the plastic capacities of the cross section
bearing capacity can be taken into consideration. Using the Elastic-Plastic procedure,
the internal forces and moments are calculated according to the elastic theory — see
Figure 1.13. For the verification of a sufficient load-bearing capacity the interaction
conditions (e.g. DIN 18800) or the partial internal forces method can now be applied
(see Chapter 8).

The use of the interaction conditions according to DIN 18800 requires knowledge of
the internal forces and moments at the perfectly plastic state. By using the profile
tables [29], My, 4 = 285.2 kNm and V4 = 419 kN can directly be obtained. This leads
to the following verification:

V__ 26438 0.631>0.33 and <0.9

Vild 419

= 0.88- +0.37-

Mpl,d Vpl,d

. 317'225 £037-0.631=0.979 +0234=1.21 > |

=0.88

= verification is not successful!
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Verification method Plastic-Plastic

As shown with the previous verification, it is not possible to verify the bearing ca-
pacity of the system in Figure 1.12 if the plastic reserves of the cross section are
regarded at one position of the beam, which is, in this case, at the mid support.
However, after the bearing capacity is reached at that position, a plastic hinge will
develop and the system will still be able to carry additional loads since it will not be
kinematic at that load stage. With the development of the plastic hinge (cross section
in a perfectly plastic state) at the mid support due to My and Vg, the interaction
condition used with the Elastic-Plastic procedure has to be fulfilled exactly (“= 17
instead of “< 17). With V/V, 4> 0.33, it is:

0.88- My

M
1037 VB o My =y _037. VB | _324_0287.V,
pld VoL 0.88 pld

This formula describes what maximum bending moment the cross section is able to
carry at B with regard to the acting shear force.

Figure 1.14 illustrates the structural system regarding the symmetry after the forma-
tion of the plastic hinge. For reasons of clarity, the subscript “d” to point out the
design loads is neglected here. With regard to the equilibrium of the beam, the fol-
lowing formulas can be stated for the internal forces depending on the position x:

q-{ Mg q-! Mg
V(x)=+——-—B_q. = [V|=2—+ B
(=" Val 2/

2
M) =Ll x - Ms _d-x
2 Y4 2
q
CYVYVYYYYVYYVYY V= 3240287\
AN g- vt UebliT Vg
== X plastic hinge /“é“
Yo $a
2 2

¢ Mg /¢ T Mg/#
* }

Figure 1.14 Structural system after insertion of a plastic hinge at the mid support

£=6m

With the equilibrium, the shear force at the support Vg can be determined in terms of
Mg, as shown above. By regarding this relationship in the previous equation for Mg,
which was gained from the interaction condition, a formula for the calculation of the
moment can be stated, which is now independent of Vp:
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My, =324-0.287-V, and V, :%ﬂ%
= MB:324—0.287-(M+MBJ
2
L =324700T o5 3 iNm
1.0478

The formation of the plastic hinge at the mid support, i.e. the full plastification,
corresponds to Mg = 251.3 kNm. This moment is smaller than M, 4 = 285.2 kN due
to the action of the shear force. It now has to be checked whether the arising internal
forces and moments within the beam span can be carried by the cross section. The
decisive stress in the span is caused by the internal bending moment. It reaches its
maximum at the position V(x) = 0. Using the equilibrium formulation for V(x), this
leads to:
V(x)zq—%—%—q-x =0=x :f_&:2.404 m
2 0 2 q-!t

At that position, the bending moment can now be calculated with the equilibrium
equation of M(x):

70.5-6 251.3 70.5-2.404>
2

max My = -2.404—7-2.404—

=508.4-100.7-203.7 =204 kNm

For the verification within the beam span the internal forces and moments are
considered with V = 0 and max Mg = 204 kNm, leading to the following condition:
M 204

== —0.72<1
M, 2852

If the condition is fulfilled, there is no development of a plastic hinge within the beam
span. Therefore, the system will not form a plastic mechanism (chain) as failure mode
and the load-bearing capacity can be verified using the Plastic-Plastic method. How-
ever, it should be mentioned that additional verifications are necessary:

¢ local buckling of cross section parts and sufficient cross section rotation capac-
ity with existing b/t < limit b/t (conditions are fulfilled for an IPE 400)

e lateral torsional buckling if the deformations v and § are not sufficiently re-
stricted (by bracings for instance)

e load transmission of support reactions into the beam; where required, stiffeners
may have to be installed

e if necessary, verifications at the serviceability limit state
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1.9 Content and Outline

Figure 1.15 contains an overview of the chapters of this book showing their
interrelationship. The aim of the figure is to show which chapters are based on one
another. At the same time, it gives information about which basic knowledge is of
advantage for the understanding of a given chapter.

Basis

Beams, Frames and Members i 1 Cross Sections
* * 2 Cross Section Properties # *

4 FEM for Linear Calculations

of Beam Structures 4——? 3 Principles of the FEM ~ e——— 11 FEM for Cross Sections

5 FEM for Nonlinear Calcula- l

tions of Beam Structures i
6 Solution of Equation Sys. " 7 Stresses According to
and Eigenvalue Problems | > 10 FEM for Plate Buckling the Theory of Elasticity
9 Verfications for Stability i 8 Plastic Cross Section
and According to Second ki 1 Bearing Capacity

Order Theory
Figure 1.15 Chapter structure and dependencies

As shown in Figure 1.15, Chapters 2 and 3 are of foundational character. In Chapter
2 the cross section properties arising in beam theory are discussed. Their knowledge
is of fundamental importance for the application of beam theory (Chapters 4, 5, 6 and
9) and for a further treatment of cross sectional issues (Chapters 7, 8, 11). Chapter 3
gives information about the principles of the finite element method (FEM). The basic
idea of the method is needed for the understanding of Chapters 4, 5, 10 and 11 deal-
ing with the numerical approach for beams and frameworks, for plates and for cross
sections of beams.

Chapters 4, 5, 6 and 9 deal exclusively with the topic “beams, frames and
members”. Here, the numerical backgrounds and procedures, the solution methods
and the verification of bearing capacity are dealt with in detail. Since beams have a
special importance in steel construction, these chapters are a central part of the book.
With regard to the formulation of finite beam elements, the cross section properties
(Chapters 2 and 11) are of significance and for the verification of members the
resistance of the cross sections (Chapter 7 and 8).

Figure 1.15 shows that Chapters 2, 7, 8 and 11 can be described by the umbrella term
“cross sections”. While in Chapter 2 the cross section properties arising from beam
theory are discussed, Chapters 7 and 8 give information about the bearing capacity



